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I. INTRODUCTION

Measuring similarity between curves is a fundamental
problem that appears in various applications, including com-
puter graphics and computer vision, pattern recognition,
robotics, and structural biology.

A natural choice for measuring the similarity between
curves is the Fréchet distance. The Fréchet distance for two
parametric curves P ,Q: [0, 1] → Rd is defined as

δF (P, Q) = inf
α,β:[0,1]→[0,1]

sup
t∈[0,1]

d′(P (α(t)), Q(β(t)))

where α and β range over all continuous non-decreasing
functions with α(0) = β(0) = 0 and α(1) = β(1) = 1, and
d′ is a distance metric between points. The functions α and
β are also refereed to as reparametrizations. We call (α, β)
a matching between P and Q.

The Fréchet distance is described intuitively by a man
walking a dog on a leash. The man follows a curve (path),
and the dog follows another path. Both can control their
speed but backtracking is not allowed. The Fréchet distance
between the curves is the length of the shortest leash that is
sufficient for the man and the dog to walk their paths from
start to end.

In this paper, we study the Fréchet distance problem
in weighted regions in R2. Given a weighted subdivision
R = {R1, R2, . . . , Rm} of the plane with a total of n
edges and two parameterized polygonal chains P and Q,
approximate the Fréchet distance between P and Q, where
the (weighted) distance between two points P (s) and Q(t)
on P and Q, respectively, is defined as S(P (s)Q(t)) =∑m

i=1 wi ∗Ri(P (s)Q(t)), with Ri(P (s)Q(t)) the length of
link P (s)Q(t) within region Ri, and wi a positive weight
associated with Ri. For simplicity, we assume R is triangu-
lated and P,Q lie on the boundaries of the weighted regions.
Fig. 1 depicts an example of this problem.

II. DISCRETIZATION USING STEINER POINTS

In this section we show how to apply a discretization
scheme used to approximate shortest path in weighted re-
gions, e.g. [1], [5].

Let E be the set of all edges in R. Let V be the set of
vertices in R. For any point v on an edge in E, let E(v) be
the set of edges incident to v and let d(v) be the minimum
distance between v and edges in E \ E(v). For each edge
e ∈ E, let d(e) = sup{d(v)|v ∈ e} and let ve be the point
on e so that d(ve) = d(e). For each v ∈ V , the vertex radius
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Fig. 1. An example of the Fréchet distance problem in weighted regions.

for v is defined as r(v) = εD
nwmax(v) , where ε is an positive

real number defining the quality of the approximation, D is
the lower bound of δF (P,Q), and wmax(v) is the maximum
weight among all weighted regions incident to v. The disk of
radius r(v) centered at v defines the vertex-vicinity of v. D
can be computed in O(pq log(pq)) time using the standard
(unweighted case) continuous Fréchet distance algorithm
described in [3], where p and q are the number edges in
P and Q, respectively.

For each edge e = v1v2 in E, we place Steiner points
vi,1, vi,2, . . . , vi,ki outside of the vertex-vicinities, for i =
1, 2, such that |vivi,1| = r(vi), |vi,jvi,j+1| = εd(vi,j), for
j = 1, 2, . . . , ki − 1, and vi,ki = ve. It has been shown
in [1] that the number of Steiner points placed on an edge is
O(C(e)1/ε log 1/ε), where C(e) = O( |e|

d(e) log |e|√
r(v1)r(v2)

).

We refer to the line segment bounded by two consecutive
Steiner points as a Steiner edge. We refer to the quadrilateral
formed by two Steiner edges as a Steiner strip.

The set of line segments bounded by two edges of P and
Q and intersecting the same sequence of edges of R describe
an hourglass. Let H be the hourglass defined by a sequence
of Steiner edges {e1, e2, . . . , ek}, where e1 ∈ P and e2 ∈ Q.

Lemma 1: Let l and l′ be two segments in H , Then,
S(l) ≤ (1 + 2ε)S(l′) + 2εD.

Proof: Let Ri1 , Ri2 , . . . , Rik−1 be the weighted regions
in H , such that Rij is between ej and ej+1. Then,

S(l) =
k−1∑

j=1

wij Rij (l) ≤
k−1∑

j=1

wij (Rij (l
′) + ej + ej+1)

If a Steiner edge ej is outside of any vertex-vicinity, |ej | ≤
Rij−1(l

′) and |ej | ≤ Rij (l
′). If ej is incident to a vertex

v, then |ej | = r(v) = (εD) (nwmax(v)). One segment can
intersect at most n Steiner edges inside vertex vicinities. The
result follows.
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Fig. 2. A special case of the Fréchet distance problem.

Let lH be an arbitrary segment in H . Let α and β be two
reparametrizations that defines a matching between P and
Q. Let J = {H1,H2, . . . , Hk} be the set of hourglasses that
are traversed by the link P (α(t))Q(β(t)). For an hourglass
H ∈ J , let IH = {e|e = P (α(t))Q(β(t)), t ∈ [0, 1], e ∈
H, }. Let H(α, β) be the segment in IH with the largest
weighted length. That is, S(H(α, β)) = maxe∈IH

S(e).
Lemma 2: |maxH∈J S(lH)−δ(α, β)| ≤ 4εδ(α, β), where

δ(α, β) = supt∈[0,1] S(P (α(t))Q(β(t))).
Proof: Applying Lemma. 1, we have

S(lH) ≤ (1 + 2ε)S(H(α, β)) + 2εD, and
S(H(α, β)) ≤ (1 + 2ε)S(lH) + 2εD. Then
maxH∈J S(lH) ≥ 1−2ε

1+2εδ(α, β) ≥ (1 − 4ε)δ(α, β),
maxH∈J S(lH) ≤ (1 + 2ε)maxH∈J S(H(α, β)) + 2εD and
maxH∈J S(lH) ≤ (1 + 4ε)δ(α, β).

Let δ(J) = maxH∈J S(lH), which give us a 4ε −
approximation of δ(α, β). Given a sequence of hourglasses
J = {H1, H2, . . . , Hk}, we call J legal if and only if
there exist two reparmetrizations α, β that define a ”leash”
traversing the same sequence of hourglasses as J .

Lemma 3: We can find a 4ε− approximation δ′F (P,Q)
such that |δ′F (P, Q)− δF (P, Q)| ≤ 4εδF (P,Q).

Proof: We can approximate δF (P, Q) by minimizing
δ(J) over all legal sequences J We need to show that
(1 − 4ε)δF (P,Q) ≤ infJ is legal δ(J) ≤ (1 + 4ε)δF (P, Q).
First, we prove there exists a legal sequence of hourglasses
J that give use an approximation less than (1+4ε)δF (P,Q).
Let α̂,β̂ be the optimal reparametrizations that gives the
Fréchet distance between P and Q. Let J be the sequence
of hourglasses traversed by the ”leash” defined by α and
β. Obviously, δ(J) ≤ (1 + 4ε)δF (P,Q). Next, suppose
there are two reparametrizations α′, β′ and a corresponding
sequence J ′, such that δ(J ′) ≤ (1 − 4ε)δF (P, Q). This
leads to (1 − 4ε)δ(α′, β′) ≤ δ(J ′) ≤ (1 − 4ε)δF (P, Q), i.e.
δ(α′, β′) ≤ δF (P,Q). The assumption contradicts the fact
that δF (P, Q) is the Fréchet distance between P and Q.

III. A SPECIAL CASE

Here, we study a special case of the problem where
each curve consists of one line segment and u0u1v0v1 is
a quadrilateral, with u0 = P (0), u1 = P (1), v0 = Q(1),
v1 = Q(1) the endpoints of P and Q. See Fig. 2 for an
illustration.

We apply the approach in [3] to construct a modified
free space diagram D. A link P (s)Q(t) in the primal space
is associated to a point (s, t) in D. There is a one-to-one
correspondence between all possible matchings of P and Q
and all s, t-monotone paths in D, from its bottom-left corner
to its top-right corner.

Lemma 4: All links passing though a Steiner point v
correspond to a curve in the free space diagram D, with
equation Cv : st + c1s + c2t + c3 = 0, where c1, c2, and c3

are constants.
We call Cv the dual curve of v. A point to the left of

Cv in D corresponds to a link to the left of v in the primal
space. We can partition D by the dual curves of the Steiner
points such that each cell in D corresponds to an hourglass
in the primal plane. Using the algorithm in [2], the partition
can be computed in O(N log N + k) time and O(N + k)
space, where N is the total number of Steiner points and k
is the number cells, which is O(N2) in worst case.

The Fréchet distance between P and Q can then be
approximated as follows:
1. Place Steiner points as described previously.
2. Partition D by dual curves of all Steiner points.
3. For each cell Z, choose an arbitrary link l and assign S(l)
as the weight of the cell.
4. Find a monotone path T in D, from its left bottom corner
to its top right corner such that the cost of T is minimum,
where the cost of a path is defined as the maximum weight
of the cells traversed by the path.

Since the sequence of cells traversed by a monotone path
in D corresponds to a legal sequence of hourglasses, by
Lemma 3 T is a 4ε-approximation of the Fréchet distance
between P and Q.
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