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Abstract

Let P be a set of n points in the Euclidean plane and let O be the origin point
in the plane. In the k-tour cover problem (called frequently the capacitated vehicle
routing problem), the goal is to minimize the total length of tours that cover all points
in P , such that each tour starts and ends in O and covers at most k points from P .

The k-tour cover problem is known to be NP-hard. It is also known to admit
constant factor approximation algorithms for all values of k and even a polynomial-
time approximation scheme (PTAS) for small values of k, i.e., k = O(log n/ log log n).

We significantly enlarge the set of values of k for which a PTAS is provable. We
present a new PTAS for all values of k ≤ 2logδ n, where δ = δ(ε). The main technical
result proved in the paper is a novel reduction of the k-tour cover problem with a set
of n points to a small set of instances of the problem, each with O((k/ε)O(1)) points.

1 Introduction

The k-tour cover problem (k-TC), is a very natural and well known generalization of the
traveling salesperson problem (TSP) to include several tours [3, 4, 9, 13]. Namely, we are
given a set P of points (sites), a distinguished point O outside P , called the origin as well
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as a distance function defined on P ∪ {O}. A tour is a cycle whose vertices are in P ∪ {O}.
The length of a tour is the sum of distances between the adjacent points on the tour. The
objective is to find a set of tours, each including the origin and at most k points in P , which
covers all points in P and achieves the minimum total length.

In Operations Research, the k-TC problem is well known as the capacitated vehicle routing
problem [13]. The name comes from its standard application when the points in P represent
customer locations, and the origin O stands for a depot. Then, a fleet of vehicles located at
the depot must serve all the customers, so that each vehicle can serve at most k customers.
The objective is to minimize the total distance traveled by the fleet. The k-TC problem
(capacitated vehicle routing problem) is one of the central special cases of a more general
vehicle routing problem, introduced by Dantzig and Ramser [6] fifty years ago, and studied
very extensively in the literature ever since (cf. [10, 13]).

The k-TC problem contains the TSP problem as a special case and it is known to be NP-
hard for all k ≥ 3. For this reason, the research on k-TC has focused on heuristic algorithms
and approximation algorithms. The most extensively studied variants of k-TC are the metric
one, when the distance function is symmetric and satisfies the triangle inequality, and in
particular the two-dimensional Euclidean one, when the points are placed in the plane and
the distance is Euclidean.

The general metric case of k-TC for k ≥ 3 has been shown to be APX-complete [3], i.e.,
complete for the class of optimization problems admitting constant factor approximations.
However, the approximability status of the two-dimensional Euclidean k-TC problem, in
particular, the problem of the existence of a PTAS, has not been completely settled yet.
One of the first studies of two-dimensional Euclidean k-TC has been due to Haimovich
and Rinnooy Kan [9], who presented several heuristics for the metric and Euclidean k-TC,
including a PTAS for the two-dimensional Euclidean k-TC with k < c log log n, for some
constant c [9, Section 6]. Asano et al. [4] substantially subsumed this result by designing a
PTAS for k = O(log n/ log log n). They also observed that Arora’s [1, 2] or Mitchell’s [11]
PTAS for the two-dimensional Euclidean TSP implies a PTAS for the corresponding k-TC
where k = Ω(n). There has not been any significant progress since the paper by Asano
et al. [4] until very recently, when Das and Mathieu [7] showed a quasi-polynomial time
approximation scheme (QPTAS) for the two-dimensional Euclidean k-TC for every k. Their
algorithm combines the approach developed by Arora [1] for Euclidean TSP with some new
ideas to deal with k-TC (in particular, how to handle a large number of possible values
of the lengths of the subtours arising in the subproblems of the original k-TC), and gives a

(1+ε)-approximation for the two-dimensional Euclidean k-TC in time nlogO(1/ε) n (this bound
holds for any value of k).

In this paper we focus on the two-dimensional Euclidean variant of k-TC. (To simplify
the notation, we shall further refer to this variant as to k-TC).

Our main result is a new PTAS for k-TC for all values of k ≤ 2logδ n, where δ = δ(ε).
This significantly enlarges the set of values of k for which a PTAS is known. Our PTAS
relies on a novel reduction of an instance of k-TC with a set of n points to an instance
or a small number of independent instances of the problem with a small number of points.
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Our first reduction takes any instance of k-TC on n points and reduces it to an instance
of the problem with O((k/ε)O(1) log2(n/ε)) points. Then we present a refinement, where
the instance of k-TC is reduced to a small set of instances of k-TC, each with O((k/ε)O(1))
points. These results, when combined with the recent QPTAS due to Das and Mathieu [7],

give the aforementioned PTAS for k-TC for all values k ≤ 2logδ n, where δ = δ(ε).
Our paper is structured as follows. In the next section, we introduce useful notation and

facts regarding k-TC. In Section 3, we show the first reduction yielding our PTAS. In Section
4, we present the refined reduction. We conclude with final remarks.

For simplicity of the presentation, we will present (1 +O(ε))-approximation algorithms;
reduction to (1 + ε)-approximation is straightforward.

2 Preliminaries

We assume a fixed origin in the plane and denote it by O. For a tour T , its (Euclidean)
length is denoted by |T |. For a set U of tours, we set |U | to

∑
T ∈U |T |.

For a set P of points in the plane, we denote by TSP (P ) the minimum length of a
TSP-tour through P and by opt(P ) the minimum length of a solution to k-TC (i.e., the
minimum length of a set of tours, each through the origin and containing at most k points
of P , which covers all points in P ). When P is clear from the context, we shall simply use
the notation opt.

For a point p ∈ P , we denote by r(p) the distance of p from the origin O.
The following simple lower bound plays a very important role in the previous approaches

to k-TC, see [4, Proposition 2] and [9, Lemma 1].

Fact 1 opt(P ) ≥ 2
k

∑
p∈P r(p).

Following [4], we shall term 2
k

∑
p∈P r(p) as the radial cost of P , and denote by rad(P ).

Among other things, Haimovich and Kan considered the so called iterated tour partitioning
heuristic for k-TC in [9]. The heuristic starts from constructing a TSP-tour T through P .
Then, it considers all k-tour covers resulting from partitioning T into paths visiting exactly
k points (assuming that n is divisible by k), and connecting the endpoints of the paths with
O. The heuristic outputs the shortest among these solutions.

Fact 2 [4] If the iterated tour partitioning heuristic uses a TSP tour U , then it returns a
k-tour cover of total length not exceeding (1− 1

k
) · |U |+ rad(P ).

Note that given a TSP tour, the iterated tour partitioning heuristic can be implemented
in time O(k n

k
+ n) by repeatedly updating the previous partition and k-tour cover to the

next one in time O(n
k
). Using the minimum spanning tree heuristic for TSP we can find a

2-approximation of the TSP in time O(n log n). Hence, we obtain the following.

Corollary 3 If the iterated tour partitioning heuristic uses the minimum spanning tree
heuristic for TSP then it returns a (3 − 2

k
)-approximation of an optimal k-tour cover of

an n-point set and it can be implemented in time O(n log n).
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2π/s
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Figure 1: The structure of circles, rays, and locations. The point labeled O is the origin.
Other fat dots represent the points from P . In the right picture each point has been moved
to its nearest location.

3 PTAS for moderate values of k

In this section we present a reduction that takes as an input any instance of the k-tour
problem on a set of n points in the Euclidean plane and reduces it to an instance of the
problem with O((k/ε)O(1) log2(n/ε)) points. Then, we apply this reduction to obtain a

PTAS for the k-tour problem for all k ≤ 2logδ n, where δ is some positive constant, δ = δ(ε).
Our construction uses a series of transformations that eliminate most of the input points

and reduce the input problem instance to a significantly smaller one.

3.1 Removing close points

Let L be the maximum distance from a point in P to the origin O, that is, L = max{p ∈
P : r(p)}. Since opt ≥ 2L, we can ignore any point that is at a distance at most Lε/n
from the origin: covering all such points with 1-tours will give us additional cost not greater
than n · 2Lε

n
≤ ε · opt. Therefore, from now on, we will consider only the points p with

r(p) ≥ Lε/n.

3.2 Circles, rays, and locations

Let us create circles around the origin, the i-th circle with a radius

ci =
Lε

n
·
(

1 +
ε

k

)i
, for 0 ≤ i ≤

⌈
log(1+ε/k)

n

ε

⌉
.

Let us draw rays from the origin with the angle between any pair of neighboring rays
equal to 2π/s (that is, partition the space into s sectors) with s = d2πk

ε
e.
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Define a location to be any point on the plane that is the intersection of a circle and a
ray. Since

log(1+ε/k)

n

ε
=

log n
ε

log(1 + ε/k)
= Θ

(
k

ε
· log

n

ε

)
,

there are Θ
(
k
ε

log(n/ε)
)

circles and Θ
(
k
ε

)
rays. Therefore we obtain:

Claim 4 The total number of locations T satisfies T = Θ(k2ε−2 log(n/ε)).

Now, we transform the input set P and move each point from P to its nearest location.

Claim 5 The operation of moving each point to its nearest location can change the cost of
a k-tour by at most ε · opt.

Proof. Let p be a point in P . Suppose that p lies between the circles with radius ci and ci+1

(the distance between p and the origin is in the interval [Lε/n, L], so we know such circles
exist). The distance between these circles equals ci+1− ci = ε

k
· ci. The distance between two

consecutive locations at the i-th circle is less than 2πci/s ≤ ε
k
· ci. Therefore the distance

between p and its nearest location is at most
√

2 · (1
2
· ε
k
ci) <

ε
k
· ci ≤ ε

k
· r(p).

If we move a point p ∈ P by a distance at most ε
k
· r(p), the cost of a tour can change by

at most 2 ε
k
· r(p). If we add up the changes of the cost generated by moving all points in P ,

then this total change is upper bounded by
∑

p∈P 2 ε
k
· r(p). Next, we use Fact 1 to conclude

that the total cost of moving all the points is at most ε · opt. ut

From a k-tour U ′ for a modified instance of the problem (where all points have been
moved to their nearest locations) we can easily get a k-tour U for the original version of the
problem such that |U | ≤ |U ′| + ε · opt. So a PTAS for the modified version yields a PTAS
for the original version. In the rest of this paper we will consider the modified version of the
problem.

3.3 Trivial and nontrivial tours

We say that a tour visits a location if it contains at least one point from that location. (If
an edge of a tour passes trough a location, but the tour does not contain any point from
that location, then the tour does not visit that location.)

We call a tour trivial if it visits only a single location in P ; a tour is nontrivial otherwise.

Theorem 6 There is an optimal solution in which there are at most T nontrivial tours.

Proof. We say that a set of tours t1, t2, . . . , tm (m ≥ 2) forms a cycle if there is a set of
locations `1, `2, · · · , `m, `m+1 = `1 such that each tour ti visits locations `i and `i+1. Note
that the origin is not considered as a location.

To prove our theorem we will need the following:

Lemma 7 There is an optimal solution in which there are no cycles.

5



Proof. Let U be such an optimal solution which minimizes the sum over all its nontrivial
tours of the number of locations visited by that tour.

Let us suppose that U has a cycle, and let t1, t2, . . . , tm be a minimal cycle (m is minimal).
Let `1, `2, . . . , `m be the locations in which the consecutive tours meet. From the minimality
of the cycle we know that both tours and locations are pairwise distinct.

Let v(t, `) denote the number of points from a location ` visited by a tour t. Let min =
mini∈{1,...,m}{v(ti, `i)}. Now we are ready to swap points between the tours: the i-th tour,
instead of visiting v(ti, `i) points in the location `i and v(ti, `i+1) points in the location, `i+1

will now visit (v(ti, `i) −min) points in `i and (v(ti, `i+1) + min) points in `i+1. Here `m+1

denotes `1.
Observe that the modification does not change the number of points visited by each

tour. It also does not increase the length of any tour. Therefore, we obtain another optimal
solution, in which the sum over all nontrivial tours of the number of locations visited by that
tour is smaller than in U (we managed to remove one location from each tour ti for which
v(ti, `i) = min). This is a contradiction with the minimality of that sum in U .

Therefore the optimal solution U has no cycles. ut

Consider an optimal solution without cycles. Note that the lack of 2-cycles means that
no two tours visit the same pair of locations. To each nontrivial tour we can assign a pair
of distinct locations visited by this tour. The chosen pairs are in one-to-one correspondence
with the nontrivial tours and they induce an acyclic undirected graph on the locations.

Hence, we can have at most T −1 nontrivial tours in an acyclic solution, so using Lemma
7 we have proved the theorem. ut

3.4 Reduction to an instance of k-TC with (k log n/ε)O(1) points

Observe that Theorem 6 implies that there is an optimal solution in which at most Tk points
are covered by nontrivial tours. Therefore it is enough to consider only solutions which fulfill
that property.

If the number of points in a location ` is greater than Tk, some of the points will have to
be covered by trivial tours. We may assume, without loss of generality, that among all trivial
tours visiting a given location there is at most one that visits less than k points. Moreover, if
at least one point from some location is visited by a nontrivial tour, we can assume that all
trivial tours visiting that location contain exactly k elements. Therefore, for each location `
containing c` points, we only have to consider at most min{c`, c` − k · d c`−Tkk

e} ≤ Tk points
for nontrivial tours. After finding a (1 + ε)-approximation for such reduced case, we will add
trivial tours covering all remaining points. That will give us (1 + ε)−approximation for the
original problem.

Corollary 8 One can reduce the k-TC problem on n points to one on at most T 2k points.
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3.5 PTAS for k-TC with k ≤ 2logδ n

We use Corollary 8 to reduce any instance of k-TC with the input set of n points P to an
instance of k-TC with N = T 2k = Θ(k5ε−4 log2(n/ε)) input points. For such input instance,
we apply the quasi-polynomial time approximation scheme for k-TC due to Das and Mathieu
[7]. The obtained algorithm returns a (1 + ε)-approximation in time N logO(1/ε)N . This gives

polynomial time for all k ≤ 2logδ n for some constant δ = δ(ε) > 0. Hence, we have the
following main theorem.

Theorem 9 There is a PTAS for the k-TC problem provided that k ≤ 2logδ n for some
positive constant δ = δ(ε).

4 Refinement: reduction to (k/ε)O(1) points

In the preceding section, we have demonstrated that the problem of close approximation
of the k-TC problem on the input set of n points in the plane reduces to that for a multi-
point-set of size polynomial in k/ε and polylogarithmic in n in the relevant locations. In this
section, we shall eliminate the polylogarithmic dependency of n in the reduction. This will
have only a relatively small effect on the asymptotics for the size of the largest k in terms

of n for which we can attain a PTAS and we will obtain a PTAS for all k ≤ 2logδ
′
n, where

comparing to the bound in Theorem 9, we will have δ′ > δ. However, for small values of k
this will lead to a faster PTAS. Hopefully, because it removes completely the dependency on
n from the size of the reduced instance, it also might be a step towards a PTAS for arbitrary
values of k.

The idea of our refinement resembles Baker’s method [5] of closely approximating several
hard problems on planar graphs. It relies on the following separation lemma.

Lemma 10 Let P be a set of points situated in the locations and let ε > 0. There is a
clustering of the circles into rings of dlog1+ ε

k
(6/ε)e consecutive circles and there are positive

integers a = O(ε−1) and b ∈ {1, . . . , a} such that if we mark each (b + ja)-th ring then any
k-tour cover U of P can be transformed to a k-tour cover U ′ of the points in the unmarked
rings such that

1. no tour in U ′ visits two points in P separated by a marked ring, and

2. |U ′| ≤ (1 + ε
2
)|U |.

Furthermore, the points in the marked rings can be covered with k-tours of total length at
most ε

2
|U | produced by the iterated tour partitioning heuristic from [9] (cf. Section 2).

Proof. Let t denote a tour obtained by removing its edges incident to O. Suppose that t
crosses one of the marked rings. Let i be the number of the most inner circle of the ring.
Denote the circle by Ci. It follows by straightforward calculation and the definition of the
circles that each minimal fragment of t crossing the aforementioned ring is at least 2

ε
times

7



OCi OCi

Figure 2: Splitting t into smaller tours. The grey area is the marked ring. In the left picture
dotted lines represent the lines which will be added to our solution. The right picture shows
two separate tours obtained from the original tour (one is marked with a dashed line, and
the other with a solid one), before the short-cutting.

longer than the doubled radius of Ci. We can appropriately split the tour t along Ci into
smaller ones by connecting pairs of crossing points on Ci with O or just with themselves, see
Figure 2.

The total length of the smaller tours is longer than |t| by at most ε
2

of the total length
of the aforementioned fragments of t.

We may assume, without loss of generality, that the aforementioned marked ring is the
outermost among those crossed by t. We can iterate the elimination of the crossings of the
smaller resulting tours but for their edges incident to O with more inner marked rings. Note
that then other disjoint fragments of t will be charged with the increase of the length of
the union of the resulting smaller tours. Finally, by applying short-cutting, we can drop the
points in the marked rings from the resulting tours.

We conclude that we can transform U into a k-tour cover U ′ of the points in P in the
unmarked rings such that no tour in U ′ crosses any marked ring (but for its edges incident
to O) and |U ′| ≤ (1 + ε

2
)|U |.

It remains to show that we can set a and b ∈ {1, . . . , a} such that one can easily cover

the points in P contained in the marked rings with k-tours of total length not exceeding ε|U |
2

.
Let Rj denote the set of points from P lying in the j-th ring. Set a to d24

ε
e. For each

b ∈ {1, . . . , a}, let Pb be the set of points in P in the marked rings, Pb =
∑

j≡b mod aRj. We
shall show that there is some b ∈ {1, . . . , a} such that by applying the k-TC heuristic given

in Corollary 3 for Pb, we can cover Pb with k-tours of length at most ε|U |
2

. For this purpose,
we shall observe that

∑
j TSP (Rj) ≤ 3 · TSP (P ).

Suppose for the sake of this observation that the tour t considered in the first part of
the proof is an n-tour, i.e., an optimal TSP tour of P ∪ {O}. Apply almost the same
transformation to the tour t as before with the exception that instead of connecting the

8



outer cut part by two rays to O, we connect the cutting points directly. By the triangle
inequality, the total length of the so modified TSP tour t is at most (1 + ε

2
) · TSP (P ). The

modified TSP tour t can be easily reduced to the non-necessarily optimal TSP tours of the
unmarked regions by short-cutting. Assuming first for a moment that the unmarked rings
are the even ones, and then conversely, that the unmarked rings are the odd ones, and that
ε < 1

2
, we conclude that

∑
j TSP (Rj) ≤ 3 · TSP (P ).

Using Fact 2 we get that∑
b∈{1,...,a}

opt(Pb) ≤
∑

b∈{1,...,a}

∑
j≡b(mod a)

opt(Rj)

=
∑
j

opt(Rj)

≤
∑
j

(rad(Rj) + TSP (Rj))

≤ rad(P ) + 3 · TSP (P )

≤ 4|U | .

There must be some b ∈ {1, . . . , a} such that opt(Pb) ≤ 4
a
|U | ≤ ε|U |

6
. Thus, if we apply

the 3-approximation algorithm for the k-tour of Pb, which is a composition of the iterated
tour partitioning heuristic with the minimum spanning tree heuristic for TSP, we obtain a
k-tour cover of Pb of length not exceeding ε|U |

2
. ut

Theorem 11 The k-TC problem on a set P of n points on the plane can be reduced to a col-
lection of O(ε−1 log(n/ε)/ log(1/ε)) disjoint k-tour cover problems, each on O(k5ε−6 log2(1/ε))-
point set and each having the maximum distance to the origin at most (1/ε)O(1/ε) larger than
the minimum one, such that (1+ε)-approximate solutions to each of the latter problems yield
a (1 +O(ε))-approximation to the original k-tour cover problem. The reduction can be done
in time O(n log n) for a fixed ε.

Proof. Move the points to the locations and compute the sets Rj of input points lying in
the rings for a fixed ε. This all can be easily done in time O(n log n) by using standard data
structures for point location [12].

Next, compute the value a (the distance between marked rings) and for each b ∈ {1, . . . , a},
compute a 3-approximate k-tour cover of the set Pb of points contained in the marked rings.
All the a computations take O(an log n) = O(n log n) time by Corollary 3.

Fix b to that minimizing the length of the aforementioned tour. It follows from Lemma
10 that the produced cover of Pb has length at most ε

2
opt. Now we will have to compute

approximate solutions for each maximal sequence of consecutive not marked rings. Let us de-
note the number of such sequences by q. We can easily compute that q = O(ε−1 log n

ε
/ log 1

ε
).

For i = 1, . . . , q, let Ii denote the set of points contained in such i-th sequence. Note that
these point sets can be also easily computed in time O(n log n).

It follows from Lemma 10 that if we compute separately (1 + ε)-approximation of the
optimal cover with k-tours for each set Ii, then the union of these coverings will have length
at most (1 +O(ε))opt.

9



Note that for a given i, the number of locations in Ii isO(a· k
ε
·log(1+ ε

k
)

1
ε
) = O(k2ε−3 log 1

ε
).

Hence, by the discussion in Section 3, we can account to the intended (1+ε)-approximation of
opt(Ii) the trivial tours decreasing the point-multiplicity in each location to O(k3ε−3 log 1

ε
).

Thus, for each Ii we can reduce the problem to one with O(k5ε−6(log 1
ε
)2) points.

Each Ii consists of O(ε−1) consecutive rings and for a point in a ring the maximum
distance to the origin is at most O(ε−1) times larger than the minimum one. Hence, for a
point in Ii the maximum distance to the origin is at most (1/ε)O(1/ε) times larger than the
minimum one.

The appropriate q sets of points can be computed in time O(n log n) and they specify
the problems to which we approximately reduce the original k-tour cover problem. ut

5 Final remarks

In this paper, we have considered the problem of approximating two-dimensional Euclidean k-
TC. Prior to our work, a PTAS has been known only for the values of k ≤ O(log n/ log log n)
and for k = Ω(n) [4], and in this paper we significantly enlarge the set of values of k

to k ≤ 2logδ n for some positive constant δ = δ(ε). The main technical contribution is a
reduction of the k-TC problem on n points to either that on (k log n/ε)O(1) points, or to
a small number of independent instances of the k-TC problem on (k/ε)O(1) points. When
combined with a QPTAS for k-TC due to Das and Mathieu [7], this gives a PTAS for

k ≤ 2logδ n for some positive constant δ = δ(ε).
The central open question left is whether there is a PTAS for the k-TC problem for all

values of k. While we have enlarged the set of values of k for which a PTAS exists, we still
do not know how to reach polynomial values for k, even k = n0.001. In particular, a PTAS
k-TC for k = Θ(

√
n) is elusive. For arbitrary values of k, the best currently known result

is either a quasi-polynomial time approximation scheme by Das and Mathieu [7] that runs

in time nlogO(1/ε) n, or the polynomial-time constant-factor approximation algorithm due to
Haimovich and Rinnooy Kan [9]. Similarly as in [4], we believe that the case k = Θ(

√
n) is

the hardcore of the difficulty in obtaining a PTAS for all values of k.
Following [9], let us observe that if we divide the range of k, i.e., the interval {1, . . . , n},

into a logarithmic number of intervals of the form [ε−2i, ε−2(i+1)), then for k in at most
one of the intervals none of the inequalities TSP (P ) ≤ ε · rad(P ), rad(P ) ≤ ε · TSP (P )
hold. Note that if any of the inequalities holds then by plugging any PTAS for TSP in the
iterated tour partitioning heuristics, we obtain an (1 +O(ε))-approximation of k-TC. Thus,
the aforementioned heuristic is in fact a PTAS for a substantial range of k depending on
P : for every set of points P there is k0 such that there is a polynomial-time (1 + O(ε))-
approximation algorithm for k-TC for every k ≤ εk0 and for every k > k0/ε. Despite this
observation and despite recent progress in [4, 7], the problem of designing a PTAS for all
k remains open: we believe that our paper sheds the light on this problem and is a step
towards a PTAS for arbitrary values of k.
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