
On the tightness of the
Buhrman-Cleve-Wigderson simulation

Shengyu Zhang

Department of Computer Science and Engineering,
The Chinese University of Hong Kong.

syzhang@cse.cuhk.edu.hk

Abstract. Buhrman, Cleve and Wigderson gave a general communica-
tion protocol for block-composed functions f(g1(x1, y1), · · · , gn(xn, yn))
by simulating a decision tree computation for f [3]. It is also well-known
that this simulation can be very inefficient for some functions f and
(g1, · · · , gn). In this paper we show that the simulation is actually poly-
nomially tight up to the choice of (g1, · · · , gn). This also implies that
the classical and quantum communication complexities of certain block-
composed functions are polynomially related.

1 Introduction

Decision tree complexity [4] and communication complexity [7] are two
concrete models for studying computational complexity. In [3], Buhrman,
Cleve and Wigderson gave a general method to design communication
protocol for block-composed functions f(g1(x1, y1), · · · , gn(xn, yn)). The
basic idea is to simulate the decision tree computation for f , with queries
of the i-th variable answered by a communication protocol for gi(x

i, yi).
In the language of complexity measures, this result gives

CC(f(g1, · · · , gn)) = Õ(DT(f) ·max
i

CC(gi)) (1)

where CC and DT are the communication complexity and the decision
tree complexity, respectively. This simulation holds for all the models:
deterministic, randomized and quantum1.
It is also well known that the communication protocol by the above
simulation can be very inefficient. For example, if f is the n-bit AND
function and all gi’s are 2-bit AND function, then even the deterministic
communication complexity of f(g1, · · · , gn) is just 1 bit, since Alice can
compute and send the AND function of her bits. This is in sharp contrast
to the decision tree complexity of the n-bit AND function f , which isΘ(n)
in the randomized case and Θ(

√
n) in the quantum case.

Turning the simulation around, one can also get a lower bound method
for the decision tree complexity by communication complexity. To lower
bound DT(f), we can pick gi’s, then the communication complexity of

1 For the deterministic model, no error correction for each gi is needed, so the Õ can
be changed to O.



CC(f(g1, · · · , gn))/maxi CC(gi) is a lower bound of DT(f). Actually in
the same paper [3], they obtained the almost tight lower bound of Ω̃(n)
for the quantum decision tree complexity of the Parity and Majority func-
tions this way. But because of the counterexamples as shown in the last
paragraph, it is not clear how tight this lower bound method can be in
general.

In this paper, we will show that the simulation is polynomially tight,
and actually this can be achieved by each gi chosen only from {∧,∨},
i.e. 2-bit AND and OR.

Theorem 1. For Boolean functions f ,

max
gi∈{∧,∨}

RCC(f(g1, · · · , gn)) = Ω(DDT(f)1/3), (2)

max
gi∈{∧,∨}

QCC(f(g1, · · · , gn)) = Ω(DDT(f)1/6). (3)

For monotone functions f , the bounds can be improved to the following.
For two n-bit strings x and y, use x∧ny and x∨ny to denote the bit-wise
AND and OR of x and y, respectively. We drop the subscript when n = 1.

Theorem 2. For monotone Boolean functions f ,

max
g∈{∧n,∨n}

RCC(f(g1, · · · , gn)) = Ω(DDT(f)1/2), (4)

max
g∈{∧n,∨n}

QCC(f(g1, · · · , gn)) = Ω(DDT(f)1/4). (5)

Note that the improvement is two-fold: Besides the better bounds them-
selves, the range of inner function g is also restricted to {∧n,∨n}. That
is, we require all gi’s be the same; they are either all AND or all OR
functions.

The bounds give the following corollary about the polynomial relation
between quantum and classical communication complexity for composed
functions.

Corollary 1. For Boolean functions f ,

max
gi∈{∧,∨}

DCC(f(g1, · · · , gn)) = O

(
max

gi∈{∧,∨}
QCC(f(g1, · · · , gn))6

)
. (6)

If f is monotone, then

max
g∈{∧n,∨n}

DCC(f(g1, · · · , gn)) = O

(
max

g∈{∧n,∨n}
QCC(f(g1, · · · , gn))4

)
.

(7)

Related work After the results in the current paper being circulated
at Institute for Quantum Computing at University of Waterloo and Cen-
tre for Quantum Technologies at National University of Singapore in
May 2009, Sherstov posted a related paper [10], which does not have our
Theorem 1 and Theorem 2, but shows the following result:



Theorem 3. (Sherstov, [10]) For Boolean functions f ,

max
g∈{∧n,∨n}

DCC(f(g1, · · · , gn)) = O

(
max

g∈{∧n,∨n}
QCC(f(g1, · · · , gn))12

)
.

(8)

The technical ingredient to achieve the above theorem is to observe
that the function contains a subfunction g with size-2 block sensitiv-
ity bs2(g) ≥ bs(f), and then use a theorem by Kenyon and Kutin [6]
that s(g) = Ω(

√
bs2(g)).

2 Preliminaries

For an n-bit Boolean function f : {0, 1}n → {0, 1}, a deterministic query
algorithm for f accesses the input x only by making queries in the form
of “xi =?”. Each query has cost 1, and all the other computation between
queries are free. A randomized query algorithm is the same except that
the algorithm can toss coins to decide the next variable xi to ask. The
quantum query model, formally introduced in [2], has a working state
in the form of

∑
i,a,z αi,a,z|i, a, z〉, where i ranges over [n], a ranges over

{0, 1} and z is the content in the working space. A quantum query on
the input x corresponds to an oracle Ox, a unitary operation defined by

Ox

(∑
i,a,z

αi,a,z|i, a, z〉
)

=
∑
i,a,z

αi,a,z|i, a⊕ xi, z〉 (9)

A T -query quantum query algorithm works as a sequence of operations

U0 → Ox → U1 → Ox → · · · → UT−1 → Ox → UT (10)

Here Ox is as defined above, and each Ut does not depend on the input x.
In both randomized and quantum query models, we can allow a double-
sided error probability of 1/3. The deterministic, randomized and quan-
tum query complexities, denoted by DDT(f), RDT(f) and QDT(f), are the
minimum numbers of queries we need to make in order to compute the
function by a deterministic, randomized and quantum query algorithm,
respectively.
Communication complexity studies the minimum amount of communica-
tion that two or more parties need to compute a given function or a rela-
tion of their inputs. Since its inception in the seminal paper by Yao [12],
communication complexity has been an important and widely studied re-
search area, both because of the interesting and intriguing mathematics
involved in its study, and also because of the fundamental connections
it bears with many other areas in theoretical computer science. In the
standard two-party interactive model, two parties Alice and Bob, each on
receiving an input say x ∈ X and y ∈ Y, respectively, sending messages
back and forth to jointly compute a function f on input (x, y). Their
computation and communication can be deterministic, randomized, and
quantum. The deterministic, randomized, and quantum communication
complexity of f , denoted by DCC(f), RCC(f) and QCC(f), is the least



number of bits (or qubits in the quantum case) needed to be transferred
in the corresponding model, s.t. the protocol gives the correct answer
with probability at least 2/3 for all inputs.
For a string x ∈ {0, 1}n and a set I ⊆ [n], the string x(I) is obtained
from x by flipping all coordinates in I.

Definition 1 (block sensitivity) The block sensitivity bs(f, x) of f on
x is the maximum number b such that there are disjoint sets I1, · · · , Ib for
which f(x) 6= f(xIj ). The block sensitivity of f is bs(f) = maxx bs(f, x).
For z ∈ {0, 1}, the z-block sensitivity is bsz(f) = maxx:f(x)=z bs(f, x).

The block sensitivity is one of the complexity measures that are poly-
nomially related to each other. In particular, it powered is known to be
an upper bound of the deterministic decision tree complexity, as shown
in the following theorem by Beals et. al. [2]. For many other complexity
measures and their relations, we refer the reader to the excellent survey
[4].

Theorem 4. 1. DDT(f) = O(bs(f)3).
2. For monotone functions f , DDT(f) = O(bs(f)2).

The function Disjn : {0, 1}n × {0, 1}n is defined as follows: Disjn(x, y) =
OR(x1∧y1, · · · , xn∧yn). The promise version of the problem, PromiseDisjn,
is the same as Disjn but with the promise that there is at most one i s.t.
xi ∧ yi = 1. The randomized and quantum communication complexity
for Disjn and PromiseDisjn are known as follows.

Theorem 5.

RCC(Disjn) ≥ RCC(PromiseDisjn) = Ω(n), (11)

QCC(Disjn) ≥ QCC(PromiseDisjn) = Ω(
√
n). (12)

The original randomized lower bound [5, 8, 1] was for Disj instead of
PromiseDisj. But the same proof of [1] also carries to the same lower
bound for PromiseDisj. The original quantum lower bound [9, 11] was
also for Disj, but as mentioned in [10], the same method in [9] also ap-
plies to prove the same lower bound for PromiseDisj. [10] also explicitly
gives a proof for QCC(PromiseDisj) by adapting the method in [11].

3 Lower bounds for the communication
complexity of composed functions

We will actually prove that

Lemma 1. For Boolean functions f ,

max
gi∈{∧,∨}

RCC(f(g1, · · · , gn)) = Ω(bs(f)), (13)

max
gi∈{∧,∨}

QCC(f(g1, · · · , gn)) = Ω(
√
bs(f)). (14)



If f is monotone, then

max
g∈{∧n,∨n}

RCC(f(g1, · · · , gn)) = Ω(bs(f)), (15)

max
g∈{∧n,∨n}

QCC(f(g1, · · · , gn)) = Ω(
√
bs(f)). (16)

Proof. By the definition of block sensitivity, there are an input z and
blocks I1, · · · , Ib, where b = bs(f), s.t. f is sensitive on z at those blocks.
That is,

f(z(I1)) = · · · = f(z(Ib)) 6= f(z). (17)

We will define gi’s s.t. if there is a protocol for f(g1, · · · , gn), then there is
a protocol for PromiseDisjb. The reduction is: on input (x, y) ∈ {0, 1}b ×
{0, 1}b, we define an input (x′, y′) ∈ {0, 1}n × {0, 1}n for the function
f(g1, · · · , gn) as follows.
1. For i /∈ ∪b

j=1Ij :
x′i = y′i = zi, gi = ∧ (18)

2. For i ∈ Ij : {
x′i = xj , y

′
i = yi, gi = ∧, if zi = 0

x′i = x̄j , y
′
i = ȳi, gi = ∨, if zi = 1

(19)

It is easy to see that for the first case, gi(x
′
i, y
′
i) = zi ∧ zi = zi. For the

second case, if zi = 0, then

gi(x
′
i, y
′
i) = xj ∧ yj = (xj ∧ yj)⊕ zi; (20)

if zi = 1, then

gi(x
′
i, y
′
i) = x̄j ∨ ȳj = xj ∧ yj = (xj ∧ yj)⊕ zi. (21)

Thus for each j = 1, 2, · · · , b, it holds that

xj ∧ yj = 1⇔ gi(x
′
i, y
′
i) = z̄i,∀i ∈ Ij (22)

Therefore,

Distinguishing between x ∧ y = 0 and ∃ unique j, s.t. xj ∧ yj = 1
(23)

⇔ Distinguishing between g(x′, y′) = z and ∃ unique j, s.t. g(x′, y′) = z(Ij)

(24)

Now if we have a protocol to compute f(g1, · · · , gn), then we can use it
to solve the problem in Eq. (24). By the equivalence, this also solves the
problem in Eq. (23), i.e. the PromiseDisjb problem. Since

RCC(PromiseDisjb) = Ω(b), QCC(PromiseDisjb) = Ω(
√
b) (25)

we proved the conclusion for general Boolean function f .
If f is monotone, then observe that we can assume that each sensitive
block Ij contains all 0’s or all 1’s. Actually, suppose f(z) = 0 and Ij =
Ij,0 ] Ij,1 where z on Ij,b contains only bits equal to b. Then we can
remove Ij,1 and let the Ij,0 be the new block. It is still disjoint with all
other blocks, yet by monotonicity, it has f(z(Ij,0)) ≥ f(z(Ij)) = 1. In this



way we can assume that for f(z) = 0, all sensitive blocks contains only
0’s. Thus using similar reductions, we have

RCC(f(∧, · · · ,∧)) = Ω(RCC(Disjbs0(f))) = Ω(bs0(f)), (26)

QCC(f(∧, · · · ,∧)) = Ω(QCC(Disjbs0(f))) = Ω(
√
bs0(f)). (27)

Note that here because of the monotonicity, we can reduce the problem
to Disj instead of PromiseDisj, though this does not give us any stronger
bound. Similarly, we have

RCC(f(∨, · · · ,∨)) = Ω(RCC(Disjbs1(f))) = Ω(bs1(f)), (28)

QCC(f(∨, · · · ,∨)) = Ω(QCC(Disjbs1(f))) = Ω(
√
bs1(f)). (29)

Since bs(f) = max{bs0(f), bs1(f)}, this finishes the proof of the lemma.

Theorem 1 and 2 follow from the above lemma and Theorem 4. Corollary
1 is also easy:

max
gi∈{∧,∨}

DCC(f(g1, · · · , gn)) (30)

= O(DDT(f)) (by [3]) (31)

= O
(

max
gi∈{∧,∨}

QCC(f(g1, · · · , gn))6
)

(by Theorem 1) (32)

The monotone function case follows similarly.

References

1. Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An
information statistics approach to data stream and communication
complexity. Journal of Computer and System Sciences, 68(4):702–
732, 2004.

2. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and
Ronald de Wolf. Quantum lower bounds by polynomials. Journal of
the ACM, 48(4):778–797, 2001.

3. Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs.
classical communication and computation. In Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing
(STOC), pages 63–68, 1998.

4. Harry Buhrman and Ronald de Wolf. Complexity measures and
decision tree complexity: a survey. Theoretical Computer Science,
288(1):21–43, 2002.

5. Bala Kalyanasundaram and Georg Schintger. The probabilistic com-
munication complexity of set intersection. SIAM Journal on Discrete
Mathematics, 5(4):545–557, 1992.

6. Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and
l-block sensitivity of boolean functions. Information and Computa-
tion, 189(1):43–53, 2004.

7. Eyal Kushilevitz and Noam Nisan. Communication Complexity.
Cambridge University Press, Cambridge, UK, 1997.



8. Alexander Razborov. On the distributional complexity of disjoint-
ness. Theoretical Computer Science, 106:385–390, 1992.

9. Alexander Razborov. Quantum communication complexity of sym-
metric predicates. Izvestiya: Mathematics, 67(1):145–159, 2003.

10. Alexander Sherstov. On quantum-classical equivalence for composed
communication problems. arXiv:quant-ph/0906.1399, 2009.

11. Alexander A. Sherstov. The pattern matrix method for lower bounds
on quantum communication. In Proceedings of the 40th Annual ACM
Symposium on the Theory of Computing (STOC), pages 85–94, 2008.

12. Andrew Yao. Some complexity questions related to distributive com-
puting. In Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing (STOC), pages 209–213, 1979.


