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Abstract. It is a common belief that computing a market equilibrium
in Fisher’s spending model is easier than computing a market equilib-
rium in Arrow-Debreu’s exchange model. This belief is built on the fact
that we have more algorithmic success in Fisher equilibria than Arrow-
Debreu equilibria. For example, a Fisher equilibrium in a Leontief market
can be found in polynomial time, while it is PPAD-hard to compute an
approximate Arrow-Debreu equilibrium in a Leontief market.

In this paper, we show that even when all the utilities are additively sep-
arable, piecewise-linear, and concave functions, finding an approximate
equilibrium in Fisher’s model is complete in PPAD. Our result solves
a long-term open question on the complexity of market equilibria. To
the best of our knowledge, this is the first PPAD-completeness result for
Fisher’s model.

1 Introduction

1.1 Market Equilibria: Fisher’s Model vs Arrow-Debreu’s Model

In 1891, Irving Fisher introduced one of the most fundamental exchange market
models in his Ph.D. thesis [2]. It considers a market in which there are n buyers
and m divisible goods. We denote the amount of good j, j € [m], in the market
by ¢; > 0. Every buyer i comes to the market with a certain amount of money,
denoted by w; > 0. The goal of a buyer is to obtain a bundle of goods, denoted
by a; € R, that maximizes her utility function u; : R* — R.

Fisher showed that if all the utility functions u; satisfy some mild conditions,
then there always exists an equilibrium price vector p € R’. At this price, one
can find a bundle of goods a; for each buyer i such that a; maximizes her utility
under the budget constraint that

2 jelm) % - Pi < Wi
and at the same time, the market demands equal to the market supply:

Dien) @ig < ¢, forall j € [m].

3 Recently, Vazirani and Yannakakis independently proved that the problem of com-

puting a Fisher equilibrium in a market with additively separable and PLC utility
functions is PPAD-complete [1].
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Fisher’s model is a special case of the more general model of exchange eco-
nomies considered by Arrow and Debreu [3]: In an exchange economy, there are
n traders and m divisible goods. Trader ¢ has an initial endowment of w; ; > 0
of good j and a utility function u; : R7* — R, . The individual goal of a trader
is to obtain a new bundle of goods that maximizes her utility.

In a sense, Fisher’s model focuses more on spending than trading as in Arr-
ow-Debreu’s model. In his model, money can be viewed as a special kind of good.
All but one “special” trader only have money as their endowments, and money
has no value to their utilities; the special trader, sometime called the “market”,
has all the goods and her interest is to collect all the money.

Over the last two decades, we have more algorithmic success in computing a
market equilibrium in Fisher’s model than computing an equilibrium in Arrow-
Debreu’s model.

— For the latter, polynomial-time algorithms are only known for markets with
utility functions that are linear [4-12] or satisfy weak gross substitutability
[13]. These algorithms critically used the fact that the set of equilibria of
these markets is convex. Progress on markets with non-convex set of equi-
libria has been relatively slow. There are only a few algorithms in this case.
Devanur and Kannan [14] gave a polynomial-time algorithm for markets with
piecewise-linear and concave (PLC) utilities and a constant number of goods.
Codenotti, McCune, Penumatcha, and Varadarajan [15] gave a polynomial-
time algorithm for CES markets when the elasticity of substitution s > 1/2.

For Leontief markets, in which each utility function is of the form min; a;z;,
computing an approximate Arrow-Debreu equilibrium price is known to be
PPAD-hard [16-18]. Recently, Chen et. al. [19] showed that finding an app-
roximate equilibrium in an Arrow-Debreu exchange market, even if all the
utility functions are additively separable  PLC, is complete in PPAD.

— For Fisher’s model, polynomial-time algorithms are given not only for linear
markets but also for Leontief and many other markets, e.g., the hybrid linear-
Leontief markets [20]. We know that an (approximate) market equilibrium
in any Fisher’s economy with CES utilities can be found in polynomial time
[4,15,12,21,7,22]. In fact, Ye [21] proved that if every utility function is the
minimum of a collection of homogeneous linear functions, then one can find
a Fisher equilibrium in polynomial time.

1.2 Our Results

It remains open whether there is a family of concave utility functions for which
it is PPAD-hard to compute a Fisher equilibrium. The family of utility functions
that has drawn most attention is the additively separable, piecewise-linear, and
concave (PLC) functions. Vazirani [23] remarked that obtaining a polynomial-
time algorithm for markets with additively separable and concave utility func-

4 A function u(z1, ..., xm) from RT to Ry is additively separable if there exist m real-
valued functions fi,..., fm such that u(z1,...,zm) =37, fj(2;).



tions is a premier open question today. Although the recent result of Chen et. al.
[19] settled the complexity of computing an Arrow-Debreu equilibrium in mar-
kets with additively separable and PLC utilities, the complexity of Fisher equi-
libria remains unsettled.

In this paper, we show that the problem of finding a Fisher equilibrium re-
mains to be PPAD-complete when the utility functions are additively separable
and PLC. Therefore, for this seemingly simple class of utility functions, finding a
Fisher equilibrium is as hard as finding an Arrow-Debreu equilibrium. Recently,
Vazirani and Yannakakis independently proved that the problem of finding a
Fisher equilibrium in a market with additively separable and PLC utility func-
tions is PPAD-complete [1].

1.3 Sketch of the Proof

We prove the PPAD-hardness of computing a Fisher equilibrium by giving a re-
duction from SPARSE BIMATRIX [24]: the problem of computing an approximate
Nash equilibrium in a sparse two-player game (see Section 2.1 for definition).

Similar to [19], our reduction starts by constructing a family of markets M,
for every n > 1, which we refer to as the price-regulating markets. There are 2n
goods in M,,, and every approximate equilibrium price p satisfies the following
price-regulation property:

pok—1+pakr =3 and 1/2< pgk_l/pgk <2, for every k € [n].
This allows us to encode n [0, 1]-variables x1, ..., x, using p as

T = pak — (P2k + par+41) /3,  for every k € [n]. (1)

Moreover, the price-regulation property is stable with respect to “small pertur-
bations” to M,,: When new buyers are added to M,, (without introducing new
goods), this property remains to hold as long as the total amount of money of
these new buyers is small compared to that of the buyers in M,,. We remark
that the price-regulating markets M,, in this paper are different from those in
[19], simply because we are dealing with Fisher’s model. In particular, our family
{M,,} is piecewise-linear while the one in [19] is linear.

Given an n x n two-player game (A, B), we construct a market M by adding
new buyers to Mo, 1 (with 4n + 2 goods). All the new buyers have very little
money compared to those in My, 11 so the price-regulation property still holds.
This enables us to encode a pair of probability distributions (x,y) of dimension
n (with 2n variables) using the first 4n entries of the price vector p as in (1). By
using the price-regulation property we show how to set the utility functions of
the new buyers appropriately so that we can control their preferences over the
goods and ultimately implement all the Nash equilibrium constraints over (x,y)
through p. As a result, given any (approximate) market equilibrium price p of
M, the pair (x,y) obtained (after normalization) must be an approximate Nash
equilibrium of (A, B).



2 Preliminaries

2.1 Complexity of Nash Equilibria

A two-player game is defined by the payoff matrices (A, B) of its two players.
In this paper, we assume that both players have n choices of actions and thus,
both A and B are square matrices with n rows and columns. We use A™ C R"
to denote the set of probability distributions of n dimensions.

We say a pair of probability vectors (x,y), where x € A" and y € A", is a
Nash equilibrium of (A, B) if for all ¢ and j in [n] ={1,2,...,n},

Ay > Aij = z;=0 and xB;>xB; = y; =0,

where we use A; to denote the ith row vector of A, and B; to denote the ith
column vector of B, respectively. For € > 0, (x,y) is an e-well-supported Nash
equilibrium of (A,B), if x,y € A™ and for all 4,j € [n],

Ay' —Ajy"'>e = 2;,=0 and xB;-xB;>e¢ = y;=0. (2

A two-player game (A, B) is said to be normalized if every entry of A and
B is between —1 and 1. We say a two-player game (A, B) is sparse if every row
and every column of A and B have at most 10 nonzero entries.

Let SPARSE BIMATRIX denote the following search problem: given an n X n
sparse normalized two-player game, find an n~5-well-supported Nash equilibri-
um. By [24], we know that SPARSE BIMATRIX is PPAD-complete.

2.2 Markets with Additively Separable PLC Utilities

Let G = {G1,...,G,} denote a set of n divisible goods, and T = {T1,..., T}
denote a set of buyers. For each good G, we use ¢; > 0 to denote the amount
of G in the market. For each buyer T;, we use w; > 0 to denote her money and
u; : R} — R, to denote her utility function. In this paper, we will mainly focus
on markets with additively separable, piecewise-linear and concave utilities.

A continuous function r(-) over Ry is said to be t-segment piecewise linear
and concave (PLC) if 7(0) = 0 and there exists a tuple

o >61>...>0,>0;0< a1 <ag<...<ay
of length 2¢ + 1 such that (letting ag = 0)

1. Vi € [0 : ¢ — 1], the restriction of r(-) over [a;, a;11] is a segment of slope 6;;
2. the restriction of r(-) over [a;, +00) is a ray of slope 6,.

The (2t + 1)-tuple is called the representation of r(-). Also we say r(-) is strictly
monotone if 6; > 0, and is a-bounded for some o > 1 if o > 6y and 6; > 1.

Definition 1. A function u(-) : Rt — Ry is said to be an additively separable
PLC function if there exist PLC functions r1(-),...,mn(:) : Ry — Ry such that



u(a) = e rila;),  forallaeRY.

In such a market, we use, for each buyer T; € T, r; ;(-) : Ry — R4 to denote
her PLC function with respect to good G; € G. As a result, we have

ul(a) = Eje[n] riﬁj(aj), for all a € qu_

We use p € R} to denote a price vector, where p # 0 and p; is the price of Gj;.
Given p, we let OPT(4, p) denote the set of allocations that maximize wu;(-):

OPT(i,p) = argmax acR”, a-p<uw; u;(a).

We let X = {a; € R : i € [m]} denote an allocation of the market: for each
buyer T; € T, a; € R is the amount of goods that T} receives. In particular,
the amount of G; that T; receives in X is a; ;.

Definition 2. A market equilibrium is a nonzero vector p € R’} such that there
exists an allocation X = {a; : i € [m|} which has the following two properties:

1. Every buyer gets an optimal bundle: for every T;, a; € OPT(i,p);
2. The market clears: for every G; € G, Zie[m] a;; < cj. In particular,

pi>0 = Y icim @iy =G

In general, not every market M has such an equilibrium price vector. How-
ever, for the additively separable PLC markets, the following condition guaran-
tees the existence of an equilibrium:

If for every buyer T; € T there exists a good G; € G such that the PLC
function r; ;(+) is strictly monotone, then a market equilibrium p exists.

It is a corollary of Maxfield [25]. Moreover, one can show that (e.g., see [14,19])
if all the parameters of M are rational numbers, then it must have a rational
equilibrium p, and the number of bits needed to describe p is polynomial in the
input size of M (i.e., the number of bits we need to describe the market M).

We are interested in the problem of finding an approximate market equilib-
rium in an additively separable PLC market.

Definition 3 (Approximate Market Equilibrium). Let M be an additively
separable PLC market. We say p is an e-approximate market equilibrium of M,
for some € > 0, if there is an allocation X = {a; € RY :i € [m]} such that every
buyer gets an optimal bundle with respect to p: a; € OPT(i,p), for all i € [m];
and the market clears approzimately: for all G; € G,

D icim) @ig — G| S € ¢



We make some further restrictions on the markets we are interested in. We
say an additively separable PLC market M is a-bounded, for some o > 1, if for
all T; and G, the PLC function r; ;(-) is either the zero function or a-bounded.
We call an additively separable PLC market M a 2-linear market, if for all T;
and G;, r; ;(+) has at most two segments. Finally we say an additively separable
PLC market M is t-sparse, for some positive integer ¢, if for any T;, the number
of j € [n] such that ; ;(-) is not the zero function is at most ¢. In another word,
every buyer T; is interested in at most ¢ goods.

We use FISHER to denote the following search problem: given a 2-linear ad-
ditively separable PLC market M, which is 81-bounded, 43-sparse and satisfies
the condition of Maxfield, find an n~2'-approximate market equilibrium, where
n denotes the number of goods in the market. It is not hard to show that FISHER
is in PPAD (e.g., see [19]). The main result of the paper is to show that FISHER
is actually PPAD-complete.

Theorem 1 (Main). FISHER is PPAD-complete.

3 A Price-Regulating Market

In this section, we construct a family of price-regulating markets {M,, : n > 1}
in Fisher’s setting. For every positive integer n, M,, has n buyers, 2n goods and
satisfies the following price regulation property.

Property 1 (Price Regulation). Let p € Ri" be an e-approrimate equilibrium
of My, with € < 1, then we have

3
< pak—1 +par < T and < <2, for everyk € [n].
—¢€

1+e

We start with some notation. The goods in M,, are G = {G1,...,Ga,} and
the buyers in M,, are T = {T1,...,T,}. For each buyer T; € T, we use w; > 0
to denote her money, u;(-) to denote her utility function, r; () to denote her
PLC function with respect to G, and OPT(i,p) to denote the set of bundles
that maximize her utility with respect to p.

In the construction of M,, below, we use 7(-) < [6] to denote the action of
setting 7(-) to be the linear function of slope 6 > 0; and use r(-) < [0y, 61; a1] to
denote the action of setting it to be the 2-segment function with representation
[00,01; a1], where 6y > 61 and a; > 0.

Construction of M, : First, we set ¢, = 1 for all k£ € [2n]. Second, for every
i € [n], we set w; = 3. Finally, we set the PLC functions r; ;(-) as follows:

1. For all k # 2i — 1,24, we set r; () to be the zero function: r; 1 (-) < [0];
2. Ti,2i71(') = [2], and ’I”l'ﬁgi(') = [4, 1, 1]

This finishes the construction of M,, (which is 2-linear, 4-bounded and 2-sparse).



Proof (Proof of Property 1). Let p be an e-approximate equilibrium, and X =
{a; € R3" : i € [n]} be an optimal allocation that clears the market approxima-
tely. Without loss of generality, we prove Property 1 for k = 1.

First, it is easy to check that p1,p2 > 0 since otherwise, we have a1 1 = +00
or a2 = +00, which contradicts the assumption of p being an e-approximate
market equilibrium.

Second, we show that p;/pa < 2. Assume, for contradiction, that p; > 2 - ps.
By the optimality of a;, we have a;; = 0. As a result, we have a;; = 0 for all
i € [n], which contradicts the assumption that p is an approximate equilibrium.
Similarly, one can show that p;/ps > 1/2.

Finally, by the optimality of a;, we have 3 = a1,1-p1 +a1,2-p2. Since p is an
e-approximate market equilibrium, we have |a11 — 1], ]a1,2 — 1| < €. As a result,

(I—e€)(p1+p2) <3=a11-p1+a12 -p2<(1+€)(p1+p2)
and Lemma 1 follows.

By Lemma 1, we have

Pok—1 + Dok 2(P2k—1 + D2k) 1 2
P2k—1,D2k € .

3 ’ 3 14€e¢’1—¢€

In the next section, we use Mg, 41 and the following 2n variables derived from
p to encode a pair of n-dimensional distributions (x,y): For k € [n],

zr =pok — (P2r—1 +p2x) /3 and  Yr = Po(nrk) — (P2(ntky—1 + Pa(nsr)) /3-

Given an n x n sparse two-player game (A, B), we show how to add new buyers
to “perturb” the market Mo, 1 so that any approximate equilibrium p of the
new market yields an approximate Nash equilibrium (x,y) of (A, B).

4 Reduction from SPARSE BIMATRIX to FISHER

In this section we prove Theorem 1 by giving a polynomial-time reduction from
SPARSE BIMATRIX to FISHER. Given an n X n sparse two-player game (A, B),
where A, B € [—1,1]"*", we build an additively separable PLC market M by
adding more buyers to the price-regulating market Moy, 1. There are 4n + 2
goods G = {G1,...,Gan,Gant1,Gant2} in M, and the buyers T in M are

T={T,Ty,Tv:i€2n+1,ucUand veV},

where U = {(4,5,1): 1 <i#j<n}and V ={(i,4,2): 1 <i#j<n} The
buyers {T;} have almost the same money and PLC functions as in Mgy, 1.

When constructing the market M, we also define a 4n-dimensional vector s,
for every buyer Ty, and a 4n-dimensional vector s, for every buyer T, which
will be useful in the proof of correctness.



4.1 Setting up the Market M

First, we set the money and utility function of each buyer T € T.

Buyers T;, where i € [2n + 1]. For every T; € T, where i € [2n + 1], we set
her money w; and PLC functions 7; x(-) almost the same as in Mgy, 41. First we
set w; = 3. Second, the PLC function r; ;(-) is set as:

1. ik (-) < [0] for all k # 2i — 1,24; and
2. Ti,?i—l(-) <= [2], and ri,2i(') = [47 1, 14+ 1/”20],

Buyers T,,, where u € U. Let u = (4,5,1), where 1 <i # j <n. We use A;
and A; to denote the ith and jth row vectors of A, respectively, and use C to
denote A; — A ;. Because A € [—1,1]"*", |Cy| < 2 for all k. We denote by m the
number of nonzero entries in C, then it is clear that m < 20. Let C' = Eke[n] Ch
then we have |C| < 20.

First, we set the money w, of Ty to be

3 6m+ C

Wy = —5 + ———
niz N

Using C, we set the PLC functions ry (), where k € [4n + 2], of Ty, as follows:
Tu,2(n+k)—1(-) < [0] and ry ok () <= [0] for all & € [n] such that Cy = 0;
Tu2(ntk)—1(-) < [81,1;2/n'3] for all k € [n] such that Cy # 0;

Tu2n+k) (7)< [81,1; (2 + Cy)/n'3] for all k € [n] such that Cj, # 0;
ru2j-1(-) < [27,1;1/n'%] and ry9;(-) < [9,1;1/n'?);

ruk(-) < [0] for all other k € [2n];

Tu,4n+1(') <~ [3] and ru,4n+2(') <~ [0]

S Ot W e

We also define the auxiliary vector sy € Rf’;" as follows:

L. Su2(nt+k)—1 = Su2(n+k) = 0 for all k& € [n] such that Cy = 0;

2. Su2(ntk)—1 = 2/n1? and Su2(ntk) = (2+ Cyi)/n'3 for all k with Cy # 0;
3. Su2j-1 = Suz2j = 1/n'?; and

4. sy = 0 for all other k € [2n].

Buyers Ty, where v € V. The behavior of Ty, v € V, is similar to that of T,
except that it works on the second payoff matrix B.

Let v = (4,7,2) € V, where 1 < i # j <n. We let B; and B, denote the ith
and jth column vectors of B, respectively, and use C to denote B; —B;. We also
use m to denote the number of nonzero entries in C and C' to denote ken) Ck-

First, we set the money w, > 0 of T}, to be

3 6m + C

Wy = —5 + ——5—
niz N



Using C, we set the utility functions ry ;(-), where k € [4n+ 2], of T, as follows:

rv,2k—1(-) < [0] and ry o1 (-) < [0] for all k € [n] such that Cj = 0;
Tv.2k—1(-) < [81,1;2/n'3] for all k € [n] such that Cj # 0;

rvar(-) < [81,1; (24 Ck)/n'3] for all k € [n] such that Cj, # 0;
rv2(mt)-1() € 27, 151/n7] and 1y aig () < (9,15 1/n0;
rv.k(+) < [0] for all other k € [2n : 4n];

Tv,4n+1(') <~ [3] and Tv,4n+2(') <~ [0]

A T S

Similarly, we define the auxiliary vector s, € R‘j_" as follows:

1. Sy2k—1 = Sv,2k = 0 for all k € [n] such that Cj = 0;

2. sy.ok—1 = 2/n'3 and sy o = (2 + Cy)/n'3 for all k € [n] such that C # 0;
3. Sv,2(n+j)—1 = Sv,2(n+j) — 1/n12; and

4. sy =0 for all other k € [2n : 4n).

Setting ¢, where k € [4n + 2]. First, c4n+1 = Cant2 = 1. Second, we set

ck =14 uer Suk T Dvey Sviks  for every k € [4n],

using the auxiliary vectors s, and s,. This finishes the construction of M. It is
easy to check that the market M constructed is 2-linear, 81-bounded, 43-sparse,
and satisfies the condition of Maxfield.

4.2 Sketch of the Reduction

Let N = 4n + 2, the number of goods in M. Then to prove Theorem 1, we only
need to show that from every N ~2'-approximate equilibrium p of M, one can
construct an n~5-well-supported equilibrium (x,y) of (A, B) efficiently.

To this end, we let (x’,y’) denote the following two n-dimensional vectors:

/ _ P2k—1+ D2k

P2(n+k)—1 T P2(n
2l = pow - 2(ntk)—1 T P2(nth) (3)

3

and Yy, = Po(ntk) —

Then we normalize (x',y’) to get (x,y) (we will show later that x',y" # 0):

Th Y
ke and oy =
Zie[n] z; Eie[n] Y;

Theorem 1 then follows from Theorem 2 below, which we will prove in the next
section. Note that if p is an N~2?!-approximate equilibrium, then by definition
it is also an n~2!'-approximate equilibrium.

xR = for every k € [n]. (4)

Theorem 2. If p is an n~ 2t -approzimate market equilibrium of M, then (x,y)
constructed above must be an n~®-well-supported Nash equilibrium of (A, B).



5 Correctness of the Reduction

In this section, we prove Theorem 2. Let p = (p1,...,Pans2) be an n~2*-appro-
ximate equilibrium of M. It is easy to show that py > 0 for all k. Let X be an
optimal allocation with respect to p that clears the market approximately:

X = {ai,au,av € Ri"” ci€2n+1j,ueUandv e V}.
We start with some notation. We let
T ={Ti:ie2n+1]}, Tu={Tu:ueU} and Ty ={Tv:veV}.

Let 77 C T be a subset of buyers and k € [4n + 2], then we use ai[7T’] to denote
the amount of good Gy, that buyers in T’ receive in the final allocation X'. For
T' CTo UTy and k € [4n], we let

sk[T'] = ET.,eT’ﬂTU Suk T ZTVET'mTV Svk-
By the construction of M, we have c4n+1 = c4nt2 = 1 and
l<cp=1+06(1/n") <2, forevery k € [4n)].
By the definition of approximate equilibria, |cx — ax[T]| < cx/n?! < 2/n?! and

|sk[TaUTV] — ar[Ta U TV + 1 — ap[T*]| <2/n*', forallk € [dn].  (5)

5.1 The Price-Regulation Property

First we show that the price vector p must satisfy the following price-regulation
property. The proof is similar to that of Property 1, which mainly uses the fact
that buyers in 7* possess almost all the money in the market M.

Lemma 1 (Price Regulation). For every k € [2n + 1], we have

1 _ 1 1
—Sp% L<2 and 3-0(—)<po1+pk<3+0(—=).
B Do T 10

Proof. We start with the second part of the lemma.
First, the total money that buyers in 7 spend on Goi—1 and Goy, is

par-1 - azk—1[T] + par - a2e[T) < 3+ 0(1/n'?) - (U] + |[V]) = 3+ 0(1/n'%)  (6)

since buyers T;, i # k, are not interested in Gog_1 and Gag. On the other hand,
because p is an approximate equilibrium, we have

ask_1[T] > cop1- (1 —1/n*Y) > 1 —1/n?' and an[T]>1—1/n?"

As a result,
p2k—1 - a2k—1[T] + pak - agk[T] > (Pak—1 + pax)(1 — 1/n?h). (7)



By combining (6) and (7), we have pag_1 + par < 3 + O(1/n'0).
Second, by the optimality of ai, we have

3 =Dpok—_1-ag26—1 + D2k - Ck 2k- (8)
On the other hand, because p is an approximate equilibrium, we have
arok—1 < agk—1[T] < car—1 (1 +1/n*') =1+ 0(1/n")
and ay 2 < 1+ O(1/n'!). As a result,
Pok—1° Qk2k—1 + Dok - ap2k < (p2e—1 + par) (1 + O(1/n')). 9)

By combining (8) and (9), we have pog_1 + par. > 3 — O(1/nt).

Finally we prove the first part of the lemma. Assume, for contradiction, that
D2k—1 > 2 - pa, for some k € [2n + 1]. By the optimality of aj, axor—1 = 0 and
thus, the money that buyers in 7 spend on Ggx_1 is at most

O(1/n'?) - (IU| + [V]) = O(1/n").
However, since pox—1 > 2 - pag, the price of Gox_1 is at least
2(pok—1 +p2r) /3 >2—0(1/n'Y),

which contradicts the assumption that p is an approximate equilibrium of M.
Similarly, one can show that pap < 2 - por_1, and the lemma is proven.

Corollary 1. For alli,j € [4n + 2|, we have p;/p; < 3.

Using Corollary 1, we analyze the behavior of T, and Ty as follows.

Behavior of Ty: Let u= (4,5,1) € U, where 1 <i# j <n.Let C=A; — A,
m < 20 be the number of nonzero entries in C and C = Zke[n] C. By Corollary
1 and the optimality of ay, Ty, first buys the following bundle of goods:

{Su,2(n+k)71 of Go(nyry—1 and sy o(ntk) of Gonyr) : k € [n] and Cy, # 0}- (10)

The money of Ty, left is (we let I denote the set of k € [n] such that Cj, # 0)

3 6m+C 2 1
pZ T Tam o T nm > (Ponsry—1 + P — ni3 > Cr paurry (11)
kel kel

By Lemma 1, the money left is 3/n'2 —O(1/n'3) > 0. After this, T\, buys Gaj_1

up to 1/n'? and the money left is 2(1/n'?) by Lemma 1. Finally, T,, buys Ga;
up to 1/n'? and spends all the money left, if any, to buy Gpn1.

Behavior of Ty: Let v = (4,5,2) € V, where 1 <i # j < n. Let C = B; — B;,
m < 20 be the number of nonzero entries in C and C = Zke[n] C. By Corollary
1 and the optimality of ay, T3 first buys the following bundle of goods



{Sv)gk_l of Gop—1 and sy ok of Gay, : k € [n] with Cy, # O}.
The money of Ty left is (we let I denote the set of k € [n] such that Cj # 0)

3 6m +C 2 1
TE T T T o3 Z(p2k—1 +p2k)_ﬁ ZCk'P%. (12)
kel kel

By Lemma 1 the money left is 3/n'? — O(1/n'?). After this, Ty buys Gt j)—1
up to 1/n'? and the money left is £2(1/n'?). Finally, T\, buys good Ga(,,45) up
to 1/n'? and spends all the money left, if any, on Gy 1.

The analysis above gives us the following corollary.

Corollary 2. For all k € [2n], ask—1[Tu U Ty] = sep—1[Tu U Ty]. For all T €
To U Ty and k € [2n], we have agi[T] < soi[T]. In particular,

sor[To U Tv] — aok[Tu U Ty] > sok|T) — ask[T)], foranyT € Ty UTy.
For all k € [n], we have so[Tv] = ask[Tv] and somi1)[Tu] = @@y [Tu)-
By combining (5) and the first part of Corollary 2, we have,

}akak& — 1| < 2/n?',  for every k € [2n]. (13)

5.2 Two Useful Lemmas

We prove two useful relations between pax and so [Ty U Tv] — agk[To U Ty

2

Lemma 2. Let p be an n~2'-approzimate market equilibrium of M. If

sor[Tu U Tv] — agk[To U Tv] = 2(1/n'?) (14)
for some k € 2n], then pa, = (par—1 + p2r)/3.

Proof. Assume (14) holds for some k € [2n]. Then by (5) we have agx[T*] -1 =
2(1/n1?) and thus, ag[T*] > 1+ 1/n?°. This implies that ax o, > 1+ 1/n2.
By (13) and the optimality of ax, we have pog_1/2 = pax/1.

2

Lemma 3. Let p be an n~2'-approzimate market equilibrium. If

sok[To U Tv] — agk[Tu U Tv] = O(1/n*!)
for some k € [2n], then pay = 2(par—1 + par)/3.

Proof. Assume (14) holds for some k € [2n]. Then by (5) we have ag;[T*] -1 <
O(1/n?') and thus, ag[T*] < 1+ 1/n?". This implies that aj 2, < 1+ 1/n?°.
By (13) and the optimality of ai, we have pog_1/2 = pax /4.



5.3 Proof of Theorem 2
Let x’ and y’ denote the two vectors obtained from p as in (3). By Lemma 1,
0 < zh,yp <14+0(1/n'%),  for every k € [n].
We state the following two lemmas and use them to prove Theorem 2.
Lemma 4. Let e =n=%. Then for alli,j:1<i# j <n, we have
(Ai—Aj)y" >€¢/2 = 2=0 and x'(B;—Bj)>¢/2 = y; =0, (15)
where A; denotes the ith row of A and B; denotes the ith column of B.
Lemma 5. There exist i and j € [n] such that
x; >1-0(1/n'") and y; > 1— O(1/n'h).

Now assume that x’ and y’ satisfy both properties. In particular, Lemma 5
implies that x’,y’ # 0. Therefore, we can normalize them to get two probability
distributions x and y using (4). Before proving these two lemma, we use them
to show that (x,y) must be an e-well-supported Nash equilibrium of (A, B).

Proof (Proof of Theorem 2). Since both x and y are probability distributions,
we only need to show that (x,y) satisfies (2) for all 7,5 : 1 <7 # j < n. We only
prove the first part of (2) here. Assume A;y? — A;yT > ¢, then

(A, —A)yT = (A, —AyT - 2 oken) Y > (1-0(1/n'")) e>¢€/2,

by Lemma 5. As a result, by Lemma 4 we have x; = 0 and thus, z; = 0.

5.4 Proofs of Lemma 4 and Lemma 5

Proof (Proof of Lemma 4). Without loss of generality, we prove the first part of
(15) for the case when ¢ = 1, j = 2. The other part can be proved similarly.

Let u=(1,2,1), C = A; — A2, m be the number of non-zero entries in C,
and C' = >, Cr- Assume (Ag — As)y'" > €/2. Then the money of T, left

after purchasing the bundle in (10) is given in (11). By the definition of y;,

1
Z Ck * Da(ntk) = 3 ch (P2tnak)—1 + Patnawy) + (A1 — Ag)y'™.
kel kel
By Lemma 1, pa(y4k)—1 + Da(ntk) = 3 — O(1/n'1). So the money left is at most

3 6m+C 1 C he €3 1 1
St E ). (2+ ?> B-00/n") 55 < 5 55+t0| =)
kel




After purchasing 1/n'? amount of G3, even if T, spends all the money left
on Gy, the amount of G4 she can get is at most

1/ 3 1 p3 1 /(3 ps+m 1 1 1
o (o) =) =3 (e =2 52 (o).

Since p3 + ps > 3 — O(1/ntt), it is at most 1/n'? — 2(1/n!?). By Corollary 2,

$a[To UTv] — aa[To UTv] > s4lTu] — a4[Tu] > Q(l/nlg).
It then follows directly from Lemma 2 that 2, = 0.

Proof (Proof of Lemma 5). Let k be one of the indices that maximize A;y'”:
Aky’T = max; Aiy/T.

We will show pog = 2(pak_1 + p2r)/3 and then Lemma 5 follows from Lemma 1.

To this end, we bound sox [Ty U Ty ] — agk [Ty U Ty]. By Corollary 2 we have
sok[Tv] = azk[Tv]. Now let u = (i,7,1) be a triple in U with ¢ # j. We consider
the following two cases.

First, if j # k, then sy 28 = au2r = 0.

Second, if j = k, then we use C to denote A; — Ay, m to denote the number
of nonzero entries in C and C' to denote ), Cy. The way we pick k guarantees
that Cy’?" < 0. After buying the bundle in (10), the money of Ty, left is given in
(11). By the definition of y;, it is at least

3 6m+C 1 Cr 0 3 1

kel

As a result, the amount of Gy that T, gets is at least

>1/n'? —0(1/n??).
Since the number of u € U whose second component equals k is n — 1, we have
sok[Tv] — azi[Tu] < O(1/n").

It then follows from Lemma 3 that paor = 2(par_1 + p2r)/3.
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