Skip to main content

Bandwidth on AT-Free Graphs

  • Conference paper
Algorithms and Computation (ISAAC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5878))

Included in the following conference series:

Abstract

We study the classical Bandwidth problem from the viewpoint of parameterized algorithms. In the Bandwidth problem we are given a graph G = (V,E) together with a positive integer k, and asked whether there is an bijective function β: {1, ..., n} →V such that for every edge uv ∈ E, |β − 1(u) − β − 1(v)| ≤ k. The problem is notoriously hard, and it is known to be NP-complete even on very restricted subclasses of trees. The best known algorithm for Bandwidth for small values of k is the celebrated algorithm by Saxe [SIAM Journal on Algebraic and Discrete Methods, 1980 ], which runs in time \(2^{{\mathcal{O}}(k)}n^{k+1}\). In a seminal paper, Bodlaender, Fellows and Hallet [STOC 1994 ] ruled out the existence of an algorithm with running time of the form \(f(k)n^{{\mathcal{O}}(1)}\) for any function f even for trees, unless the entire W-hierarchy collapses.

We initiate the search for classes of graphs where Bandwidth is fixed parameter tractable (FPT), that is, solvable in time \(f(k)n^{{\mathcal{O}}(1)}\) for some function f. In this paper we present an algorithm with running time \(2^{{\mathcal O}(k \log k)} n^2\) for Bandwidth on AT-free graphs, a well-studied graph class that contains interval, permutation, and cocomparability graphs. Our result is the first non-trivial FPT algorithm for Bandwidth on a graph class where the problem remains NP-complete.

This work is supported by the Research Council of Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assmann, S.F., Peck, G.W., Sysło, M.M., Zak, J.: The bandwidth of caterpillars with hairs of length 1 and 2. SIAM J. Alg. Disc. Meth. 2, 387–393 (1981)

    Article  MATH  Google Scholar 

  2. Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem. Technical report TR98-014, University of Bonn (1997)

    Google Scholar 

  3. Bodlaender, H.L., Fellows, M.R., Hallet, M.T.: Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the W hierarchy. In: Proceedings of STOC 1994, pp. 449–458. ACM, New York (1994)

    Google Scholar 

  4. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  5. Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal Triple-Free Graphs. SIAM J. Disc. Math. 10, 399–430 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cygan, M., Pilipczuk, M.: Exact and Approximate Bandwidth. In: Albers, S., et al. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 304–315. Springer, Heidelberg (2009)

    Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  8. Fishburn, P., Tanenbaum, P., Trenk, A.: Linear discrepancy and bandwidth. Order 18, 237–245 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  10. George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, New Jersey (1981)

    MATH  Google Scholar 

  11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  12. Heggernes, P., Kratsch, D., Meister, D.: Bandwidth of bipartite permutation graphs in polynomial time. Journal of Disc. Alg. (to appear)

    Google Scholar 

  13. Kaplan, H., Shamir, R.: Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques. SIAM J. Computing 25, 540–561 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Disc. Math. 3, 373–375 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kloks, T., Kratsch, D., Le Borgne, Y., Müller, H.: Bandwidth of Split and Circular Permutation Graphs. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 243–254. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for AT-free graphs. J. Alg. 32, 41–57 (1999)

    Article  MATH  Google Scholar 

  17. Möhring, R.: Triangulating Graphs Without Asteroidal Triples. Discrete Applied Mathematics 64, 281–287 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Monien, B.: The Bandwidth-Minimization Problem for Caterpillars with Hair Length 3 is NP-Complete. SIAM J. Alg. Disc. Meth. 7, 505–512 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  20. Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Processing Letters 37, 21–25 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Papadimitriou, C.: The NP-completeness of the bandwidth minimization problem. Computing 16, 263–270 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Saxe, J.B.: Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time. SIAM Journal on Algebraic and Discrete Methods 1, 363–369 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yan, J.H.: The bandwidth problem in cographs. Tamsui Oxf. J. Math. Sci. 13, 31–36 (1997)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golovach, P., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S. (2009). Bandwidth on AT-Free Graphs. In: Dong, Y., Du, DZ., Ibarra, O. (eds) Algorithms and Computation. ISAAC 2009. Lecture Notes in Computer Science, vol 5878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10631-6_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10631-6_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10630-9

  • Online ISBN: 978-3-642-10631-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics