Skip to main content

Non-committing Encryptions Based on Oblivious Naor-Pinkas Cryptosystems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5922))

Abstract

Designing non-committing encryptions tolerating adaptive adversaries, who are able to corrupt parties on the fly in the course of computation has been a challenge task. In this paper, we make progress in this area. First, we introduce a new notion called oblivious Naor-Pinkas cryptosystems that benefits us to extract the randomness used to generate local public keys and thus enable us to construct corresponding simulator for a given adaptive adversary in a real-world protocol. We then give a simple construction of non-committing encryptions based on oblivious Naor-Pinkas cryptosystems. We show that the proposed non-committing encryption scheme is provably secure against an adaptive PPT adversary assuming that the decisional Diffie-Hellman problem is hard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D.: Plug and Play Encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 75–89. Springer, Heidelberg (1997)

    Google Scholar 

  2. Beaver, D., Haber, S.: Cryptographic Protocols Provably Secure Against Dynamic Adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–323. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In: STOC 1988, pp. 1–10 (1998)

    Google Scholar 

  4. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively Secure Multi-Party Computation. In: STOC 1996, pp. 639–648 (1996)

    Google Scholar 

  5. Canetti, R.: A new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145 (2001)

    Google Scholar 

  6. Chaum, D., Crépeau, C., Damgård, I.: Multiparty Unconditionally Secure Protocols (Abstract). In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, p. 462. Springer, Heidelberg (1988)

    Google Scholar 

  7. Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. De Santis, A., Persiano, G.: Zero-Knowledge Proofs of Knowledge Without Interaction (Extended Abstract). In: FOCS 1992, pp. 427–436 (1992)

    Google Scholar 

  9. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)

    Google Scholar 

  10. Garay, J., Wichs, D., Zhou, H.-S.: Somewhat Non-Committing Encryption and Efficient Adaptively Secure Oblivious Transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But their Validity and a Methodology of Cryptographic Protocol Design (Extended Abstract). In: FOCS 1986, pp. 174–187 (1986)

    Google Scholar 

  12. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In: STOC 1987, pp. 218–229 (1987)

    Google Scholar 

  13. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. J. Cryptology 15(3), 177–206 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001, pp. 448–457 (2001)

    Google Scholar 

  15. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Google Scholar 

  16. Pinkas, B.: Cryptographic Techniques for Privacy-Preserving Data Mining. SIGKDD Explorations 4(2), 12–19 (2002)

    Article  Google Scholar 

  17. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Yao, A.C.-C.: Protocols for Secure Computations (Extended Abstract). In: FOCS 1982, pp. 160–164 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, H., Bao, F. (2009). Non-committing Encryptions Based on Oblivious Naor-Pinkas Cryptosystems. In: Roy, B., Sendrier, N. (eds) Progress in Cryptology - INDOCRYPT 2009. INDOCRYPT 2009. Lecture Notes in Computer Science, vol 5922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10628-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10628-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10627-9

  • Online ISBN: 978-3-642-10628-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics