Skip to main content

Computing the Map of Geometric Minimal Cuts

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Abstract

In this paper we consider the problem of computing a map of geometric minimal cuts (called MGMC problem) induced by a planar rectilinear embedding of a subgraph H = (V H , E H ) of an input graph G. We first show that unlike the classic min-cut problem on graphs, the number of all rectilinear geometric minimal cuts is bounded by a low polynomial, O(n 3). Our algorithm for identifying geometric minimum cuts runs in O(n 3 logn (loglogn)3) time in the worst case which can be reduced to O(n logn (loglogn)3) when the maximum size of the cut is bounded by a constant, where n = |V H |. Once geometric minimal cuts are identified we show that the problem can be reduced to computing the L  ∞  Hausdorff Voronoi diagram of axis aligned rectangles. We present the first output-sensitive algorithm to compute this diagram which runs in O((N + K)log2 N loglogN) time and O(Nlog2 N) space, where N is the number of rectangles and K is the complexity of the diagram.

The research of the first two authors was supported in part by NSF through a CAREER Award CCF-0546509 and a grant IIS-0713489. The research of the third author was supported in part by an SNF project 200021_127137 and partially performed while affiliating with the IBM T.J. Watson Research center, Yorktown Heights, NY, USA, and the Athens University of Economics and Business, Greece.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Holm, J., Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Mehlhorn, K., Näher, S.: Dynamic franctional cascading. Algorithmica 5, 215–241 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Papadopoulou, E.: Critical area computation for missing material defects in VLSI circuits. IEEE Transactions on Computer-Aided Design 20(5), 583–597 (2001)

    Article  Google Scholar 

  5. Papadopoulou, E.: The Hausdorff Voronoi Diagram of Point Clusters in the Plane. Algorithmica 40, 63–82 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Papadopoulou, E.: Higher order Voronoi diagrams of segments for VLSI critical area extraction. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 716–727. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: STOC, pp. 343–350 (2000)

    Google Scholar 

  8. Abellanas, M., Hernandez, G., Klein, R., Neumann-Lara, V., Urrutia, J.: A Combinatorial Property of Convex Sets. Discrete Comput. Geometry 17, 307–318 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geometry 4, 311–336 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Papadopoulou, E., Lee, D.T.: The L  ∞  Voronoi Diagram of Segments and VLSI Applications. International Journal of Computational Geometry and Applications 11, 503–528 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Papadopoulou, E., Lee, D.T.: Critical Area computation via Voronoi diagrams. IEEE Transactions on Computer-Aided Design 18(4), 463–474 (1999)

    Article  Google Scholar 

  12. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: A divide and conquer approach. International Journal of Computational Geometry and Applications 14(6), 421–452 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dehne, F., Maheshwari, A., Taylor, R.: A Coarse Grained Parallel Algorithm for Hausdorff Voronoi Diagrams. In: Proc. 2006 International Conference on Parallel Processing, pp. 497–504 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, J., Xu, L., Papadopoulou, E. (2009). Computing the Map of Geometric Minimal Cuts. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics