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Abstract. This work studies the problem of 2-dimensional searching
for the 3-sided range query of the form [a,b] X (—o0,¢] in both main
and external memory, by considering a variety of input distributions.
We present three sets of solutions each of which examines the 3-sided
problem in both RAM and I/O model respectively. The presented data
structures are deterministic and the expectation is with respect to the
input distribution:

(1) Under continuous p-random distributions of the z and y coordinates,
we present a dynamic linear main memory solution, which answers 3-
sided queries in O(logn +t) worst case time and scales with O(log log n)
expected with high probability update time, where n is the current num-
ber of stored points and t is the size of the query output. We external-
ize this solution, gaining O(loggn + t/B) worst case and O(logglogn)
amortized expected with high probability I/Os for query and update
operations respectively, where B is the disk block size.

(2)Then, we assume that the inserted points have their z-coordinates
drawn from a class of smooth distributions, whereas the y-coordinates are
arbitrarily distributed. The points to be deleted are selected uniformly
at random among the inserted points. In this case we present a dynamic
linear main memory solution that supports queries in O(loglogn+t) ex-
pected time with high probability and updates in O(loglogn) expected
amortized time, where n is the number of points stored and ¢ is the
size of the output of the query. We externalize this solution, gaining
O(log logz n+t/B) expected I/Os with high probability for query oper-
ations and O(log g log n) expected amortized 1/Os for update operations,
where B is the disk block size. The space remains linear O(n/B).
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(3)Finally, we assume that the z-coordinates are continuously drawn
from a smooth distribution and the y-coordinates are continuously drawn
from a more restricted class of realistic distributions. In this case and by
combining the Modified Priority Search Tree [33] with the Priority Search
Tree [29], we present a dynamic linear main memory solution that sup-
ports queries in O(loglogn +t) expected time with high probability and
updates in O(loglogn) expected time with high probability. We exter-
nalize this solution, obtaining a dynamic data structure that answers
3-sided queries in O(logg logn + t/B) 1/Os expected with high proba-
bility, and it can be updated in O(logg logn) I/Os amortized expected
with high probability. The space remains linear O(n/B).

1 Introduction

Recently, a significant effort has been performed towards developing worst case
efficient data structures for range searching in two dimensions [36]. In their pio-
neering work, Kanellakis et al. [25], [26] illustrated that the problem of indexing
in new data models (such as constraint, temporal and object models), can be re-
duced to special cases of two-dimensional indexing. In particular, they identified
the 3-sided range searching problem to be of major importance.

The 3-sided range query in the 2-dimensional space is defined by a region of
the form R = [a,b] X (—o0, (], i.e., an “open” rectangular region, and returns
all points contained in R. Figure [Tl depicts examples of possible 3-sided queries,
defined by the shaded regions. Black dots represent the points comprising the
result. In many applications, only positive coordinates are used and therefore, the
region defining the 3-sided query always touches one of the two axes, according
to application semantics.

Consider a time evolving database storing measurements collected from a
sensor network. Assume further, that each measurement is modeled as a multi-
attribute tuple of the form <id, a1, as, ..., aq, time>, where id is the sensor identi-
fier that produced the measurement, d is the total number of attributes, each a;,
1 <i < d, denotes the value of the specific attribute and finally time records the
time that this measurement was produced. These values may relate to measure-
ments regarding temperature, pressure, humidity, and so on. Therefore, each
tuple is considered as a point in R¢ space. Let F: R? — R be a real-valued
ranking function that scores each point based on the values of the attributes.
Usually, the scoring function F' is monotone and without loss of generality we
assume that the lower the score the “better” the measurement (the other case
is symmetric). Popular scoring functions are the aggregates sum, min, avg or
other more complex combinations of the attributes. Consider the query: “search
for all measurements taken between the time instances ¢1 and t9 such that the
score is below s”. Notice that this is essentially a 2-dimensional 3-sided query
with time as the x axis and score as the y axis. Such a transformation from a
multi-dimensional space to the 2-dimensional space is common in applications
that require a temporal dimension, where each tuple is marked with a timestamp
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Fig. 1. Examples of 3-sided queries.

storing the arrival time [28]. This query may be expressed in SQL as follows:

SELECT «<d, score, time
FROM SENSOR_DATA
WHERE time>=t; AND time<=ty AND score<=s;

It is evident, that in order to support such queries, both search and update
operations (i.e., insertions/deletions) must be handled efficiently. Search effi-
ciency directly impacts query response time as well as the general system perfor-
mance, whereas update efficiency guarantees that incoming data are stored and
organized quickly, thus, preventing delays due to excessive resource consump-
tion. Notice that fast updates will enable the support of stream-based query
processing [8] (e.g., continuous queries), where data may arrive at high rates
and therefore the underlying data structures must be very efficient regarding
insertions/deletions towards supporting arrivals/expirations of data. There is
a plethora of other applications (e.g., multimedia databases, spatio-temporal)
that fit to a scenario similar to the previous one and they can benefit by efficient
indexing schemes for 3-sided queries.

Another important issue in such data intensive applications is memory con-
sumption. Evidently, the best practice is to keep data in main memory if this is
possible. However, secondary memory solutions must also be available to cope
with large data volumes. For this reason, in this work we study both cases offering
efficient solutions both in the RAM and I/O computation models. In particular,
the rest of the paper is organized as follows. In Section [B] we discuss prelimi-
nary concepts, define formally the classes of used probability distributions and
present the data structures that constitute the building blocks of our construc-
tions. Among them, we introduce the External Modified Priority Search Tree. In
Section M we present the two theorems that ensure the expected running times
of our constructions. The first solution is presented in Section Bl whereas our
second and third constructions are discussed in Sections [l and [7 respectively.
Finally, Section [ concludes the work and briefly discusses future research in the
area.



2 Related Work and Contribution

Model|Query Time Update Time Space
McCreight [29]|RAM |O(logn + t) O(logn) O(n)
Willard [38][RAM [0 (5% + 1) O (pr), O(vlogn)’|O(n)
Newla’|[RAM [O(logn + t) O(loglogn)® O(n)
New2a?|RAM |O(loglogn + t) © O(loglogn)® O(n)
New3a/[RAM |[O(loglogn + t)° O(loglogn)® O(n)
Arge et al. [5]{I/O  |O(loggn+t/B) O(logg n)? O(n/B)
Newl1b®[1/O [O(logzn +t/B) O(logz logn)" O(n/B)
New2b?|I/O  [O(loglogyz n +t/B) ¢|O(logg logn) © O(n/B)
New3b/[1/O  [O(logzlogn +t/B) ¢|O(logg logn) ™ O(n/B)
Table 1. Bounds for dynamic 3-sided planar range reporting. The number of

points in the structure is n, the size of the query output is ¢ and the size of the
block is B.
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The usefulness of 3-sided queries has been underlined many times in the liter-
ature [T11,[26]. Apart from the significance of this query in multi-dimensional data
intensive applications [12, 26], 3-sided queries appear in probabilistic threshold
queries in uncertain databases. Such queries are studied in a recent work of Cheng
et. al. [11]. The problem has been studied both in main memory (RAM model)
and secondary storage (I/O model). In the internal memory, the most commonly
used data structure for supporting 3-sided queries is the priority search tree of
McCreight [29]. Tt supports queries in O(logn + t) worst case time, insertions
and deletions of points in O(logn) worst case time and uses linear space, where
n is the number of points and ¢ the size of the output of a query. It is a hybrid
of a binary heap for the y-coordinates and of a balanced search tree for the
x-coordinates.

In the static case, when points have z-coordinates in the set of integers
{0,...,n — 1}, the problem can be solved in O(n) space and preprocessing time



with O(t + 1) query time [2], using a range minimum query data structure [I§]
(see also Sec. B).

In the RAM model, the only dynamic sublogarithmic bounds for this problem
are due to Willard [38] who attains O (logn/loglogn) worst case or O(y/logn)
randomized update time and O (logn/loglogn + t) query time using linear space.
This solution poses no assumptions on the input distribution.

Many external data structures such as grid files, various quad-trees, z-orders
and other space filling curves, k-d-B-trees, hB-trees and various R-trees have
been proposed. A recent survey can be found in [I7]. Often these data structures
are used in applications, because they are relatively simple, require linear space
and perform well in practice most of the time. However, they all have highly
sub-optimal worst case (w.c.) performance, whereas their expected performance
is usually not guaranteed by theoretical bounds, since they are based on heuristic
rules for the construction and update operations.

Moreover, several attempts have been performed to externalize Priority Search
Trees, including [9], [19], [26], [32] and [34], but all of them have not been opti-
mal. The worst case optimal external memory solution (External Priority Search
Tree) was presented in [5]. It consumes O(n/B) disk blocks, performs 3-sided
range queries in O(loggn +t/B) I/Os w.c. and supports updates in O(logg n)
I/Os amortized. This solution poses no assumptions on the input distribution.

In this work, we present new data structures for the RAM and the I/O
model that improve by a logarithmic factor the update time in an expected sense
and attempt to improve the query complexity likewise. The bounds hold with
high probability (w.h.p.) under assumptions on the distributions of the input
coordinates. We propose three multi-level solutions, each with a main memory
and an external memory variant.

For the first solution, we assume that the x and y coordinates are being
continuously drawn from an unknown p-random distribution. It consists of two
levels, for both internal and external variants. The upper level of the first solution
consists of a single Priority Search Tree [29] that indexes the structures of the
lower level. These structures are Priority Search Trees as well. For the external
variant we substitute the structures with their corresponding optimal external
memory solutions, the External Priority Search Trees [5]. The internal variant
achieves O(logn + t) w.c. query time and O(loglogn) expected w.h.p. update
time, using linear space. The external solution attains O(logg n+t/B) I/Os w.c.
and O(logzlogn) I/Os amortized expected w.h.p. respectively, and uses linear
space.

For the second solution, we consider the case where the z-coordinates of
inserted points are drawn from a smooth probabilistic distribution, and the y-
coordinates are arbitrarily distributed. Moreover, the deleted points are selected
uniformly at random among the points in the data structure and queries can be
adversarial. The assumption on the x-coordinates is broad enough to include dis-
tributions used in practice, such as uniform, regular and classes of non-uniform
ones [4 23]. We present two linear space data structures, for the RAM and
the I/O model respectively. In the former model, we achieve a query time of



O(loglog n+t) expected with high probability and update time of O(loglogn) ex-
pected amortized. In the latter model, the I/O complexity is O(loglogg n+t/B)
expected with high probability for the query and O(logg logn) expected amor-
tized for the updates. In both cases, our data structures are deterministic and
the expectation is derived from a probabilistic distribution of the z-coordinates,
and an expected analysis of updates of points with respect to their y-coordinates.

By the third solution, we attempt to improve the expected query complexity
and simultaneously preserve the update and space complexity. In order to do
that, we restrict the z-coordinate distribution to be (f(n),g(n))-smooth, for
appropriate functions f and g depending on the model, and the y-coordinate
distribution to belong to a more restricted class of distributions. The smooth
distribution is a superset of uniform and regular distributions. The restricted
class contains realistic distributions such as the Zipfian and the Power Law. The
internal variant consists of two levels, of which the lower level is identical to
that of the first solution. We implement the upper level with a static Modified
Priority Search Tree [33]. For the external variant, in order to achieve the desired
bounds, we introduce three levels. The lower level is again identical to that of
the first solution, while the middle level consists of O(B) size buckets. For the
upper level we use an External Modified Priority Search Tree, introduced here
for the first time. The latter is a straight forward externalization of the Modified
Priority Search Tree and is static as well. In order to make these trees dynamic
we use the technique of global rebuilding [27]. The internal version reduces the
query complexity to O(loglogn + t) expected with high probability and the
external to O(logz logn+1t/B) I/Os expected with high probability. The results
are summarized in Table 1.

3 Data Structures and Probability Distributions

For the main memory solutions we consider the RAM model of computation.
We denote by n the number of elements that reside in the data structures and
by t the size of the query. The universe of elements is denoted by S. When we
mention that a data structure performs an operation in an amortized expected
with high probability complexity, we mean the bound is expected to be true
with high probability, under a worst case sequence of insertions and deletions of
points.

For the external memory solutions we consider the I/O model of computation
[36]. That means that the input resides in the external memory in a blocked
fashion. Whenever a computation needs to be performed to an element, the
block of size B that contains that element is transferred into main memory,
which can hold at most M elements. Every computation that is performed in
main memory is free, since the block transfer is orders of magnitude more time
consuming. Unneeded blocks that reside in the main memory are evicted by
a LRU replacement algorithm. Naturally, the number of block transfers (I/0
operation) consists the metric of the I/O model.



Furthermore, we will consider that the points to be inserted are continuously
drawn by specific distributions, presented in the sequel. The term continuously
implies that the distribution from which we draw the points remains unchanged.
Since the solutions are dynamic, the asymptotic bounds are given with respect
to the current size of the data structure. Finally, deletions of the elements of
the data structures are assumed to be uniformly random. That is, every element
present in the data structure is equally likely to be deleted [20].

3.1 Probability Distributions

In this section, we overview the probabilistic distributions that will be used in
the remainder of the paper. We will consider that the z and y-coordinates are
distinct elements of these distributions and will choose the appropriate distribu-
tion according to the assumptions of our constructions.

A probability distribution is u-random if the elements are drawn randomly
with respect to a density function denoted by u. For this paper, we assume that
1 is unknown.

Informally, a distribution defined over an interval I is smooth if the probabil-
ity density over any subinterval of I does not exceed a specific bound, however
small this subinterval is (i.e., the distribution does not contain sharp peaks).
Given two functions f1 and fa, a density function u = pla, b|(z) is (f1, f2)-smooth
[30, 4] if there exists a constant 3, such that for all ¢1, ¢c2,¢3,a < ¢1 < ¢ < cg < b,
and all integers n, it holds that:

c2
pler o)) < 2L
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where pler,es](x) = 0 for x < ¢ or ¢ > c3, and pfey, esl(x) = p(z)/p for
c1 < x < c3wherep = fccf’ w(x)dz. Intuitively, function f; partitions an arbitrary
subinterval [c1, c3] C [a, b] into fi equal parts, each of length ==t = O(%); that
is, f1 measures how fine is the partitioning of an arbitrary subinterval. Function
f2 guarantees that no part, of the f; possible, gets more probability mass than
%; that is, fo measures the sparseness of any subinterval [c; — CSf_lcl,cQ] -
[c1,c3]. The class of (f1, f2)-smooth distributions (for appropriate choices of f;
and f5) is a superset of both regular and uniform classes of distributions, as well
as of several non-uniform classes [4], 23]. Actually, any probability distribution
is (f1,©(n))-smooth, for a suitable choice of S.

The grid distribution assumes that the elements are integers that belong to
a specific range [1, M].

We define the restricted class of distributions as the class that contains dis-
tributions used in practice, such as the Zipfian, Power Law, e.t.c..

The Zipfian distribution is a distribution of probabilities of occurrence that
follows Zipf’s law. Let IV be the number of elements, k be their rank and s be the
value of the exponent characterizing the distribution. Then Zipf’s law is defined
as the function f(k;s, N) = ENl/ilf/ns Intuitively, few elements occur very often,
while many elements occur ra;élly.




The Power Law distribution is a distribution over probabilities that satisfy
Pr(X > z] = cx~? for constants ¢,b > 0.

3.2 Data Structures

In this section, we describe the data structures that we will combine in order to
achieve the desired complexities.

Priority Search Trees: The classic Priority Search Tree (PST) [29] stores
points in the 2-d space. One of the most important operations that the PST
supports is the 3-sided query. The 3-sided query consists of a half bounded
rectangle [a,b] x (—oo, ] and asks for all points that lie inside this area. Note
that by rotation we can unbound any edge of the rectangle. The PST supports
this operation in O(logn + t) w.c., where n is the number of points and ¢ is the
number of the reported points.

The PST is a combination of a search tree and a priority queue. The search
tree (an (a,b)-tree suffices) allows the efficient support of searches, insertions
and deletions with respect to the x-coordinate, while the priority queue allows
for easy traversal of points with respect to their y-coordinate. In particular, the
leaves of the PST are the points sorted by z-coordinate. In the internal nodes
of the tree there are artificial values which are used for the efficient searching of
points with respect to their z-coordinate. In addition, each internal node stores a
point that has the minimum y-coordinate among all points stored in its subtree.
This corresponds to a tournament on the leaves of the PST. For example, the
root of the PST contains a point which has minimum y-coordinate among all
points in the plane, as well as a value which is in the interval defined between the
z-coordinates of the points stored in the rightmost leaf of the left subtree and
the leftmost leaf of the right subtree (this is true in the case of a binary tree).
A PST implemented with an red-black tree supports the operations of insertion
of a new point, deletion of an existing point and searching for the z-coordinate
of a point in O(logn) worst case time.

Regarding the I/O model, after several attempts, a worst case optimal solu-
tion was presented by Arge et al. in [5]. The proposed indexing scheme consumes
O(n/B) space, supports updates in O(logzn) amortized I/Os and answers 3-
sided range queries in O(log gz n+t/B) I/Os. We will refer to this indexing scheme
as the External Priority Search Tree (EPST).

Interpolation Search Trees: In [24], a dynamic data structure based on in-
terpolation search (IS-Tree) was presented, which consumes linear space and
can be updated in O(1) time w.c. Furthermore, the elements can be searched in
O(loglogn) time expected w.h.p., given that they are drawn from a (n®,n?)-
smooth distribution, for any arbitrary constants 0 < «, 5 < 1. The external-
ization of this data structure, called interpolation search B-tree (ISB-tree), was
introduced in [21]. Tt supports update operations in O(1) worst-case I/Os pro-
vided that the update position is given and search operations in O(logg logn)



I/0s expected w.h.p. The expected search bound holds w.h.p. if the elements
are drawn by a (n/(loglogn)'*¢,n'=?%)-smooth distribution, where ¢ > 0 and
d=1- % are constants. The worst case search bound is O(logg n) block trans-
fers.

Weight Balanced Exponential Tree: The exponential search tree is a tech-
nique for converting static polynomial space search structures for ordered sets
into fully-dynamic linear space data structures. It was introduced in [1 [35, [©]
for searching and updating a dynamic set U of n integer keys in linear space and
optimal O(y/logn/loglogn) time in the RAM model. Effectively, to solve the dic-
tionary problem, a doubly logarithmic height search tree is employed that stores
static local search structures of size polynomial to the degree of the nodes.

Here we describe a variant of the exponential search tree that we dynamize
using a rebalancing scheme relative to that of the weight balanced search trees [7].
In particular, a weight balanced exponential tree T' on n points is a leaf-oriented
rooted search tree where the degrees of the nodes increase double exponentially
on a leaf-to-root path. All leaves have the same depth and reside on the lowest
level of the tree (level zero). The weight of a subtree Ty, rooted at node w is defined
to be the number of its leaves. If u lies at level ¢ > 1, the weight of T}, ranges
within [% cw; + 1,2 w; — 1}, for a weight parameter w; = ci"; and constants
¢z > 1and ¢; > 23/(¢2=1) (see Lem. ). Note that w;,; = w;?. The root does not
need to satisfy the lower bound of this range. The tree has height ©(log,, log,, n).

The insertion of a new leaf to the tree increases the weight of the nodes
on the leaf-to-root path by one. This might cause some weights to exceed their
range constraints (“overflow”). We rebalance the tree in order to revalidate the
constraints by a leaf-to-root traversal, where we “split” each node that over-
flowed. An overflown node u at level i has weight 2w;. A split is performed by
creating a new node v that is a sibling of u and redistributing the children of «
among v and v such that each node acquires a weight within the allowed range.
In particular, we scan the children of u, accumulating their weights until we
exceed the value w;, say at child x. Node u gets the scanned children and v gets
the rest. Node z is assigned as a child to the node with the smallest weight.
Processing the overflown nodes u bottom up guarantees that, during the split
of w, its children satisfy their weight constraints.

The deletion of a leaf might cause the nodes on the leaf-to-root path to
“underflow”, i.e. a node u at level ¢ reaches weight %wl By an upwards traversal
of the path, we discover the underflown nodes. In order to revalidate their node
constraints, each underflown node chooses a sibling node v to “merge” with.
That is, we assign the children of v to v and delete u. Possibly, v needs to
“split” again if its weight after the merge is more than 3w; (“share”). In either
case, the traversal continues upwards, which guarantees that the children of the
underflown nodes satisfy their weight constraints. The following lemma, which
is similar to [7, Lem. 9], holds.

Lemma 1. After rebalancing a node u at level i, 2(w;) insertions or deletions
need to be performed on T,,, for u to overflow or underflow again.



Proof. A split, a merge or a share on a node u on level i yield nodes with
weight in [2w; — wi—1, 3w; + w;_1]. If we set w;—1 < éwl, which always holds

for ¢y > 23/(c2— 1) this interval is always contained in [ Wi, 18411)1] O
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Fig. 2. The linear space MPST.

Range Minimum Queries The range minimum query (RMQ) problem asks
to preprocess an array of size n such that, given an index range, one can report
the position of the minimum element in the range. In [I8] the RMQ problem
is solved in O(1) time using O(n) space and preprocessing time. The currently
most space efficient solution that support queries in O(1) time appears in [13].



Dynamic External Memory 3-sided Range Queries for O(B?) Points.
For external memory, Arge et al. [5] present the following lemma for handling a
set of at most B? points.

Lemma 2. A set of K < B? points can be stored in O(K/B) blocks, so that
3-sided queries need O(t/B + 1) I/0s and updates O(1) I1/Os, for output size t

Proof. See Lemma 1 presented in [5].

Modified Priority Search Trees A Modified Priority Search Tree (MPST)
is a static data structure that stores points on the plane and supports 3-sided
queries. It is stored as an array (Arr) in memory, yet it can be visualized as a
complete binary tree. Although it has been presented in [22], [33] we sketch it
here again, in order to introduce its external version.

Let T be a Modified Priority Search Tree (MPST) [33] which stores n points
of S (see figure 2). We denote by T, the subtree of T" with root v. Let u be a
leaf of the tree. Let P, be the root-to-leaf path for u. For every u, we sort the
points in P, by their y-coordinate. We denote by PJ the subpath of P, with
nodes of depth bigger or equal to j (The depth of the root is 0). Similarly L7,
(respectively R ) denotes the set of nodes that are left (resp. right) children of
nodes of PJ and do not belong to PJ . The tree structure T has the following
properties:

— Each point of S is stored in a leaf of T" and the points are in sorted x-order
from left to right.

— Each internal node v is equipped with a secondary list S(v). S(v) contains
in the points stored in the leaves of T, in increasing y-coordinate.

— A leaf u also stores the following lists A(u), P?(u), L(u) and R?(u), for
0 < j < logn. The list P/(u), Li(u) and R’(u) store, in increasing y-
coordinate, pointers to the respective internal nodes. A(u) is an array that
indexes j.

Note that the first element of the list S(v) is the point of the subtree T, with
minimum y-coordinate. Also note that 0 < j < logn, so there are logn such
sets PJ, LI RJ for each leaf u. Thus the size of A is logn and for a given j,
any list P7(u), L’ (u) or R’ (u) can be accessed in constant time. By storing the
nodes of the tree T according to their inorder traversal in an array Arr of size
O(n), we can imply the structure of tree T. Also each element of Arr contains
a binary label that corresponds to the inorder position of the respective node of
T, in order to facilitate constant time lowest common ancestor (LCA) queries.

To answer a query with the range [a,b] x (—o0,¢] we find the two leaves u,
w of Arr that contain a and b respectively. If we assume that the leaves that
contain a,b are given, we can access them in constant time. Then, since Arr
contains an appropriate binary label, we use a simple LCA (Lowest Common
Ancestor) algorithm [I6] 18] to compute the depth j of the nearest common
ancestor of u, w in O(1) time. That is done by performing the XOR, operation



between the binary labels of the leaves © and w and finding the position of the
first set bit provided that the left-most bit is placed in position 0. Afterwards,
we traverse P7(u) until the scanned y-coordinate is not bigger than c. Next,
we traverse R/ (u), L’ (w) in order to find the nodes whose stored points have
y-coordinate not bigger than c. For each such node v we traverse the list S(v)
in order to report the points of Arr that satisfy the query. Since we only access
points that lie in the query, the total query time is O(t), where ¢ is the answer
size.

The total size of the lists S(u) for each level of T is O(n). Each of the O(n)
leaves stores logn lists P;, L; and R;, each of which consumes O(logn) space.
Thus the space for these lists becomes O(n log? n). By implementing these lists
as partially persistent sorted lists [10], their total space becomes O(nlogn),
resulting in a total space of O(nlogn) for these lists. Thus, the total space
occupied by T is O(nlogn).

We can reduce the space of the structure by pruning as in [14, B1]. However,
pruning alone does not reduce the space to linear. We can get better but not
optimal results by applying pruning recursively. To get an optimal space bound
we will use a combination of pruning and table lookup. The pruning method is
as follows: Consider the nodes of T', which have height loglogn. These nodes
are roots of subtrees of T of size O(logn) and there are O(n/logn) such nodes.
Let T} be the tree whose leaves are these nodes and let T} be the subtrees of
these nodes for 1 < ¢ < O(n/logn). We call Ty the first layer of the structure
and the subtrees T4 the second layer. Ty and each subtree T4 is by itself a
Modified Priority Search Tree. Note that Ty has size O(n/logn) = O(n). Each
subtree T4 has O(logn/loglogn) leaves and depth O(loglogn). The space for
the second layer is O(nlogn). By applying the pruning method to all the trees
of the second layer we get a third layer which consists of O(n/ loglogn) modified
priority search trees each of size O(loglogn). Ignoring the third layer, the second
layer needs now linear space, while the O(nlogn) space bottleneck is charged
on the third level. If we use table lookup [15] to implement the modified priority
search trees of the third layer we can reduce its space to linear, thus consuming
linear space in total.

In order to answer a query on the three layered structure we access the
microtrees that contain a and b and extract in O(1) time the part of the answer
that is contained in them. Then we locate the subtrees T4, T3 that contain
the representative leaves of the accessed microtrees and extract the part of the
answer that is contained in them by executing the query algorithm of the MPST.
The roots of these subtrees are leaves of T;. Thus we execute again the MPST
query algorithm on T; with these leaves as arguments. Once we reach the node
with y-coordinate bigger than ¢, we continue in the same manner top down.
This may lead us to subtrees of the second layer that contain part of the answer
and have not been accessed yet. That means that for each accessed tree of the
second layer, we execute the MPST query algorithm, where instead of a and b,
we set as arguments the minimum and the maximum z-coordinates of all the
points stored in the queried tree. The argument ¢ remains, of course, unchanged.



Correspondingly, in that way we access the microtrees of the third layer that
contain part of the answer. We execute the top down part of the algorithm on
them, in order to report the final part of the answer.

Lemma 3. Given a set of n points on the plane we can store them in a static
data structure with O(n) space that allows three-sided range queries to be an-
swered in O(t) worst case, where t is the answer size.

Proof. See [33].

The External Modified Priority Search Tree (EMPST) is similar to the MPST,
yet we store the lists in a blocked fashion. In order to attain linear space in exter-
nal memory we prune the structure k£ times, instead of two times. The pruning
terminates when log®®) n = O(B). Since computation within a block is free, we
do not need the additional layer of microtrees. By that way we achieve O(n/B)
space.

Assume that the query algorithm accesses first the two leaves v and v of the
k-th layer of the EMPST, which contain a and b respectively. If they belong to
different EMPSTs of that layer, we recursively take the roots of these EMPST's
until the roots r, and r, belong to the same EMPST, w.l.o.g. the one on the
upper layer. That is done in O(k) = O(1) I/Os. Then, in O(1) I/Os we access the
j-th entry of A(r,) and A(r,), where j is the depth of LC'A(r,,, r,,), thus also the
corresponding sublists P7(r,), R/ (ry), L’ (r,) and P?(r,), R/ (r,), L?(r,). Since
these sublists are y-ordered, by scanning them in ¢;/B I/Os we get all the ¢;
pointers to the S-lists that contain part of the answer. We access the S-lists
in t; I/Os and scan them as well in order to extract the part of the answer
(let’s say ta) they contain. We then recursively access the ¢o S-lists of the layer
below and extract the part ¢35 that resides on them. In total, we consume ¢1 /B +
tl . tQ/B + ...+ ti,1 . tZ/B + ...+ tk,1 . tk/B I/OS Let Pi the probablhty that

t; = tP¢ where ¢t is the total size of the answer and Zf 1pi = 1. Thus, we
t(P1+P1+1)

need tP* /B + Ek ! tpl - tPi+1 1/Os or tP' /B + Ek VT 1/0s. Assuming
w.h.p. an equally hkely distribution of answer amongst the k 1ayers we need
tv/B+Y ] tk k expected number of 1/Os or ¢% /B+Y ¥~} tk . Since k >> 2,

we need totally O(t/B) expected w.h.p. number of I/Os.

Lemma 4. Given a set of n points on the plane we can store them in a static
data structure with O(n/B) space that allows three-sided range queries to be
answered in O(t/B) expected w.h.p. case, where t is the size of the answer.

4 Expected First Order Statistic of Uknown Distributions

In this section, we prove two theorems that will ensure the expected running
times of our constructions. They are multilevel data structures, where for each
pair of levels, the upper level indexes representative elements (in our case, point
on the plane) of the lower level buckets. We call an element violating when its
insertion to or deletion from the lower level bucket causes the representative of



that bucket to change, thus triggering an update on the upper level. We prove
that for an epoch of O(logn) updates, the number of violating elements is O(1)
if they are continuously being drawn from a p-random distribution. Secondly,
we prove that for a broader epoch of O(n) updates, the number of violating
elements is O(logn), given that the elements are being continuously drawn from
a distribution that belongs to the restricted class. Violations are with respect
to the y-coordinates, while the distribution of elements in the buckets are with
respect to z-coordinates.

But first, the proof of an auxiliary lemma is necessary. Assume a sequence S
of distinct numbers generated by a continuous distribution p = F over a universe
U. Let |S| denote the size of S. Then, the following holds:

Lemma 5. The probability that the next element q drawn from F is less than

the minimum element s in S is equal to |$\1+1'

Proof. Suppose that we have n random observations Xi,...,X,, from an un-
known continuous probability density function f(X), with cumulative distribu-
tion p = F(X), X € [a,b]. We want to compute the probability that the (n +
1) —th observation is less than min { X1, ..., X, }. Let X1y = min {X1,..., Xp}.
Therefore, P{Xn+1 < X(l)} = ZmP{XnJrl < X(l)/X(l) = ZE} P{X(l) = :Z?}
().

It is easy to see that P {Xn+1 <Xu/Xa = :v} =F(X)= P{Xn+1 <z}
(B). Also P{ Xy =z} =n-f(z) (}2)- FX)* .1 F(X)) k (7), where
Xk is the k — th smallest value in {X;,..., X, }.

In our case k = 1, which intuitively means that we have n choices for one in
{X1,..., X, } being the smallest value. This is true if all the rest n — 1 are more
than z, which occurs with probability: (1 — F(X))" ' = (1—P{X <a})"".
By (/) and (v), expression («) becomes:

P{Xp1 <Xy} = [in-f(X)(72)) - F(X)- (1 - F(X))"" dX. After some
mathematical manipulations, we have that:

P{Xpp <Xm)=[In f(X)-1-FX)" " F(X)dX =

fba [-(1-F(X))"] F(X)dX = fb (1-F(X)"-F(X)] dX—i—fba (1-F(X)"™

7 n+1 n
Fl(X)dX = {~ (1= F(X))" - F(a)li} + Ji¢ = [S=ZED ) ax = — (1 - F)"™
n n+1 n+1 _ a n+1
F(b)+ (1~ F(a)) -F(a)—{%u}:—{“ e e
1
nt+1

Apparently, the same holds if we want to maintain the maximum element of
the set S.

Proposition 1 Suppose that the input elements have their x-coordinate gener-
ated by an arbitrary continuous distribution p on [a,b] C R. Let n be the ele-
ments stored in the data structure at the latest reconstruction. An epoch starts
with logn updates. During the i-th update let N (i) € [n,r - n], with constant
r > 1, denote the number of elements currently stored into th

n
logn



partition [a,b] C R. Then the N (i) elements remain p randomly distributed in
the buckets per i-th update.

Proof. The proof is analogous to [23] Lem. 2] and is omitted.

Theorem 2. For a sequence of O(logn) updates, the expected number of violat-
ing elements is O(1), assuming that the elements are being continuously drawn
from a p-random distribution.

Proof. According to Prop. [ there are N(i) € [n,r - n] (with constant r > 1)
elements with their z-coordinates p-randomly distributed in the buckets 7 =
1,..., =2, that partition [a,b] C R. By [23, Th. 4], with high probability, each

’ logn?

bucket j receives an z-coordinate with probability p; = @(loi ™). Tt follows that
during the i-th update operation, the elements in bucket j is a Binomial random
variable with mean p, - N (i) = O(logn).
The elements with z-coordinates in an arbitrary bucket j are aN (i) with
) N . o /1 1—a V@)
probability (aj\ﬁzz))pf (l)(l — p;)IONGE) {(%ﬂ) (1%’2) ] . In turn,
these are < aN (i) = 22N (i) (less than half of the bucket’s mean) with proba-
bility
. 1—a1 NG
PN (i) (Pj)“ 1—p;

< (B 1

- 2 o 1-« =0 (1)
asn — oo and a = &.

Suppose that an element is inserted in the i-th update. It induces a violation
if its y-coordinate is strictly the minimum element of the bucket j it falls into.

— If the bucket contains > % log N (i) > % logn coordinates then by Lemma
element y incurs a violation with probability O(loén).

— If the bucket contains < % log N (%) coordinates, which is as likely as in Eq.
(D, then element y may induce < 1 violation.

Putting these cases together, element y expectedly induces at most O(—— )+Eq.

logn

(@M= O(;zx-) violations. We conclude that during the whole epoch of logn in-
gn
sertions the expected number of violations are at most logn - O(IOL) plus log n-
gn

Eq. (@) which is O(1).

Theorem 3. For a sequence of O(n) updates, the expected number of violating
elements is O(logn), assuming that x— coordinates are drawn from a continuous
smooth distribution and the y— coordinates are drawn from the restricted class
of distributions (power-law or zipfian).

Proof. Suppose an element is inserted, with its y-coordinate following a discrete
distribution (while its z-coordinate is arbitrarily distributed) in the universe
{y1,92, ...} with y; < yi1,¥i > 1. Also, let ¢ = Pr[y > y1] and y} the min
y-coordinate of the elements in bucket j as soon as the current epoch starts.
Clearly, the element just inserted incurs a violation when landing into bucket j
with probability Prly < y;].



— If the bucket contains > & log N(i) > £ logn coordinates, then coordinate

y incurs a violation with probability < qPTJ log™ (In other words, a violation
may happens when at most all the £2(logn) coordinates of the elements in
bucket j are > yi, that is, when y7 > Y1-)

— If the bucket contains < % log N (i) coordinates, which is as likely as in Eq.
() then coordinate y may induces < 1 violation.

All in all, y coordinate expectedly induces < ¢?(°8™) 4 Eq. (@) violations. Thus,
during the whole epoch of n insertions the expected number of violations are at
most n - (¢?U1°8™) + n. Eq. (@) = ng (&™) + o(1) violations. This is at most

(logn)™
c-logn = O(logn) if ¢ < (Ch’%) — e lasn— oo.

Remark 4 Note that Power Law and Zipfian distributions have the aforemen-

(logn)~*
) — et

clogn
0 as n — oQ.

tioned property that q < (

5 The First Solution for Random Distributions

In this section, we present the construction that works under the assumptions
that the x and y-coordinates are continuously drawn by an unknown p-random
distribution.

The structure we propose consists of two levels, as well as an auxiliary data
structure. All of them are implemented as PSTs. The lower level partitions the
points into buckets of almost equal logarithmic size according to the z-coordinate
of the points. That is, the points are sorted in increasing order according to
x-coordinate and then divided into sets of O(logn) elements each of which con-
stitutes a bucket. A bucket C is implemented as a PST and is represented by
a point C™" which has the smallest y-coordinate among all points in it. This
means that for each bucket the cost for insertion, deletion and search is equal to
O(loglogn), since this is the height of the PST representing C.

The upper level is a PST on the representatives of the lower level. Thus,

_n_
logn

the number of leaves in the upper level is O ( ) As a result, the upper level

supports the operations of insert, delete and search in O(log n) time. In addition,
we keep an extra PST for insertions of violating points. Under this context, we
call a point p violating, when its y-coordinate is less than C™" of the bucket C
in which it should be inserted. In the case of a violating point we must change
the representative of C' and as a result we should make an update operation on
the PST of the upper level, which costs too much, namely O(logn).

We assume that the z and y-coordinates are drawn from an unknown pu-
random distribution and that the p function never changes. Under this assump-
tion, according to the combinatorial game of bins and balls, presented in Section
5 of [23], the size of every bucket is O(log®n), where ¢ > 0 is a constant, and no
bucket becomes empty w.h.p. We consider epochs of size O(logn), with respect
to update operations. During an epoch, according to Theorem [2] the number



of violating points is expected to be O(1) w.h.p. The extra PST stores exactly
those O(1) violating points. When a new epoch starts, we take all points from
the extra PST and insert them in the respective buckets in time O(loglogn)
expected w.h.p. Then we need to incrementally update the PST of the upper
level. This is done during the new epoch that just started. In this way, we keep
the PST of the upper level updated and the size of the extra PST constant.
As a result, the update operations are carried out in O(loglogn) time expected
w.h.p., since the update of the upper level costs O(1) time w.c.

The 3-sided query can be carried out in the standard way. Assume the query
[a,b] x (—o0,¢c]. First we search down the PST of the upper level for a and b.
Let P, be the search path for a and P, for b respectively. Let P,, = P, N Py.
Then, we check whether the points in the nodes on P, U P, belong to the answer
by checking their x-coordinate as well as their y-coordinate. Then, we check all
right children of P, — P, as well as all left children of P, — P,,. In this case we
just check their y-coordinate since we know that their xz-coordinate belongs in
[a,b]. When a point belongs in the query, we also check its two children and we
do this recursively. After finishing with the upper level we go to the respective
buckets by following a single pointer from the nodes of the upper level PST of
which the points belong in the answer. Then we traverse in the same way the
buckets and find the set of points to report. Finally, we check the extra PST for
reported points. In total the query time is O(logn + t) w.c.

Note that deletions of points do not affect the correctness of the query algo-
rithm. If a non violating point is deleted, it should reside on the lower level and
thus it would be deleted online. Otherwise, the auxiliary PST contains it and
thus the deletion is online again. No deleted violating point is incorporated into
the upper level, since by the end of the epoch the PST contains only inserted
violating points.

Theorem 5. There exists a dynamic main memory data structure that sup-
ports 3-sided queries in O(logn + t) w.c. time, can be updated in O(loglogn)
expected w.h.p. and consumes linear space, under the assumption that the x and
y-coordinates are continuously drawn from a p-random distribution.

If we implement the above solution by using EPSTs [5], instead of PSTs,
then the solution becomes I/O-efficient, however the update cost is amortized
instead of worst case. Thus we get that:

Theorem 6. There exists a dynamic external memory data structure that sup-
ports 3-sided queries in O(logg n+t/B) w.c. time, can be updated in O(log g logn)
amortized expected w.h.p. and consumes linear space, under the assumption that
the x and y-coordinates are continuously drawn from a u-random distribution.

6 The Second Solution for the Smooth and Random
Distributions

We will present the invented data structures in RAM and I/O model respectively.



6.1 The Second Solution in RAM model

Our internal memory construction for storing n points in the plane consists of
an [S-tree storing the points in sorted order with respect to the z-coordinates.
On the sorted points, we maintain a weight balanced exponential search tree T’
with c; = 3/2 and ¢; = 2°. Thus its height is ©(loglogn). In order to use T
as a priority search tree, we augment it as follows. The root stores the point
with overall minimum y-coordinate. Points are assigned to nodes in a top-down
manner, such that a node u stores the point with minimum y-coordinate among
the points in T, that is not already stored at an ancestor of u. Note that the
point from a leaf of T' can only be stored at an ancestor of the leaf and that
the y-coordinates of the points stored at a leaf-to-root path are monotonically
decreasing (Min-Heap Property). Finally, every node contains an RMQ-structure
on the y-coordinates of the points in the children nodes and an array with
pointers to the children nodes. Every point in a leaf can occur at most once in
an internal node u and the RMQ-structure of u’s parent. Since the space of the
IS-tree is linear [30] 24], so is the total space.

Querying the Data Structure: Before we describe the query algorithm of
the data structure, we will describe the query algorithm that finds all points
with y-coordinate less than c in a subtree T;,. Let the query begin at an internal
node u. At first we check if the y-coordinate of the point stored at u is smaller
or equal to ¢ (we call it a member of the query). If not we stop. Else, we identify
the ¢, children of u storing points with y-coordinate less than or equal to ¢,
using the RMQ-structure of u. That is, we first query the whole array and then
recurse on the two parts of the array partitioned by the index of the returned
point. The recursion ends when the point found has y-coordinate larger than c
(non-member point).

Lemma 6. For an internal node u and value c, all points stored in T, with
y-coordinate <c can be found in O(t + 1) time, when t points are reported.

Proof. Querying the RMQ-structure at a node v that contains ¢, member points
will return at most ¢, +1 non-member points. We only query the RMQ-structure
of a node v if we have already reported its point as a member point. Summing
over all visited nodes we get a total cost of O (>, (2t, +1))=0(t + 1). 0

In order to query the whole structure, we first process a 3-sided query [a, b] x
(—00, c] by searching for a and b in the IS-tree. The two accessed leaves a,b
of the IS-tree comprise leaves of T' as well. We traverse T' from a and b to the
root. Let P, (resp. P,) be the root-to-leaf path for a (resp. b) in T and let
P,, = P, N Py. During the traversal we also record the index of the traversed
child. When we traverse a node u on the path P, — P, (resp. P, — P,,), the
recorded index comprises the leftmost (resp. rightmost) margin of a query to
the RMQ-structure of w. Thus all accessed children by the RMQ-query will
be completely contained in the query’s a-range [a,b]. Moreover, by Lem. [f] the
RMQ-structure returns all member points in T5,.



For the lowest node in P,,, i.e. the lowest common ancestor (LCA) of a and
b, we query the RMQ-structure for all subtrees contained completely within a
and b. We don’t execute RMQ-queries on the rest of the nodes of P,,, since they
root subtrees that overlap the query’s xz-range. Instead, we merely check if the
z- and y-coordinates of their stored point lies within the query. Since the paths
P,,, P, — P, and P, — P, have length O(loglogn), the query time of T becomes
O(loglogn +t). When the z-coordinates are smoothly distributed, the query to
the IS-Tree takes O(loglogn) expected time with high probability [30]. Hence
the total query time is O(loglogn + t) expected with high probability.

Inserting and Deleting Points: Before we describe the update algorithm of
the data structure, we will first prove some properties of updating the points in
T. Suppose that we decrease the y-value of a point p, at node u to the value
y'. Let v be the ancestor node of u highest in the tree with y-coordinate bigger
than y’. We remove p,, from u. This creates an “empty slot” that has to be filled
by the point of w’s child with smallest y-coordinate. The same procedure has to
be applied to the affected child, thus causing a “bubble down” of the empty slot
until a node is reached with no points at its children. Next we replace v’s point
py with p, (swap). We find the child of v that contains the leaf corresponding
to p, and swap its point with p,. The procedure recurses on this child until an
empty slot is found to place the last swapped out point ( “swap down”). In case
of increasing the y-value of a node the update to T is the same, except that p,
is now inserted at a node along the path from u to the leaf corresponding to p,.

For every swap we will have to rebuild the RMQ-structures of the parents
of the involved nodes, since the RMQ-structures are static data structures. This
has a linear cost to the size of the RMQ-structure (Sect. B)).

Lemma 7. Let i be the highest level where the point has been affected by an
update. Rebuilding the RMQ-structures due to the update takes O(wS>™") time.

K3

Proof. The executed “bubble down” and “swap down”, along with the search
for v, traverse at most two paths in 7. We have to rebuild all the RMQ-
structures that lie on the two wv-to-leaf paths, as well as that of the parent
of the top-most node of the two paths. The RMQ-structure of a node at level j
is proportional to its degree, namely O (w;/w;_1). Thus, the total time becomes

O(E;ille/w]_l) = O(Ez_zow;&*l) _ O(wf271)' .

To insert a point p, we first insert it in the IS-tree. This creates a new leaf
in T, which might cause several of its ancestors to overflow. We split them
as described in Sec. [3 For every split a new node is created that contains no
point. This empty slot is filled by “bubbling down” as described above. Next, we
search on the path to the root for the node that p should reside according to the
Min-Heap Property and execute a “swap down”, as described above. Finally, all
affected RMQ-structures are rebuilt.

To delete point p, we first locate it in the IS-tree, which points out the
corresponding leaf in T'. By traversing the leaf-to-root path in 7', we find the



node in T that stores p. We delete the point from the node and “bubble down” the
empty slot, as described above. Finally, we delete the leaf from T" and rebalance T’
if required. Merging two nodes requires one point to be “swapped down” through
the tree. In case of a share, we additionally “bubble down” the new empty slot.
Finally we rebuild all affected RMQ-structures and update the IS-tree.
Analysis: We assume that the point to be deleted is selected uniformly at
random among the points stored in the data structure. Moreover, we assume
that the inserted points have their z-coordinates drawn independently at random
from an (n®,n'/?)-smooth distribution for a constant 1/2<a<1, and that the
y-coordinates are drawn from an arbitrary distribution. Searching and updating
the IS-tree needs O(loglogn) expected with high probability [30} 24], under the
same assumption for the z-coordinates.

Lemma 8. Starting with an empty weight balanced exponential tree, the amor-
tized time of rebalancing it due to insertions or deletions is O(1).

Proof. A sequence of n updates requires at most O(n/w;) rebalancings at level

(Lem. 2]). Rebuilding the RMQ-structures after each rebalancing costs O( o2 1)

time (Lem. [7)). Summing over all levels, the total time becomes O(Z;flght(m L.

w2 ™YY = O(n Y9I ye2=2)— O(n), when cp<2. O
Lemma 9. The expected amortized time for inserting or deleting a point in a
weight balanced exponential tree is O(1).

Proof. The insertion of a point creates a new leaf and thus 7" may rebalance,
which by Lemma [8 costs O(1) amortized time. Note that the shape of T only
depends on the sequence of updates and the z-coordinates of the points that
have been inserted. The shape of T is independent of the y-coordinates, but the
assignment of points to the nodes of T follows uniquely from the y-coordinates,
assuming all y-coordinates are distinct. Let u be the ancestor at level i of the leaf
for the new point p. For any integer k£ > 1, the probability of p being inserted at u
or an ancestor of u can be bounded by the probability that a point from a leaf
of Ty, is stored at the root down to the k-th ancestor of u plus the probability that
the y-coordinate of p is among the k smallest y-coordinates of the leaves of T'. The

first probability is bounded by Z?eigf,z(ﬂ 21“; L. whereas the second probability
2

is bounded by k / %wl It follows that p ends up at the i-th ancestor or higher with

probability at most O( E?ezﬁf(n 21_”; L4 Tu; ) = O(E?ii{%:(n Jl vt )

O( i T ) O(wgliq)cgi —I—i) = O(i) for ¢c; = 3/2and k = 3. Thus

w;
the expected cost of “swapping down” p becomes O(Z?jlght(n w% . “Jw—tl) =

O(Z?iilght( ) wee 2) _ O(Ehezqht 02 2)c;) —0(1) for s < 2.

A deletion results in “bubbling down an empty slot, whose cost depends on
the level of the node that contains it. Since the point to be deleted is selected



uniformly at random and there are O (n/w;) points at level i, the probabil-
ity that the deleted point is at level ¢ is O (1/w;). Since the cost of an up-
date at level i is O (w;11/w;), we get that the expected “bubble down” cost is

@) (Z?flght(m w% . w;}—tl) =0(1) for c2 < 2. 0
Theorem 7. In the RAM model, using O(n) space, 3-sided queries can be sup-
ported in O(loglogn + t/B) expected time with high probability, and updates in
O(loglogn) time expected amortized, given that the x-coordinates of the inserted
points are drawn from an (n®,n'/?)-smooth distribution for constant 1/2<a<1,
the y-coordinates from an arbitrary distribution, and that the deleted points are
drawn uniformly at random among the stored points.

6.2 The Second Solution in I/O model

We now convert our internal memory into a solution for the I/O model. First
we substitute the IS-tree with its variant in the I/O model, the ISB-Tree [21].
We implement every consecutive ©(B?) leaves of the ISB-Tree with the data
structure of Arge et al. [5]. Each such structure constitutes a leaf of a weight
balanced exponential tree T' that we build on top of the O(n/B?) leaves.

In T every node now stores B points sorted by y-coordinate, such that
the maximum y-coordinate of the points in a node is smaller than all the y-
coordinates of the points of its children (Min-Heap Property). The B points
with overall smallest y-coordinates are stored at the root. At a node u we store
the B points from the leaves of T, with smallest y-coordinates that are not
stored at an ancestor of u. At the leaves we consider the B points with smallest
y-coordinate among the remaining points in the leaf to comprise this list. More-
over, we define the weight parameter of a node at level i to be w;=B%*(7/6)" Thus
we get w;y 1 =w!/®, which yields a height of ©(loglogy n). Let di:%:w}” de-
note the degree parameter for level i. All nodes at level ¢ have degree O(d;). Also
every node stores an array that indexes the children according to their x-order.

We furthermore need a structure to identify the children with respect to their
y-coordinates. We replace the RMQ-structure of the internal memory solution
with a table. For every possible interval [k, ] over the children of the node, we
store in an entry of the table the points of the children that belong to this
interval, sorted by y-coordinate. Since every node at level i has degree O(d;),
there are O(d?) different intervals and for each interval we store O(B - d;) points.
Thus, the total size of this table is O(B - d3) points or O(d3) disk blocks.

The ISB-Tree consumes O(n/B) blocks [21]. Each of the O(n/B?) leaves of T
contains B2 points. Each of the n/w; nodes at level i contains B points and a ta-

ble with O(B-d?) points. Thus, the total space is O(n—l—Z?:eil‘qht(T)nB-df/wi) =
O(n—i—Zﬁiﬁght(T)n-B/(BQ%i) %) = O(n) points, i.e. O(n/B) disk blocks.

Querying the Data Structure: The query is similar to the internal memory
construction. First we access the ISB-Tree, spending O(log 5 logn) expected I/Os



with high probability, given that the z-coordinates are smoothly distributed [21].
This points out the leaves of T that contain a,b. We perform a 3-sided range
query at the two leaf structures. Next, we traverse upwards the leaf-to-root path
P, (resp. Py) on T, while recording the index k (resp. [) of the traversed child in
the table. That costs @(logloggz n) 1/0s. At each node we report the points of
the node that belong to the query range. For all nodes on P, — P, and P, — P, we
query as follows: We access the table at the appropriate children range, recorded
by the index k and I. These ranges are always [k + 1,last child] and [0, — 1] for
the node that lie on P, — P, and P, — P,, respectively. The only node where
we access a range [k + 1,1 — 1] is the LCA of the leaves that contain a and b.
The recorded indices facilitate access to these entries in O(1) I/Os. We scan the
list of points sorted by y-coordinate, until we reach a point with y-coordinate
bigger than c¢. All scanned points are reported. If the scan has reported all B
elements of a child node, the query proceeds recursively to that child, since more
member points may lie in its subtree. Note that for these recursive calls, we do
not need to access the B points of a node v, since we accessed them in v’s parent
table. The table entries they access contain the complete range of children. If
the recursion accesses a leaf, we execute a 3-sided query on it, with respect to a
and b [5].

The list of B points in every node can be accessed in O(1) I/Os. The con-
struction of [5] allows us to load the B points with minimum y-coordinate in a
leaf also in O(1) I/Os. Thus, traversing P, and P, costs ©(loglog g n) I/Os worst
case. There are O(log logz ) nodes u on P, — P, and P, — P,,. The algorithm re-
curses on nodes that lie within the z-range. Since the table entries that we scan
are sorted by y-coordinate, we access only points that belong to the answer.
Thus, we can charge the scanning I/Os to the output. The algorithm recurses on
all children nodes whose B points have been reported. The I/Os to access these
children can be charged to their points reported by their parents, thus to the
output. That allows us to access the child even if it contains only o(B) member
points to be reported. The same property holds also for the access to the leaves.
Thus we can perform a query on a leaf in O(¢/B) I/Os. Summing up, the worst
case query complexity of querying T is O(logloggn + %) I/Os. Hence in total
the query costs O(loglogg n + %) expected 1/Os with high probability.

Inserting and Deleting Points: Insertions and deletions of points are in
accordance with the internal solution. For the case of insertions, first we update
the ISB-tree. This creates a new leaf in the ISB-tree that we also insert at the
appropriate leaf of T in O(1) I/Os [5]. This might cause some ancestors of the
leaves to overflow. We split these nodes, as in the internal memory solution.
For every split B empty slots “bubble down”. Next, we update T" with the new
point. For the inserted point p we locate the highest ancestor node that contains
a point with y-coordinate larger than p’s. We insert p in the list of the node.
This causes an excess point, namely the one with maximum y-coordinate among
the B points stored in the node, to “swap down” towards the leaves. Next, we
scan all affected tables to replace a single point with a new one.



In case of deletions, we search the ISB-tree for the deleted point, which points
out the appropriate leaf of T'. By traversing the leaf-to-root path and loading the
list of B point, we find the point to be deleted. We remove the point from the
list, which creates an empty slot that “bubbles down” T' towards the leaves. Next
we rebalance T' as in the internal solution. For every merge we need to “swap
down” the B largest excess points. For a share, we need to “bubble down” B
empty slots. Next, we rebuild all affected tables and update the ISB-tree.
Analysis: Searching and updating the ISB-tree requires O(log 5 logn) expected
I/Os with high probability, given that the z-coordinates are drawn from an
(n/(loglogn)'*e, n'/B)-smooth distribution, for constant e>0 [21].

Lemma 10. For every path corresponding to a “swap down” or a “bubble down”
starting at level i, the cost of rebuilding the tables of the paths is O(df’ﬂ) I/0s.

Proof. Analogously to Lem. [7 a “swap down” or a “bubble down” traverse at
most two paths in T'. A table at level j costs O(d3) I/Os to be rebuilt, thus all

tables on the paths need O(}."11d?) = O(d3,,) 1/Os. O

j=1"]

Lemma 11. Starting with an empty external weight balanced exponential tree,
the amortized I/Os for rebalancing it due to insertions or deletions is O(1).

Proof. We follow the proof of Lem. Bl Rebalancing a node at level i requires
O(d3,,+B-d?) 1/Os (Lem. [0), since we get B “swap downs” and “bubble
downs” emanating from the node. The total I/O cost for a sequence of n updates
is O(S P (g3 4 B-d3))=0(n-3r"" Dy 124 Baw;47)=0(n). O

n

w;
Lemma 12. The expected amortized 1/0s for inserting or deleting a point in
an external weight balanced exponential tree is O(1).

Proof. By similar arguments as in Lem. [@and considering that a node contains B
points, we bound the probability that point p ends up at the ¢-th ancestor or
higher by O(B/w;). An update at level i costs O(d3,,)=0(w}/?) 1/Os. Thus
“swapping down” p costs O(Z?ﬁﬁght(T)w%/?%):O(l) expected 1/Os. The same
bound holds for deleting p, following similar arguments as in Lem. O

Theorem 8. In the I/0 model, using O(n/B) disk blocks, 3-sided queries can be
supported in O(loglogg n+t/B) expected 1/Os with high probability, and updates
in O(logglogn) I/Os expected amortized, given that the x-coordinates of the
inserted points are drawn from an (n/(loglogn)'*e n/B)-smooth distribution
for a constant € > 0, the y-coordinates from an arbitrary distribution, and that
the deleted points are drawn uniformly at random among the stored points.

7 The Third Solution for the Smooth and the Restricted
Distributions

We would like to improve the query time and simultaneously preserve the update
time. For this purpose we will incorporate to the structure the MPST, which is



a static data structure. We will dynamize it by using the technique of global
rebuilding [27], which unfortunately costs O(n) time.

In order to retain the update time in the same sublogarithmic levels, we
must ensure that at most a logarithmic number of lower level structures will be
violated in a broader epoch of O(n) updates. Since the violations concern the
y-coordinate we will restrict their distribution to the more restricted class, since
Theorem [3] ensures exactly this property. Thus, the auxiliary PST consumes at
most O(logn) space during an epoch.

Moreover, we must waive the previous assumption on the z-coordinate dis-
tribution, as well. Since the query time of the previous solution was O(logn) we
could afford to pay as much time in order to locate the leaves containing a and
b. In this case, though, this blows up our complexity. If, however, we assume
that the x-coordinates are drawn from a (n®,n?)-smooth distribution, we can
use an [S-tree to index them, given that 0 < o, < 1. By doing that, we pay
w.h.p. O(loglogn) time to locate a and b.
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Fig. 3. The internal memory construction for the restricted distributions

When a new epoch starts we take all points from the extra PST and insert
them in the respective buckets in time O(loglogn) w.h.p. During the epoch
we gather all the violating points that should access the MPST and the points
that belong to it and build in parallel a new MPST on them. At the end of
the O(n) epoch, we have built the updated version of the MPST, which we use
for the next epoch that just started. By this way, we keep the MPST of the
upper level updated and the size of the extra PST logarithmic. By incrementally
constructing the new MPST we spend O(1) time worst case for each update of



the epoch. As a result, the update operation is carried out in O(loglogn) time
expected with high probability.

For the 3-sided query [a,b] X (—o00, ¢], we first access the leaves of the lower
level that contain a and b, through the IS-tree. This costs O(loglog n) time w.h.p.
Then the query proceeds bottom up in the standard way. First it traverses the
buckets that contain a and b and then it accesses the MPST from the leaves of the
buckets’ representatives. Once the query reaches the node of the MPST with y-
coordinate bigger than c, it continues top down to the respective buckets, which
contain part of the answer, by following a single pointer from the nodes of the
upper level MPST. Then we traverse top down these buckets and complete the
set of points to report. Finally, we check the auxiliary PST for reported points.
The traversal of the MPST is charged on the size of the answer O(t) and the
traversal of the lower level costs O(log logn) expected with high probability. Due
to Theorem Bl the size of the auxiliary PST is with high probability O(logn),
thus the query spends O(loglogn) expected with high probability for it. Hence,
in total the query time is O(loglogn + t).

Theorem 9. There exists a dynamic main memory data structure that sup-
ports 3-sided queries in O(loglogn + t) time expected w.h.p., can be updated in
O(loglogn) expected w.h.p. and consumes linear space, under the assumption
that the x-coordinates are continuously drawn from a p-random distribution and
the y-coordinates are drawn from the restricted class of distributions.

In order to extend the above structure to work in external memory we will
follow a similar scheme with the above structure. We use an auxiliary EPST
and index the leaves of the main structure with and ISB-tree. This imposes that
the z-coordinates are drawn from a (n/(loglogn)'*¢, n'=%)-smooth distribution,
where e >0 and 6 =1 — %, otherwise the search bound would not be expected
to be doubly logarithmic. Moreover, the main structure consists of three levels,
instead of two. That is, we divide the n elements into n’ = % buckets of size
logn, which we implement as EPSTs (instead of PSTs). This will constitute
the lower level of the whole structure. The n’ representatives of the EPSTs are
again divided into buckets of size O(B), which constitute the middle level. The
n” = % representatives are stored in the leaves of an external MPST (EMPST),
which constitutes the upper level of the whole structure. In total, the space of

the aforementioned structures is O(n’ + n” + n” log®™ n’) = Oogn + Blogn T

B B) = O(525) = O(%), where k is such that log™™) n” = O(B) holds.

The update algorithm is similar to the variant of internal memory. The query
algorithm first proceeds bottom up. We locate the appropriate structures of
the lower level in O(logglogn) I/Os w.h.p., due to the assumption on the a-
coordinates. The details for this procedure in the I/O model can be found in
[21]. Note that if we assume that the z-coordinates are drawn from the grid
distribution with parameters [1, M], then this access step can be realized in
O(1) I/Os. That is done by using an array A of size M as the access data
structure. The position A[i] keeps a pointer to the leaf with z-coordinate not
bigger than i [33]. Then, by executing the query algorithm, we locate the at
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Fig. 4. The external memory construction for the restricted distributions

most two structures of the middle level that contain the representative leaves of
the EPSTs we have accessed. Similarly we find the representatives of the middle
level structures in the EMPST. Once we reached the node whose minimum
y-coordinate is bigger than c, the algorithm continues top down. It traverses
the EMPST and accesses the structures of the middle and the lower level that
contain parts of the answer. The query time spent on the EMPST is O(t/B)
I/Os. All accessed middle level structures cost O(2 + ¢/B) I/Os. The access
on the lower level costs O(logg logn + t/B) I/0s. Hence, the total query time
becomes O(log g logn +t/B) 1/0s expected with high probability. We get that:

Theorem 10. There exists a dynamic external memory data structure that sup-
ports 3-sided queries in O(logglogn + t/B) expected w.h.p., can be updated in
O(logglogn) expected w.h.p. and consumes O(n/B) space, under the assump-
tion that the x-coordinates are continuously drawn from a smooth-distribution
and the y-coordinates are drawn from the restricted class of distributions.

8 Conclusions

We considered the problem of answering three sided range queries of the form
[a, b] X (—o0, c] under sequences of inserts and deletes of points, trying to attain
linear space and doubly logarithmic expected w.h.p. operation complexities, un-
der assumptions on the input distributions. We proposed three solutions, which



we modified appropriately in order to work for the RAM and the I/O model.
All of them consist of combinations of known data structures that support the
3-sided query operation.

The internal variant of the first solution combines Priority Search Trees [29)
and achieves O(loglogn) expected w.h.p. update time and O(log n+t) w.c. query
time, using linear space. Analogously, the external variant of the first solution
combines External Priority Search Trees [5] and achieves the update operation in
O(logg logn) 1/0s expected w.h.p. and the query operation in O(loggn +t/B)
I/Os amortized expected w.h.p., using linear space. The bounds are true under
the assumption that the z and y-coordinates are drawn continuously from pu-
random distributions.

The internal variant of the second solution combines exponential weight bal-
anced trees with RMQ structures and achieves O(loglogn + t) expected query
time with high probability and O(loglogn) expected amortized update time.
Analogously, the external variant of the second solution achieves the update op-
eration in O(logzlogn) expected amortized I/Os and the query operation in
O(loglogg n + t/B) expected I/Os with high probability. The main drawback
of this solution appears in the I/O-approach, where the block-size factor B is
presented in the second logarithm (O(loglogg n)).

In order to improve the latter, we proposed a third solution with stronger
assumptions on the coordinate distributions. We restricted the y-coordinates to
be continuously drawn from a restricted distribution and the z- coordinates to
be drawn from (f(n), g(n))-smooth distributions, for appropriate functions f
and g, depending on the model. The internal variant of this solution can be
accessed by a IS-tree [24], incorporates the Modified Priority Search Tree [22)
and decreases the query complexity to O(loglog n+t) expected w.h.p., preserving
the update and space complexity. The external variant combines the External
Modified Priority Search Tree, which was presented here, with External Priority
Search Trees and is accessed by an ISB-tree [21]. The update time is O(log g logn)
I/Os expected w.h.p., the query time is O(logg logn +t/B) I/Os and the space
is linear.

The proposed solutions are practically implementable. Thus, we leave as a
future work an experimental performance evaluation, in order to prove in practice
the improved query performance and scalability of the proposed methods.
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