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graphs
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Abstract. We provide a certifying algorithm for the problem of deciding whether
a Ps-free graph is 3-colorable by showing there are exactly six finite graphs that
are Ps-free and not 3-colorable and minimal with respect to this property.

1 Introduction

An algorithm is certifying if it returns with each output a simple and easily verifiable
certificate that the particular output is correct. For example, a certifying algorithm for
the bipartite graph recognition would return either a 2-coloring of the input graph prov-
ing that it is bipartite, or an odd cycle proving it is not bipartite. A certifying algorithm
for planarity would return a planar embedding or one of the two Kuratowski subgraphs.
The notion of certifying algorithm [9] was developed when researchers noticed that a
well known planarity testing program was incorrectly implemented. A certifying al-
gorithm is a desirable tool to guard against incorrect implementation of a particular
algorithm. In this paper, we give a certifying algorithm for the problem of deciding
whether a Ps-free graph is 3-colorable. We will now discuss the background of this
problem.

A class C of graphs is called hereditary if for each graph G in C, all induced sub-
graphs of GG are also in C. Every hereditary class of graphs can be described by its
forbidden induced subgraphs, i.e. the unique set of minimal graphs which do not be-
long to the class. A comprehensive survey on coloring of graphs in hereditary classes
can be found in [12]. An important line of research on colorability of graphs in heredi-
tary classes deals with P;-free graphs. The induced path on ¢ vertices is called P, and
a graph is called P;-free if it does not contain P; as an induced subgraph.

It is known that 4-COLORABILITY is NP-complete for Py-free graphs [14] and
5-COLORABILITY is NP-complete for Ps-free graphs [10]. And most recently it was
proved that 6-COLORABILITY is NP-complete for P;-free [2]. On the other hand, the
k-COLORABILITY problem can be solved in polynomial time for Py-free graphs (since
they are perfect). In [5] and [6], it is shown that k-COLORABILITY can be solved for
the class of Ps-free graphs in polynomial time for every particular value of k. For
t = 6,7, the complexity of the problem is generally unknown, except for the case
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of 3-COLORABILITY of Pg-free graphs [13]. Known results on the k-COLORABILITY
problem in P;-free graphs are summarized in Table 1 (n is the number of vertices in the
input graph, m the number of edges, and « is matrix multiplication exponent known to
satisfy 2 < a < 2.376 [3]).

E\t| 3 4 5 6 7 8 9 10 | 11 | 12 |...
3 10(m)|[O(m)|On*)|O(mn*)| 2 | 2 | 2 [ 2] 72 7 |..
4 |o(m)lo(m)| P 2 | 2 | 2 |NP.NP|NE|NE.|...
5 lo(m)|o(m)| P 2 | 2 |NP.|NP.NP.[NP.|NP.|...
6 [o(m)|o(m)| P 9 |NP.NP|NP.[NP.NP.|NP.|...
7 |o(m)|o(m)| P 9 |NP|NP.INP.NP|NP.|NP.|...

Table 1. Known complexities for k-colorability of P;-free graphs

In this paper, we study the coloring problem for the class of Ps-free graphs. This
class has proved resistant with respect to other graph problems. For instance, Ps-free
graphs is the unique minimal class defined by a single forbidden induced subgraph
with unknown complexity of the MAXIMUM INDEPENDENT SET and MINIMUM INDE-
PENDENT DOMINATING SET problems. Many algorithmic problems are known to be
NP-hard in the class of Ps-free graphs, for example DOMINATING SET [7] and CHRO-
MATIC NUMBER [8]. In contrast to the NP-hardness of finding the chromatic number
of a Ps-free graph, it is known [5] that k-COLORABILITY can be solved in this class in
polynomial time for every particular value of k. This algorithm produces a k-coloring if
one exists, but does not produce an easily verifiable certificate when such coloring does
not exist. We are interested in finding a certificate for non-k-colorability of Ps-free
graphs. For this purpose, we start with k = 3.

Besides [5], there are several polynomial-time algorithms for 3-coloring a Pj-free
graph ([6, 11, 14]) but none of them is a certifying algorithm. In this paper, we obtain a
certifying algorithm for 3-coloring a Ps-free graphs by proving there are a finite number
of minimally non-3-colorable Ps-free graphs and each of these graphs is finite.

Theorem 1.1. A Ps-free graph is 3-colorable if and only if it does not contain any of
the six graphs in Fig. 1 as a subgraph.

It is an easy matter to verify the graphs in Fig. 1 are not 3-colorable, the rest of the paper
involves proving the other direction of the theorem. In the last Section, we will discuss
open problems arising from our work.

2 Definition and Background

Let k£ and ¢ be positive integers. An MNkPt is a graph G that (i) is not k-colorable and
is P;-free and (ii) every proper subgraph of G is either k-colorable or has a P;. We will
be interested specifically in the case where k£ = 3 and ¢ = 5. We will use the following
notations. Let G be a simple undirected graph. A set S of vertices of G is dominating if



v, Vs
X y
v, v,
S v, v,
1 82
v, Vs v, Vs
Vs Yy Vs Vs

Fig. 1. All 6 MN3P5s

every vertex in G — S has a neighbor in S. A k-clique is a clique on k vertices. u ~ v
will mean vertex u is adjacent to vertex v. u ~ v will mean vertex « is not adjacent
to vertex v. For any vertex v, N(v) denotes the set of vertices that are adjacent to v.
We write G = H to mean G is isomorphic to H. The clique number of G, denoted by
w(@), is the number of vertices in a largest clique of G. The chromatic number of G,
denoted by x(G), is the smallest number of colors needed to color the vertices of G. A
hole is an induced cycle with at least four vertices, and it is odd (or even) if it has odd
(or even) length. An anti-hole is the complement of a hole. A k-hole (k-anti-hole) is a
hole (anti-hole) on k vertices. A graph G is perfect if each induced subgraph H of G
has x(G) = w(G).

Theorem 2.1 (The Strong Perfect Graph Theorem [4]). A graph is perfect if and
only if it does not contain an odd hole or odd anti-hole as an induced subgraph.

Let & = {Ky4,W5,S51,52,T, B} be the set of graphs in Fig. 1. We will denote these
graphs in the following way.

— Ps(v1vav3v4v5) means there is a Ps being vy, v, v3, v4 and vs.

- Ky(wzyz) means {w, z,y, z} form a K.

- W5 (’U1U21)3U4’U5, ’LU) means v, v2, V3, V4, Us and w form a W5 where V1V20V30V4V5
form a 5-cycle and w is adjacent to every other vertex.

— S1(v1v2v3V4v5, Ug, us) MeEAns vy, Ve, Vs, Vg, Us, Uz, us form an S; where vy is the
only degree 4 vertex and N(vy) = {us,us,vs,v2}. Also N(v3) = {vg,v2,us}
and N (vq) = {vs,v5,us}, and v1v2v3vV4v5 form a 5-cycle.

— S5(v1v2v3vV4U5, W, ) Means vy, Vg, V3, V4, V5, w and x form an Sy where N (w) =
{ve,v3,v4,v5}, N(x) = {v1,v3,v4} and v1vov3v4v5 form a 5-cycle.

- T(ujuaupus, 11VAVBVa, T1,22) means a T' graph is present as shown previously.

- B(w, upug usuzugy, Vov1v2030405) means a B graph is present as shown previ-
ously.



We will rely on the following result.

Theorem 2.2 ([1]). Every connected Ps-free graph has a dominating clique or a dom-
inating Ps.

The following lemma is folklore.

Lemma 2.1 (The neighborhood lemma). Let G' be a minimally non k-colorable graph.
If uw and v are two non-adjacent vertices in G, then N (u) € N(v).

Proof. Assume N (u) C N(v). Then the graph G — v admits a k-coloring. By giving u
the color of v, we see that (G is k-colorable, a contradiction. O

The neighborhood lemma is used predominantly throughout this paper. Writing
N(v,w) — u will denote the fact that N(v) ¢ N(w) by the neighborhood lemma
so there exists a vertex u where u ~ v, but u ~ w.

The following fact is well-known and easy to establish.

Fact 2.1. In a minimally non k-colorable graph every vertex has degree at least k. O

3 Intermediate Results

In this section, we establish a number of intermediate results needed for proving the
main theorem.

Lemma 3.1. Let G be an MN3P5 graph with a 5-hole C = {vy,va,v3,v4, 05} and a
vertex w adjacent to at least 4 vertices of C. Then G € &.

Proof. If w is adjacent to all five vertices of C, then G clearly is isomorphic to Wi.
Now, assume N (w) N {v1, va, v3, V4, 5} = {v2, V3, V4, U5 }.
We have N(vq,w) — x.
Assume for the moment that x ~ vs, v4. We have
x ~ vs, otherwise, we have Ps(xv1v5v4v3).
x ~ vg, otherwise, we have Ps(xv1v2v3vy4).

But then G contains S; (v1v2v3v405, , w). This means & ~ vz or  ~ vy. By sym-
metry, we may assume r ~ v3. We have x ~ vy or x ~ vy, otherwise, G contains
Ps(xvivwvy). If  ~ v then G properly contains Sp (v1v2030405, T, w), a contradic-
tion. This means x ~ vy; so G contains Sy (v1v203V405, w, x) and G = Ss. O

Theorem 3.1. Every MN3P5 graph different from K4 contains a 5-hole.

Proof. Let G be an MN3P5 graph different from a K4. We have w(G) < 3 and x(G) >
4. Thus, G is not perfect. By Theorem 2.1, G contains an odd hole or an odd anti-hole
H. H cannot be a hole of size 7 or greater because G is P5-free. We may assume H is
an anti-hole of length at least seven, for otherwise we are done (observe that the hole
on five vertices is self-complementary). Let v1, va, v3, v4, U5, Vg, V7 be the cyclic order
of the hole in the complement of G. Then G properly contains S (v4v6V3V5V2, V1, V7),
a contradiction. a



Lemma 3.2. Let G be an MN3P5 graph that has a dominating clique {a,b, c}. Also
assume that there is a vertex v ¢ {a,b, c} adjacent to two vertices from {a,b, c}. Then

G e .

Proof. The proof is by contradiction. Suppose that G ¢ ®&. We may assume v is ad-
jacent to b and ¢. We have v ~ a, otherwise, G contains K4(abcv). Through repeated
applications of the Neighborhood Lemma, we will eventually add nine vertices to G
to arrive at a contradiction. In the end, we will obtain the graph B (see Fig. 2 for the
order in which vertices are added). Each time we add a vertex we will consider its adja-
cency to the other vertices of the graph. In every case, the adjacency can be completely
determined at each step.

Fig. 2. The graph B obtained in the proof of Lemma 3.2

N(v,a) — vy.
e vy ~ c:since {a, b, c} is dominating, v; is adjacent to either b or c¢. Without
loss of generality, assume v ~ c.
e vy ~» b: otherwise, G contains K4 (bcvvy ).
N(Vl, b) — Va.
e vy ~ a:assume vy » a. We have vy ~ v, otherwise, G contains Ps(vovivba).
Also, vy ~ csince {a, b, ¢} is a dominating set. But then, G contains K4 (v;vavc).
e vy » ¢: otherwise, G contains Wi (abvvyvg, ¢).
e vy ~ v: otherwise, ¢ has four neighbors in the 5-hole vyabvv; contradicting
Lemma 3.1.
N(va,c) — vs.
e v3 ~ b: assume v3 ~ b. We have vz ~ a since {a,b, c} is a dominating
set. We have vz ~ vy, otherwise, G contains S (vbavsve, ¢, v1). But then G
contains Ps(v3vqv1ch).
e v3 ~ v; otherwise, G contains Wi (bcvy vavs, v).
e v3 ~ v;: otherwise, v has four neighbors in the 5-hole vsbcv; v, contradict-
ing Lemma 3.1.
e v3 » a: otherwise G contains S; (vsacvvy, b, va).



N(vs,v) — va.

e vy ~ c:assume vy = c. Then we have vy ~ vs, for otherwise G contains
Ps(vqvzvave); vy = vy, for otherwise G contains K4 (v1vov3v4); vg4 = b,
for otherwise G contains S1(v1vovabc, v3,v); v4 ~ a because {a,b,c} is
dominating. But then G contains Ps(vqabvvy).

vy » v1: for otherwise G contains Wi (v4vzvave, v1).

vg = b: for otherwise, G contains S1 (vv1v3v4b, v, ¢).

v4 » a: for otherwise, G contains Ps(viabvvy).

vq ~ va: for otherwise the vertex vy has exactly four neighbors in the 5-hole
v4v3v9vcC contradicting Lemma 3.1.

N(a,v) — vs.

e v5 ~ v3: Assume vs ~ v3. Then we have vs ~ v1, for otherwise G contains
Ps(avsv3v1v); v5 = ve, for otherwise G contains Ky (v1v9v305); vs ~ ¢, for
otherwise G contains Ps(vsv3v2vc). But now G contains Wi (vscvvavs, v1).

e u5 ~ b: assume vs ~ b. Then we have vs ~ vq, for otherwise GG contains

Ps(vsabvvy). But then ¢ has four neighbors in the 5-hole vsabvv, contradict-
ing Lemma 3.1.

vs = c: for otherwise G contains Ky4(abcus).

vs ~ v1: for otherwise G contains Ps(vsacvivs).

vs ~ vy4: for otherwise G contains Ps(vsvscavs).

v5 » vg: for otherwise G contains Sy (cvvavsa, v1,b).

N(vs,c) — vs.

e Ug ~ v: assume vg ~ v. We have vg ~ a, for otherwise G contains
Ps(vgvsacv); vg « b, for otherwise G contains K4 (abusvg); vg ~ vy, for
otherwise, G contains Ps(vgabvvy). But ¢ has four neighbors in the 5-hole
vgabvv; contradicting Lemma 3.1.

vg » b: for otherwise G contains W5 (vsvgvca, b).

vg » vy: for otherwise G contains Ps(vavgusbc).

ve ~ v3: for otherwise G contains Ps(vsvgvv203)

vg ~ a: for otherwise G contains Ps(vzvgvsac).

vg » v1: for otherwise G contains S (vgabcv, vs, v1).

vg » v4: for otherwise G contains T (vgavsb, v3vav1V, vy, C).

<
~
~
<

N(vg,v1) — vr.
e v; ~ v: assume v; « v. Then we have v; ~ vs3, for otherwise G contains
Ps(vrvg4v3v10); v7 % ve, for otherwise G contains Ky (vavsvav7); v7 ~ ¢,
for otherwise G contains Ps(v7vsvauc). Now, G contains Sq (vevcvrvs, v1, v4).

e vy » vy for otherwise G contains Wi (vv1v3v4v7, v2).

e vy  vg: for otherwise G contains Ps(vgv7v4v201 ).

e v; ~ a: for otherwise G contains Ps (v v7006a).

e v; ~ v3: for otherwise G contains Ps(av7vvvs).

e 7 » c: for otherwise G contains S (v3vgcvvy, U7, V2).

e v7 ~» b: for otherwise G contains Ps(v7bcvivs).

e vy » vy for otherwise G contains T'(av7v5v4, cOVIV2, b, v3).



N(vg,b) — vs.

e vg ~ ¢: assume vg ~ c. Then we have vg ~ a because {a, b, c} is a dom-
inating set; vg ~ wvs, for otherwise G contains Ps(vgvgvsbc). But now, G
contains K4 (avsvgvsg).

e vg » a: for otherwise G contains Wi (vsvgvsbe, a).

e vg ~ vy: for otherwise G contains Ps(bavgugvy ).

e vg ~ vy: for otherwise G contains Ps(vav1cvgvg).

e vg ~ v5: for otherwise G contains Ps(vgvav1v5b).

e g ~ vy: for otherwise G contains Ps(v4vgvgab).

e ug ~ v: for otherwise G contains S7 (bcvgvga, v, vs).

e vg « vg: for otherwise G contains T'(vgavsh, v3vav1v, vs, C).

e vg ~ vy: for otherwise G contains Ps(vgvsbusvy).

N(vs,a) — vg.
e ug ~ b: assume vg ~ b. We have vg ~ w9, for otherwise G contains
Ps(vgugvaab); vg ~ vg, for otherwise G contains Ps(vgvgvgab). This means
G contains T'(vgvsvgva, abcv, vs, v1).
e U9 ~ V1. assume vg ~ v;. We have vg ~ v, for otherwise GG contains
Ps(vgbavgvy). This means G contains T'(vevv1c, vgvgUsa, Vg, b).
e vy ~ vg: for otherwise G contains Ps(v;vgbavg).
e g ~ vy: for otherwise G contains Ps(v1vgbavy).
® Ug ~ V4 assume vg » v4. Then we have vg ~ v, for otherwise GG contains
Ps(vgbavgvy). This means G contains T (veavsb, vgvav1v, vs, €).
But this means G contains B(c, vsabugvrvs, V2110030904 ), a contradiction. a

Lemma 3.3. Let G be an MN3P5 with a dominating clique {a,b,c}. Let A = N(a) —
{b,c}, B=N(b) — {a,c} and C = N(c) — {a,b}. Suppose A, B and C are pairwise
disjoint. Then G € &.

Proof. Some observations are necessary for this proof.

Observation 3.1. Ler X and Y be two distinct elements of {A, B,C}. Let X' be a
component in X with at least two vertices, and y be a vertex in Y. Then either y is
adjacent to all vertices of X' or to no vertex of X'.

Proof. Suppose the Observation is false. Then there are adjacent vertices v1,v9 € X
such that y is adjacent to exactly one of vy, vy. Without loss of generality, we may
assume X = Aand Y = B. Now, {¢, b, y, va, v1 } induces a Ps, a contradiction. O

Observation 3.2. Every component in A, B or C' is a single edge or one vertex.

Proof. Assume that one of A, B or C contains a vertex of degree 2. Without loss of
generality, assume there is such a vertex ag € A that is adjacent to two other distinct
vertices a; and a,, in A. Now we have a1 ~ a,, for otherwise G contains K4 (a1a,apa).
The Neighborhood Lemma implies N(a1, ax) — az and N(ayx,a;) — ay. Observa-
tion 3.1 implies a2, a,, € A. We have a,, ~ ao, for otherwise G contains K4(aaoazay);
as ~ ag, for otherwise G contains K4(aapaiasz); a, ~ as, for otherwise G contains
Ps(ayazapaiaz). Then G contains Ws(ayazapaaz, @), a contradiction. |



We continue the proof of the Lemma. Assume G ¢ &. Consider the case that two
of A, B or C contain an edge. Without loss of generality, assume A contains an edge
aias and B contains an edge b1bs. If a vertex in {b1,bo} is adjacent to a vertex in
{a1,as} then by Observation 3.1, G contains K4(ajazbybs), a contradiction. Suppose
some vertex ¢y € C is adjacent to a vertex in {a1,as, b, ba}. We may assume ¢y ~
a1. By Observation 3.1, we have ¢y ~ ag. If ¢ » b; (i = 1,2) then G contains
Ps(bibeeogay). So, ¢ is adjacent to all vertices of {ay, ag, by, by }. But now, G contains
S1(coarabby, as,bs). So, no vertex in C' is adjacent to a vertex in {a1, as, b1, b2}. By
Fact 2.1 and Observation 3.2, there exists a vertex a3 € A with b1,bo ~ a3 and a
vertex bs € B with a1,as ~ bs. Also by Fact 2.1, C contains a vertex c¢o. We have
asg ~ cp, for otherwise G contains Ps(asbibcey); bs ~ cg, for otherwise G contains
Ps(bsayaccy); ag ~ bs, for otherwise G contains Ps(byascobsay). But now G contains
T(aajasbs, bbibaag, ¢, co) which is a contradiction. So, at most one of A, B, C' contains
an edge.

If all of A, B, C is a stable set, then G is obviously 3-colorable. We may assume
B, C are stable sets, and A contains an edge. Now there must be one vertex by €
B with N (bg) contains two adjacent vertices in A. Otherwise, G admits a 3-coloring
f as follows. The vertices of C' are colored with color 3. Now, for each edge in A,
its endpoints are arbitrarily colored with colors 1, 2. The remaining vertices of A are
colored with color 1. The vertices of B are colored with color 2 (no vertex of B is
adjacent to an endpoint of a edge of A by Observation 3.1), and let f(a) = 3, f(b) =
1, f(¢) = 2. Thus, f is a 3-coloring which is a contradiction. Therefore, there is a vertex
b1 € B adjacent to both endpoints in some edge aiape in A. By a similar argument,
there is a vertex ¢; € C' adjacent to both endpoints in some edge a.1aco.

Suppose that apjape and a.jaco are the same edge. For simplicity, write ajas =
ap1Gp2 = Ac1Ge2. We have by » ¢y, for otherwise G contains Ky (ajazbicy).

e N(by,a) — co. We have ¢o € C by the fact that B is an independent set.

e N(c1,a) — ba. We have by € B by the fact that C' is an independent set.

® by, co % aj,as. Otherwise, suppose b ~ a;. Then by Observation 3.1, we
have by ~ ag so G contains K4 (ajasbacy).

e by ~ cy. Otherwise, G contains Ps(c1b2bbycs).

Now, G contains Ps(bacacaay). Thus, apiape and acjaco are distinct edges. We
have by » ac1,ace and c; ~ apy, ape, for otherwise we are done by the previous case.
We have b; ~ ¢q, for otherwise G contains Ps(biapiaacici). But now G contains
S ((lbl aprbicract, aps, (162), a contradiction. O

Lemma 3.4. Let G be an MN3P5 with a dominating clique {a,b, c}. Then G € &.

Proof. 1f there is a vertex other than a, b and ¢ adjacent to at least two of a, b or ¢ then
by Lemma 3.2, G € &. Otherwise, the conclusion follows from Lemma 3.3. O

Lemma 3.5. Let G be an MN3P5 with a dominating clique {a, b} of size 2. Then G €
&.

Proof. Assume G ¢ &. We may assume G contains no dominating 3-clique, for other-
wise we are done by Lemma 3.4. It follows that no vertex v is adjacent to both a, b.



By Theorem 3.1, there is 5-hole C' = vyvav3vavs in G because G # K. Clearly C'
cannot contain both ¢ and b. WLOG, assume that |[N(a) NC| > |[N(b) N C|. Ifb ¢ C
then since {a, b} is a dominating clique of G we have |[N(a) N C| > 3.If b € C, then
a must be adjacent to the 2 vertices in C' not adjacent to b. Thus, since a ~ b we also
have [N (a) N C| > 3. The case when |N(a) N C| > 4 is handled by Lemma 3.1, so
WLOG we may assume either N(a) N C = {v1,va,v3} or N(a) N C = {v1,v3,v4}.

Suppose N (a) NC = {vy,v2,v3}. Since {a, b} is a dominating clique, we have b ¢
C and b ~ vy, vs. Since no vertex is adjacent to both a and b, G contains Ps(bvsvivavs),
a contradiction. Now, we may assume N (a) N C' = {v1,v3,v4}. There exists a vertex
x with & » a,vs, vy, for otherwise {a, v3,v4} is dominating 3-clique. If z ~ v5, then
x ~ vy, for otherwise G contains Ps(zvsv4v3v2); but now G contains Ps(vezvsvaa).
Thus, we have © ~ v5 and by symmetry & » vs. Since {a, b} is a dominating clique,
we have x ~ b, and b ~ vy, v5. Recall that no vertex is adjacent to both a, b. Now, G
contains Ps(zbvsv4vs) which is a contradiction. O

Theorem 3.2. If G is an MN3P5 with a dominating clique then G € &.

Proof. If G has a dominating clique of size one or two, then it has a dominating clique
of size 2 since G contains no isolated vertices. By Lemma 3.5, G € &. If G has a
dominating clique of size 3, then Lemma 3.4 implies G € &. If G has a dominating
clique of size 4 or more, then G contains a K4 so G = K4 € & by minimality. a

Lemma 3.6. Let G be an MN3P5 with a dominating 5-hole. Then G has a dominating
KzorG e ®.

Proof. Let C = wvivsv3v4v5 be an induced 5-hole of G. Assume G does not have a
dominating clique. Let X; be the set of vertices adjacent to v;—; and v;4+1 and not
adjacent to v;42 and v; ;3 with the subscript taken modulo 5 (i.e., vg = vs), for i =
1,2,3,4,5. We now prove every vertex of GG belongs to exactly one X;.

Consider a vertex w ¢ C. By Lemma 3.1, we have 1 < |N(w) N C| < 3. If w has
one neighbor in C, then G obviously contains a Ps. Suppose w has two neighbors a, b
in C.If a ~ b, then G obviously contains a P5. Otherwise, a and b have distance two on
C' and so w belongs to some X,;. We may now assume w has three neighbors on C. If
these three neighbors are consecutive on C, then w belongs to some X ;. Now, we may
assume w ~ v1,vs, V4. There is a vertex x with & ~ w, v4, v3, for otherwise {w, v4, v3}
is a dominating clique. Vertex x must have a neighbor in {v1,vs, v5} because C' is a
dominating set. If © ~ wvs, then  ~ vy, for otherwise G contains Ps(zvsv4v3v2);
but now G contains Ps(vozvsvsw). Thus, we have  « vs and by symmetry & ~ vs.
Now, we have z ~ v1, and G contains Ps(xvivsv4vs). Thus, X7, Xo, X3, X4, X5 is a
partition of V(G).

If there are nonadjacent vertices x1,xo with 1 € X7,22 € X, then G contains
Ps(x1v5v4v3x2). Thus, there are all possible edges between X; and X; 4 for all .
If every X; is a stable set, then G is obviously 3-colorable, a contradiction. So we
may assume WLOG X5 contains an edge ab. Then X is a stable set, for otherwise G
contains a K4 with one edge in X; and one edge in X5. Similarly, X, is a stable set. If
X, contains an edge cd, then G contains Sy (v1 cvsvaa, d, b). If X3 contains an edge fg,
then G contains Sy (v4 fvevia, g,b). Thus, X; is a stable set for i = 1,2, 3, 4. Consider



the subgraph H of G induced by X5. If H contains an odd cycle D, then D U {vy } is
a K4 or W5, or D contains a P5. Thus H is bipartite. By coloring X5 with colors 2,3,
X1 U X, with color 1, X5 with color 2, X3 with color 3, we see that GG is 3-colorable,
a contradiction. a

4 Proof of Theorem 1.1

We can now prove the main theorem.

It is a routine matter to verify the “only if” part. We only need prove the “if” part.
Suppose G does not contain any of the graphs in Fig. 1 but is not 3-colorable. Then G
contains an induced subgraph that is minimally not 3-colorable. It follows that we may
assume G is a connected MN3P5 graphs. By Theorem 2.2, G contains a dominating
clique or Ps. If G contains a dominating clique, then we are done by Theorem 3.2. So,
we may assume G contains no dominating clique and thus contains a dominating P;
with vertices v, vo, v and edges v1vs, vovs. There is a vertex vy with v4 ~ v3 and
V4 ¢ V1, V2 since v1vy is not a dominating edge. Similarly, there is a vertex vs with
vs ~ v and vs * v, v3. We have vs ~ vy, for otherwise G contains a Ps. Thus,
V1U2V3vV4v5 18 @ dominating 5-hole of GG, and we are done by Lemma 3.6. O

5 Conclusion and Open Problems

In this paper, we provide a certifying algorithm for the problem of 3-coloring a Ps-graph
by showing there are exactly six finite minimally non-3-colorable graphs. Previously
known algorithms ([6, 11, 14]) provide a yes-certificate by constructing a 3-coloring if
one exists. Our algorithm provides a no-certificate by finding one of the six graphs of
Fig. 1. Since these graphs are finite, our algorithm runs in polynomial time. We do not
know if there is a fast algorithm running in, say, O(n*) to test if a graph contains one
of the six graphs of Fig. 1 as a subgraph. We leave this as an open problem.

In [5, 6], it is shown for every fixed k, determining if a Ps-free graph is k-colorable
is polynomial-time solvable. It is tempting to speculate that these two algorithms work
because for every fixed k, there is a function f(k) such that every minimally non-
k-colorable Ps-free graph has at most f(k) vertices. The result of this paper can be
viewed as a first step in this direction.
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