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Abstract. We present new data structures for approximately counting
the number of points in an orthogonal range. There is a deterministic
linear space data structure that supports updates in O(1) time and ap-
proximates the number of elements in a 1-D range up to an additive term
k1/c in O(log logU · log log n) time, where k is the number of elements
in the answer, U is the size of the universe and c is an arbitrary fixed
constant. We can estimate the number of points in a two-dimensional or-
thogonal range up to an additive term kρ in O(log logU+(1/ρ) log log n)
time for any ρ > 0. We can estimate the number of points in a three-
dimensional orthogonal range up to an additive term kρ in O(log logU +
(log log n)3 + (3v) log log n) time for v = log 1

ρ
/ log 3

2
+ 2.

1 Introduction

Range reporting and range counting are two variants of the range searching
problem. In the range counting problem, the data structure returns the number
of points in an arbitrary query range. In the range reporting problem the data
structure reports all points in the query range. Both variants were studied ex-
tensively and in many cases we know the matching upper and lower bounds for
those problems for dimension d ≤ 4. Answering an orthogonal range counting
query takes more time than answering the orthogonal range reporting query in
the same dimension. This gap cannot be closed because of the lower bounds for
the range counting queries: while range reporting queries can be answered in
constant time in one dimension and in almost-constant time in two and three
dimensions (if the universe size is not too big)1, range counting queries take
super-constant time in one dimension and poly-logarithmic time in two and
three dimensions.

Approximate range counting queries help us bridge the gap between range
reporting and counting: instead of exactly counting the number of points (el-
ements) in the query range, the data structure provides a good estimation.
There are data structures that approximate the number of points in a one-
dimensional interval [4,19] or in a halfspace [7], [15], [2], [8] up to a constant

1 For simplicity, we consider only emptiness queries. In other words, we ignore the
time needed to output the points in the answer: if range reporting data structure
supports queries in O(f(n)+ k) time, we simply say that the query time is O(f(n)).
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factor: given a query Q, the data structure returns the number k′ such that
(1 − ε)k ≤ k′ ≤ (1 + ε)k, where k is the exact number of points in the an-
swer and ε is an arbitrarily small positive constant. In this paper we consider
the following new variant of approximate range counting: If k is the number
of points in the answer, the answer to a query Q is an integer k′ such that
k − εkα ≤ k′ ≤ k + εkα for some constant α < 1. Thus we obtain better esti-
mation for the number of points in the answer for large (superconstant) values
of k. On the other hand, if the range Q is empty, then k′ = 0. We present data
structures that approximate the number of points in a d-dimensional orthogonal
range for d = 2, 3. We also describe a dynamic one-dimensional data structure.
Dynamic 1-D Data Structure. A static data structure that answers 1-D re-
porting queries in O(1) time is described in [4]. In [4] the authors also describe
a static data structure that approximates the number of points in a 1-D range
up to an arbitrary constant factor in constant time. Pǎtraşcu and Demaine [24]
show that any dynamic data structure with polylogarithmic update time needs
Ω(log n/ log logU) time to answer an exact range counting query; henceforth
U denotes the size of the universe. The dynamic randomized data structure of
Mortensen [19] supports approximate range counting queries in O(1) time and
updates in O(logε U) time; see [19] for other trade-offs between query and up-
date times. In this paper we present a new result on approximate range counting
in 1-D:

– There is a deterministic data structure that can answer one-dimensional
approximate range counting queries using the best known data structure
for predecessor queries, i.e. dynamic data structure supports range report-
ing queries in O(dpred(n, U)) time, where dpred(n, U) is the time to an-
swer a predecessor query in the dynamic setting; currently dpred(n, U) =
O(min(log logU · log logn,

√

logn/ log logn)) [6]. We show that we can ap-
proximate the number of points in the query range up to an additive factor
k1/c, where k is the number of points in the answer and c is an arbitrary
constant, in O(dpred(n, U)) time. We thus significantly improve the preci-
sion of the estimation; the query time is still much less than the lower bound
for the exact counting queries in the dynamic scenario.

Using the standard techniques, we can extend the results for one-dimensional ap-
proximate range counting to an arbitrary constant dimension d. There is a data
structure that approximates the number of points in a d-dimensional range up
to an additive term kc for any c > 0 in O(log logn(logn/ log logn)d−1) time and
supports updates in O(logd−1+ε n) time. For comparison, the fastest known dy-
namic data structure [18] supports emptiness queries in O((log n/ log logn)d−1)
time. Dynamic data structures are described in section 2.
Approximate Range Counting in 2-D and 3-D.We match or almost match
the best upper bounds for 2-D and 3-D emptiness queries. Best data structures
for exact range counting in 2-D and 3-D support queries in O(log n/ log logn)
and O((log n/ log logn)2) time respectively [14].
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– If all point coordinates do not exceed n, we can approximate the number of
points in a two-dimensional query rectangle up to an additive term kρ for
an arbitrary parameter ρ, 0 < ρ < 1, in O((1/ρ) log logn) time.

– If all point coordinates do not exceed n, we can approximate the number
of points in three-dimensional query rectangle up to an additive term kρ in
O((log log n)3 + (3v) log logn) time for an arbitrary parameter ρ, 0 < ρ < 1,
and v = log 1

ρ/ log
3
2 + 2.

The parameter ρ is not fixed in advance, i.e. the same data structures can be used
for answering queries with arbitrary precision. If point coordinates are arbitrary
integers, then the query time of the above data structures increases by an additive
term O(min(log logU,

√

logn/ log logn)). Data structure for range counting in
2-D and 3-D are described in section 3. In section 3.1 we describe space-efficient
variants of two- and three-dimensional data structures that estimate the number
of points in a range up to an additive error kc for some fixed constant c.

Our results for approximate range counting queries are valid in the word
RAM model. Throughout this paper ε denotes an arbitrarily small constant.

2 Dynamic Approximate Range Counting

We show that in the dynamic scenario answering one-dimensional counting
queries with an additive error k1/c can be performed as efficiently as answer-
ing predecessor queries. The best known deterministic data structure supports
one-dimensional emptiness queries in O(dpred(n, U)) time, where dpred(n, U) =
min(

√

logn/ log logn, log logU · log logn) is the time needed to answer a prede-
cessor query in dynamic scenario [5], [6].

Theorem 1. For any fixed constant c > 1, there exists a linear space data struc-

ture that supports approximate range counting queries with additive error k1/c

in O(dpred(n, U)) time, deletions in O(log logn) amortized time, and insertions

in O(dpred(n, U)) amortized time.

Proof : First we observe that if the query interval contains less than (log logn)c

points for an arbitrary constant c, k = |P ∩ [a, b]| ≤ (log logn)c, then we can
use a simple modification of the standard binary tree solution: the set P is
divided into groups of (log logn)c consecutive elements, i.e., |Gi| = (log logn)c

and every element in Gi is smaller than any element in Gi+1. Using a dynamic
data structure for predecessor queries we can find in O((dpred(n, U)) time the
successor a′ of a in P and the predecessor b′ of b in P . If a and b belong to the
same group Gi, then we can count elements in [a, b] in O(log log logn) time using
the standard binary range tree solution. If a′ and b′ belong to two consecutive
groups Gi and Gi+1, then we count the number of elements e ∈ Gi, e ≥ a, and
the number of elements e′ ∈ Gi+1, e

′ ≤ b. If a′ belongs to a group Gi and b′

belongs to a group Gj so that j > i+1, then [a, b] contains more than (log logn)c

elements. We also assume w.l.o.g. that c > 2.
We maintain the exponential tree [5], [6] for the set P . The root node

has Θ(n1/c) children, so that each child node contains between n(c−1)/c/2 and

3



2n(c−1)/c points from P . In a general case, if a node v contains nv points of P ,

then node v has Θ(n
1/c
v ) children, so that each child contains between n

(c−1)/c
v /2

and 2n
(c−1)/c
v points from P . The exponential tree can be maintained as de-

scribed in [5], so that insertions and deletions are supported in O(log logn)
time. Additionally in every node v we store the approximate number of elements
in any consecutive sequence of children of v, denoted by cv(i, j): for any i < j,

nvi + nvi+1
+ . . . + nvj − n

3/c
v /2 ≤ cv(i, j) ≤ nvi + nvi+1

+ . . . + nvj + n
3/c
v /2.

When n
3/c
v /2 elements are inserted into a node v or deleted from v, we set

cv(i, j) = nvi + nvi+1
+ . . .+ nvj for all i < j. Recomputing cv(i, j) for a node v

takes O(n
2/c
v ) time. Since insertion or deletion results in incrementing or decre-

menting the value of nv in O(log logn) nodes v, recomputing cv(i, j) incurs
an amortized cost O(log logn). Thus amortized cost of a delete operation is
O(log logn). When we insert a new point, we also have to find its position in the
exponential tree; therefore an insertion takes O(dpred(n, U)) time.

We store O(n
2/c
v ) auxiliary values in each node v; hence, we can show that

the space usage is O(n) in exactly the same way as in [5,6].

Given an interval [a, b], we find b′ = pred(b, P ) and a′ = succ(a, P ) and
identify the leaves of the exponential tree in which they are stored. The lowest
common ancestor q of those leaves can be found in O(log logn) time because
the height of the tree is O(log logn). If a′ and b′ are stored in the i-th and
the j-th children of q and i + 1 < j, then all elements stored in qi+1, . . . , qj−1

belong to [a, b] and we initialize a variable count to cv(i + 1, j − 1). Otherwise
count is set to 0. Then, we traverse the path from q to a′ and in every visited
node v we increment count by cv(iv + 1, rv), such that a′ is in the iv-th child
of v, and rv is the total number of v’s children. Finally, we traverse the path
from q to b′ and in every visited node v we increment count by cv(1, iv − 1),
such that b′ is in the iv-th child of v, Suppose that the variable count was
incremented by sv > 0 when a node v was visited. Let kv be the exact number
of elements in all children of v whose ranges are entirely contained in v. Then,

kv−n
3/c
v ≤ sv ≤ kv+n

3/c
v . Since kv ≥ n

(c−1)/c
v , kv−k

3/(c−1)
v ≤ sv ≤ kv+k

3/(c−1)
v .

Clearly, the total number of points equals to the sum of kv for all visited nodes v.
The search procedure visits less than ch log logn nodes for a constant ch. Hence,
k − k3/(c−1) log logn ≤ count ≤ k + k3/(c−1) log logn for k = |P ∩ [a, b]|. Since
log logn ≤ k1/(c−1), k − k4/(c−1) ≤ count ≤ k + k4/(c−1). We obtain the result
of the Theorem by replacing c with c′ = max(5c, 5) in the above proof. �

Our dynamic data structure can be extended to d dimensions using the standard
range tree [10].

Theorem 2. For any fixed constant c > 1, there exists a data structure that sup-

ports d-dimensional approximate range counting queries with additive error k1/c

in O(log logn(logn/ log logn)d−1) time and updates in O(logd−1+ε n) amortized

time.
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Proof : This result can be obtained by combining the standard range tree tech-

nique (node degree in a range tree is O(logε
′

n) for an appropriate constant
ε′ = ε/(d− 1)) with the data structure for one-dimensional approximate range
counting of Theorem 1. Details will be given in the full version of this paper. �

3 Approximate Range Counting in 2-D and 3-D

A point p dominates a point q if each coordinate of p is greater than or equal
to the corresponding coordinate of q. The goal of the (approximate) dominance
counting query is to (approximately) count the number of points in P that
dominate q. The dominance query is equivalent to the orthogonal range query
with a restriction that query rangeQ is a product of half-open intervals. We start
this section with a description of the data structure that estimates the number
of points in the answer to a 2-D dominance query up to a constant factor. We
can obtain a data structure for general orthogonal range counting queries using
a standard technique. Then, we show that queries can be answered with higher
precision without increasing the query time. Finally, we describe a data structure
for approximate range counting in 3-D. For simplicity, we only consider the case
when all point coordinates are bounded by n. We can obtain the results for the
case of arbitrarily large point coordinates by a standard reduction to rank space
technique [13]: the space usage remains linear and the query time increases by
pred(n, U) - the time needed to answer a static predecessor query.

Theorem 3. There exists a linear space data structure that answers approx-

imate two-dimensional dominance range counting queries on n × n grid in

O(log logn) time.

A t-approximate boundary, introduced by Vengroff and Vitter [26] is a polyline
M consisting of O(n/t) axis-parallel segments that partitions the space2, so
that every point M is dominated by at most 2t and at least t points of P . This
notion can be straightforwardly extended to a tα-boundary Mα: Mα partitions
the space into two parts, and every point Mα is dominated by at most α · t
and at least t points of P . We can construct a tα-boundary with the same
algorithm as in [26]. Let p be a point with coordinates (0, 0). We move p in
the positive x direction until p is dominated by at most αt points. Then, we
repeat the following steps until the x-coordinate of p equals to 0: a) move p in
+y direction as long as p is dominated by more than t points of P b) move p
in the −x direction until p is dominated by αt points of P . The path traced
by p is a tα-boundary; see Fig. 1 for an example. Inward corners are formed
when we move p in +y direction, i.e. inward corners mark the beginning of
step a) resp. the end of step b). Inward corners of M have a property that
no point of M is strictly dominated by an inward corner and for every point
m ∈ M that is not an inward corner, there is an inward corner mi dominated by
m. There are O(n/t) inward corners in a tα-approximate boundary because for

2 In this section we assume that all points have positive coordinates
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Fig. 1. Example of t-approximate boundaries in 2-D. For simplicity, the points
of the set P are not shown.

every inward corner c = (cx, cy) there are (α − 1)t points that dominate c and
do not dominate inward corners whose x-coordinates are larger than cx. Our
data structure consists of logα n tα-approximate boundaries M1,M2, . . . ,Ms

such that Mi is an αi-approximate boundary of P , i.e. every point on Mi is
dominated by at least αi and at most αi+1 points of P . If a point p ∈ Mi is
dominated by a query point q, then q is dominated by at most αi+1 points of P .
If q dominates a point on Mi, then it also dominates an inward corner of Mi.
Hence, we can estimate the number of points that dominate q up to a constant
α by finding the minimal index j such that q dominates an inward corner of Mj .
Since q is dominated by a point of Mj−1, q is dominated by k ≥ αj−1 points of
P . On the other hand, k ≤ αj+1 because a point of Mj is dominated by q.

We can store inward corners of all boundaries Mi in a linear space data
structure so that for any point q the minimal index j, such that some point
on Mj is dominated by q, can be found in O(log logn) time. We denote by
predx(a, S) the point p = (px, py) ∈ S, such that px = pred(a, Sx) where Sx

is the set of x-coordinates of all points in S. For simplicity, we sometimes do
not distinguish between a boundary Mi and the set of its inward corners. Let
q = (qx, qy). Let ci = (cx, cy) be the inward corner on a boundary Mi whose
x-coordinate cx precedes qx, ci = predx(qx,Mi). For any other inward corner
c′i = (c′x, c

′

y) on Mi, c
′

y > cy if and only if c′x < cx because the y-coordinates of
inward corners decrease monotonously as their x-coordinates increase. Hence, q
dominates a point on Mi if and only if qy ≥ cy. Thus given a query point q, it
suffices to identify the minimal index j, such that the y-coordinate of the inward
corner cj ∈ Mj that precedes qx is smaller than or equal to qy. The x-axis is
subdivided into intervals of size logn. For each interval Is the list Ls contains
indexes of boundariesMi such that the x-coordinate of at least one inward corner
of Mi belongs to Is. For a query point q with qx ∈ Is and for every j ∈ Ls,
we can find the inward corner preceding qx with respect to its x-coordinate,
predx(qx,Mj), in O(1) time because x-coordinates of all relevant inward corners
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belong to an interval of size logn. Hence, we can find the minimal index js ∈ Ls,
such that q dominates a point on Mjs in O(log logn) time by binary search
among indexes in Ls. For the left bound as of an interval Is = [as, bs] and for
all indexes j = 1, . . . , logα n, the list As contains the inward corner cj , such that
cj = predx(as,Mj). By binary search in As we can find the minimal ja such that
q dominates the inward corner cja ∈ As. Clearly j = min(ja, js) is the minimal
index of a boundary dominated by q.

Theorem 4. There exists a O(n log2 n) space data structure that supports two-

dimensional approximate range counting queries on n × n grid in O(log logn)
time.

The next Lemma will enable us to obtain a better estimation of the number of
points.

Lemma 1. There exists a O(n log n) space data structure that supports two-

dimensional approximate range counting queries on n× n grid with an additive

error nρ in O((1/ρ) log log n) time for any ρ, 0 < ρ < 1.

Proof : We divide the grid into x-slabs Xi = [xi−1, xi] × [1, n] and y-slabs Yj =
[1, n]× [yj−1, yj], so that each slab contains n1/2 points. For every point (xi, yj),
0 ≤ i, j,≤ n1/2 we store the number of points in P that dominate it. There is
also a recursively defined data structure for each slab. The total space usage is
s(n) = O(n) + 2n1/2s(n1/2) and s(n) = O(n log n).

We can easily obtain an approximation with additive error 2n1/2 using the
first level data structure: for a query q = (qx, qy) we identify the indexes i and j,
such that xi−1 ≤ qx ≤ xi and yj−1 ≤ qy ≤ yj, i.e. we identify the x-slab Xi and
the y-slab Yj that contain q. Indexes i and j can be found inO(log logn) time. Let
c(x, y) be the number of points that dominate a point p = (x, y); let c(x, y,Xi)
(c(x, y, Yj)) be the number of points in the slab Xi (Yj) that dominate p = (x, y).
Then c(qx, qy) = c(xi, yj) + c(xi, qy, Yj) + c(qx, qy, Xi). Since c(xi, qy, Yj) ≤ n1/2

and c(qx, qy, Xi) ≤ n1/2, the value of c(xi, yj) is an approximation of c(qx, qy)
with an additive error 2n1/2. Using recursive data structures for slabs Xi and
Yj we can estimate c(qx, qy, Xi) and c(xi, qy, Yj) with an additive error 2n1/4

and estimate c(qx, qy) with an additive error 4n1/4. If the recursion depth is v
(i.e. if we apply recursion v times), then the total number of recursive calls is
O(2v) and we obtain in O((2v) log logn) time an approximation with additive
error 2v · n1/2v for any positive integer v.

We set recursion depth v = ⌈log(1/ρ)⌉ + 2. Then, v + (1/2v) logn ≤

(ρ/4) logn + log(1/ρ) = (ρ/4 + log(1/ρ)
logn ) logn < ρ logn. Hence, nρ > 2vn1/2v .

Therefore, if recursion depth is set to v, then our data structure provides an
answer with additive error nρ. �

Theorem 5. There exists a O(n log2 n) space data structure that supports two-

dimensional dominance counting queries on n×n grid with an additive error kρ

for an arbitrary parameter ρ, 0 < ρ < 1, in O((1/ρ) log logn) time.

There exists a O(n log4 n) space data structure that supports two-dimensional
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range counting queries on n× n grid with an additive error kρ for an arbitrary

parameter ρ, 0 < ρ < 1, in O((1/ρ) log logn) time.

Proof : As in Theorem 3 we construct t-boundaries M1, . . . ,Mlogn, such that
Mi is a 2i-approximate boundary, i.e. each point on Mi is dominated by at least
2i and at most 22i points of P . For each inward corner ci,j of every Mj, we store
a data structure Di,j that contains all points that dominate ci,j and supports
approximate counting queries as described in Lemma 1. For a fixed j, there are
O( n

2j ) data structures Di,j , and each Di,j contains O(2j) points. Hence, all data

structures Di,j use O(n log2 n) space.

As described in Theorem 4, we can find inO(log logn) time the minimal index
j, such that Mj is dominated by the query point q and an inward corner ci,j ∈
Mj dominated by q. Then, we use the data structure Di,j to obtain a better
approximation. Since Di,j contains O(k) points, by Lemma 1 Di,j estimates the
number of points that dominate q with an additive error kρ in O((1/ρ) log logn)
time. We can extend the result for dominance counting to the general three-
dimensional counting using the standard technique from range reporting [12,25];
see also the proof of Theorem 4. �

Lemma 2. There exists a O(n log3 n) space data structure that supports three-

dimensional approximate range counting queries on n×n×n grid with an additive

error nρ in O(3v log logn) time for any ρ, 0 < ρ < 1, and for v = log 1
ρ/ log

3
2+2.

Proof : We divide the grid into x-, y-, and z-slabs, Xi = [xi−1, xi]× [1, n]× [1, n],
Yj = [1, n]× [yj−1, yj] × [1, n], Zd = [1, n]× [1, n]× [zd−1, zd], so that each slab
contains n2/3 points. For each point (xi, yj, zd) we store the number of points in
P that dominate it. There is also a recursively defined data structure for each
slab. The total space usage is s(n) = O(n)+3n1/3s(n2/3) and s(n) = O(n log3 n).

For a query q = (qx, qy, qz) we identify the x-, y-, and z-slabs Xi, Yj , and Zd

that contain q. By the same argument as in Lemma 1, the number of points that
dominate (xi, yj , zd) differs from the number of points that dominate q by at
most 3n2/3. We can estimate the number of points that dominate q and belong
to one of the slabs Xi, Yj , and Zd using recursively defined data structures. If
the recursion depth is v, then we obtain in O(3v log log n) time an approximation
with additive error 3v ·n(2/3)v for any positive integer v. The result of the Lemma
follows if we set v = log 1

ρ/ log
3
2 + 2. �

Theorem 6. There exists a O(n log4 n) space data structure that supports ap-

proximate dominance range counting queries on n× n× n grid with an additive

error kρin O((log logn)3 + 3v log logn) time for any ρ, 0 < ρ < 1, and for

v = log 1
ρ/ log

3
2 + 2.

There exists a O(n log7 n) space data structure that supports approximate range

counting queries on n× n× n grid with an additive error kρ in O((log logn)3 +
3v log logn) time for any ρ, 0 < ρ < 1, and for v = log 1

ρ/ log
3
2 + 2.
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Proof : Instead of counting points that dominate q we count points dominated
by q. Both types of queries are equivalent. Hence, the data structure of Lemma 2
can be used to approximately count points dominated by q.

A downward corner of a point p consists of all points dominated by p. We
define an approximate t-level as a set of downward corners L, such that (1)
any point p that dominates at most t points of P is contained in some r ∈ L
(2) any downward corner r ∈ L contains at most α · t points of P . Afshani [1]
showed that for an arbitrary constant α there exists an approximate t-level of
size O(nt ). We can assume that no r ∈ L dominates r′ ∈ L in an approximate
t-level L: if r dominates r′, then the downward corner r′ can be removed from L.
Identifying an inward corner r ∈ L that dominates a query point q (or answering
that no r ∈ L dominates q) is equivalent to answering a point location query in
a rectangular planar subdivision [26,21] and takes O((log logn)2) time.

Our data structure consists of approximate levels M1,M2, . . . ,Mlogn, such
that Mi is a 2i-approximate level and the constant α is chosen to be 2. For
every downward corner ri,j ∈ Mj , we store all points dominated by ri,j in a
data structure Di,j ; Di,j contains O(2j) points and supports counting queries
with additive error O(2ρj) by Lemma 2. All data structures Di,j use O(n log4 n)
space.

We can find a minimal j, such that Mj dominates q in O((log logn)3) time
by binary search. Let ri,j be the downward corner that dominates q. We can
use the data structure Di,j to estimate the number of points that are dominated
by q with an additive error kρ; by Lemma 2 this takes O(3v log logn) time for
v = log 1

ρ/ log
3
2 + 2.

We can extend the result for dominance counting to the general three-
dimensional counting using the standard technique [12,25]; see also the proof
of Theorem 4. �

3.1 Space-Efficient Approximate Range Counting in 2-D and 3-D

If we are interested in counting with an additive error kc for some predefined
constant c > 0, then the space usage can be significantly reduced. The two-
dimensional data structure uses O(n log2 n) space (O(n) space for dominance
counting), and the three-dimensional data structure uses O(n log3 n) space (O(n)
space for dominance counting). The main idea of our improvement is that in
the construction of Lemma 1 (resp. Lemma 2) each slab contains n1/2+ε points
(n2/3+ε points) for some ε > 0 and there is a constant number of recursion levels.

Lemma 3. For any fixed constant c < 1, there exists a O(n1−ε) space data

structure that supports two-dimensional approximate range counting queries on

n× n grid with an additive error nc in O(log logn) time.

Proof : We divide the grid into x-slabs Xi = [xi−1, xi] × [1, n] and y-slabs Yj =
[1, n]× [yj−1, yj], so that each slab contains n1/2+ε points. As in Lemma 1, we
store for each point (xi, yj), 0 ≤ i, j,≤ n1/2−ε, the number of points in P that
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dominate it. Note that there are O(n1−2ε) points (xi, yj) for 0 ≤ i, j ≤ n1/2−ε .
If an x-slab or a y-slab contains more than nf points for a constant f = c/4, we
store a recursively defined data structure for that slab. The number of recursion

levels is g = ⌈ log(1/f)
log(2/(1+2ε)) ⌉. Since each point is stored in one recursively defined

data structure for an x-slab and in one recursively defined data structure for
a y-slab, the total number of points in all recursively defined data structures
increases by factor 2 with each recursion level. Thus the total space usage is
∑g

k=1 2
g · O(n1−ε) = O(n1−ε).

Given a query q = (qx, qy), we identify the x-slab Xi and the y-slab Yj that
contain q. Let c(x, y) be the number of points that dominate a point p = (x, y); let
c(x, y,Xi) (c(x, y, Yj)) be the number of points in the slab Xi (Yj) that dominate
p = (x, y). As in the proof of Lemma 1, c(qx, qy) = c(xi, yj) + c(xi, qy, Yj) +
c(qx, qy, Xi), where Xi and Yj are the x-slab and the y-slab that contain q.
If slabs Xi and Yj , contain more than nf points, we estimate c(xi, qy, Yj) and
c(qx, qy, Xi) using data structures for slabs Yj and Xi. Otherwise we use c(xi, yj)
as an estimation for c(qx, qy). By the same argument as in the proof of Lemma 1,
we obtain an approximation with additive error 2g ·nf . Since g < 2 log(1/f) and
f = c/4, g + f logn < 2 log(1/f) + (c/4) logn < c logn. Hence, 2g · nf < nc and
we estimate the number of points in a range with an additive error that is less
than nc. �

Using Lemma 3, we can prove the following Theorem.

Theorem 7. For any fixed constant c < 1, there exists a O(n) space data struc-

ture that supports two-dimensional dominance counting queries on n × n grid

with an additive error kc in O(log logn) time.

For any fixed constant c < 1, there exists a O(n log2 n) space data structure that

supports two-dimensional range counting queries on n× n grid with an additive

error kc in O(log logn) time.

Proof : We construct a sequence of t-approximate boundaries Mi in the same
way as in Theorem 5 and store all points that dominate an inward corner ci,j in
data structure Di,j . The only difference is that Di,j is implemented as described
in Lemma 3. For a fixed j, there are O( n

2j ) data structures Di,j , and each Di,j

needs O(2(1−ε)·j) space. Hence, all data structures Di,j use O(
∑

j
n

2ε·j ) = O(n)
space.

Dominance queries are processed in exactly the same way as in Theorem 5.
We can extend the result for dominance counting to the general two-dimensional
counting using the standard technique from range reporting [12,25]; see also the
proof of Theorem 4. �

Lemma 4. For any fixed constant c < 1, there exists a O(n1−ε) space data

structure that supports three-dimensional approximate range counting queries

on n× n× n grid with an additive error nc in O(log logn) time.

Proof Sketch: Like in Lemma 2, we divide the grid into x-, y-, and z-slabs,
Xi = [xi−1, xi]× [1, n]× [1, n], Yj = [1, n]× [yj−1, yj]× [1, n], Zd = [1, n]× [1, n]×
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[zd−1, zd], but each slab contains n2/3+ε points. For each point (xi, yj , zd) we
store the number of points in P that dominate it. If the number of points in a
slab is greater than nf for f = c/16, then we store a recursively defined data
structure for each slab.

We can estimate the space usage and analyze the query algorithm in the
same way as in Lemma 3. �

Theorem 8. For any fixed constant c < 1, there exists a O(n) space data struc-

ture that supports approximate dominance range counting queries on n× n× n
grid with an additive error kc in O((log log n)3) time.

For any fixed constant c < 1, there exists a O(n log4 n) space data structure that

supports approximate range counting queries on n× n× n grid with an additive

error kc in O((log logn)3) time.

Proof Sketch: As in the proof of Theorem 6 our data structure consists of 2i-
approximate levels Mi for i = 1, . . . , logn. For every inward corner ri,j ∈ Mj ,
we store all points dominated by ri,j in the data structure Di,j described in
Lemma 4. Each Di,j uses O(2(1−ε)j) space. Since a 2j-approximate level Mj has
O( n

2j ) inward corners, all Mj use O(
∑

j
n

2ε·j ) = O(n) space.
Dominance counting queries are answered in the same way as in Theo-

rem 6. We can extend the result for dominance counting to the general three-
dimensional counting by applying the standard technique from range report-
ing [12,25] that was also used in proofs of Theorems 4, 6, 7. �
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Appendix A. Proof of Theorem 4

We use the well known technique used for range reporting queries [12,25]. The
set of points P is subdivided into subsets P1, P2, . . . , Ps, so that the total number
of points in P1 ∪ . . . ∪ Ps is O(n log2 n), and an arbitrary query rectangle Q can
be represented as a union of at most four rectangles Q1, . . . , Qs, s ≤ 4, so that
Q ∩ P = (Q1 ∩ Pi1 ) ∪ . . . ∪ (Qs ∩ Pis) and each Qi is a product of two half-
open intervals. We store the date structure for approximate dominance queries
of Theorem 3 for each set Pi, so that the total space usage is O(n log2 n). Given
a query Q, we can decompose Q into Q1, . . . , Qs and find the corresponding
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Pi1 , . . . , Pis in O(log logn) time, see e.g. [21]. Then, we can estimate the number
of points in each Pij ∩Qj, 1 ≤ j ≤ s, and thus estimate the number of points in
Q ∩ P = (Q1 ∩ Pi1) ∪ . . . ∪ (Qs ∩ Pis)
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