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Abstract

Randomized rumor spreading is a classical protocol to disseminate
information across a network. At SODA 2008, a quasirandom version
of this protocol was proposed and competitive bounds for its run-
time were proven. This prompts the question: to what extent does
the quasirandom protocol inherit the second principal advantage of
randomized rumor spreading, namely robustness against transmission
failures?

In this paper, we present a result precise up to (1 & o(1)) factors.
We limit ourselves to the network in which every two vertices are con-
nected by a direct link. Run-times accurate to their leading constants
are unknown for all other non-trivial networks.
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We show that if each transmission reaches its destination with a
probability of p € (0, 1], after (1+¢) (W logy 1 + 1—1) In n> rounds
the quasirandom protocol has informed all n nodes in the network with
probability at least 1 —n~P¢/40 Note that this is faster than the intu-
itively natural 1/p factor increase over the run-time of approximately
logy n + Inn for the non-corrupted case.

We also provide a corresponding lower bound for the classical
model. This demonstrates that the quasirandom model is at least as
robust as the fully random model despite the greatly reduced degree

of independent randomness.

1 Introduction

Disseminating information in a network, that is, making information that is
known to a single node available to all other nodes, is a classical problem.
A simple, yet powerful approach is randomized rumor spreading, also known
as random phone calls. In this setting, each node that is already informed
participates in the dissemination process by randomly calling neighbors and
passing along copies of the information. Besides being self-organized, this
approach has two crucial advantages. (i) It is fast. For many important
network topologies, O(logn) rounds suffice to inform all n nodes with high
probability. (ii) It is robust against transmission failure. Often, a constant
fraction of independently chosen transmission failures does not cause serious
problems, but merely increases the time required by a constant factor.
Success of the basic randomized rumor spreading protocol has motivated
the study of several variants. In [DFS08], a quasirandom version of the proto-
col was proposed. This version is structurally simpler, uses less randomness,
and is especially beneficial in that each vertex contacts each neighbor at
most once. Nonetheless, most run-time guarantees known for the classical
model still hold for the quasirandom version, some in an even stronger form.
However, little was previously known about the robustness of this model.
In this paper, we offer a detailed investigation of the robustness of the
quasirandom protocol. We use the following model of lossy communication,
which was analyzed in [HKPT05]. We assume that each message reaches its
target with a certain probability p € (0,1) independently for all transmis-
sions. For networks in which every two nodes are connected by a link, we
demonstrate that this lossiness only increases the run-time by a small con-



stant factor, which we precisely determine for each value of p. Surprisingly,
it is smaller than 1/p. For example, for p = 1/2, the run-time increases by a
factor of 1.828 only. The same result also holds for the classical, fully random
model.

In addition, we show that the corresponding slow-down for the classical
model is at least this factor. From this we conclude that the quasirandom
model is at least as robust as the classical model.

This is the first time, for the classical as well as for the quasirandom
model, that results precise up to the leading constant are shown for robust-
ness.

1.1 Randomized Rumor Spreading

The classical, fully random randomized rumor spreading protocol was first
investigated by Frieze and Grimmett [FG85]. They proposed the following
model. Let G = (V| E) be an undirected graph. At the start of the protocol,
a single vertex s € V knows a piece of information that is to be disseminated
to all other vertices. We say that s is informed. The protocol proceeds in
rounds (hence it assumes a common clock). In each round, every informed
vertex v chooses a neighbor u, € N(v) := {u € V | {u,v} € E} uniformly at
random and sends a copy of the information to it. This results in u, becoming
informed, if it is not already, and in wu, participating in the dissemination
process in subsequent rounds. This process defines a random variable T,
which denotes the number of rounds after which all vertices in the network
are informed, assuming that the initially informed vertex is s. The broadcast
time T is then defined as the maximum of all T, s € V, where the T, are
defined over independent probability spaces.

Frieze and Grimmett demonstrate that if the network is a complete graph
on n vertices, the broadcast time satisfies T' = (1 & o(1))(logy n + Inn) with
probability 1 — o(1). For hypercubes and random graphs G(n, p), where p >
(1+¢)In(n)/n, Feige, Peleg, Raghavan and Upfal [FPRU90] also determine a
broadcast time of ©(logn) with probability 1—1/n, albeit without making the
implicit constant precise. They also provide the general bounds of 12nlogn
and O(A(G)(diam(G) + logn)) for arbitrary n-vertex graphs. Subsequent
work by Sauerwald [Sau07], Elsdsser and Sauerwald [ES07] and Berenbrink,
Elsésser and Friedetzky [BEF0S8] shows that the O(logn) bound also holds
for expander graphs, Cayley graphs and random regular graphs.

We shall not extensively discuss the practical side of the randomized



rumor spreading protocol. We refer the interested reader to the aforemen-
tioned paper [FPRU90] as well as the paper by Karp, Shenker, Schindelhauer
and Vocking [KSSV00] for a general discussion, or the works of Demers et
al. [DGH"88| and Kempe, Dobra and Gehrke [KDGO03] for particular ap-
plications. What are generally recognized as the three key advantages of
randomized rumor spreading are speed (logarithmic broadcast time on im-
portant network topologies); self-organization (there is no central authority
involved); and robustness against transmission failure. Contrary to broad-
cast times, significantly less work has been done to quantify the robustness
of the randomized rumor spreading protocol.

As far as we are aware, the only results on the robustness of randomized
rumor spreading are due to Elsésser and Sauerwald [ES09]. They consider
the model where each transmission does not reach its destination with failure
probability 1 — p, and failures in different rounds are independent of each
other. They assert that the broadcast time for all graphs in this lossy model
is at most a factor of O(1/p) larger than in the model without transmission
failures.

1.2 Quasirandom Rumor Spreading

The above results show that randomized rumor spreading is a very powerful
approach to dissemination problems. However, taking all decisions indepen-
dently at random also has some unwanted effects. For example, a vertex may
contact one of its neighbors twice before contacting all of its other neighbors.
This may only be a minor problem for dense graphs like the complete graph,
but for sparse graphs, it may increase the broadcast time significantly.

Let G be a star on n vertices, i.e., a graph with one central vertex such
that all other vertices have this vertex as their only neighbor. Clearly, any
dissemination process where each vertex can send out at most one transmis-
sion per round needs at least n — 1 rounds, simply because the central vertex
has n — 1 neighbors that cannot be informed by other vertices. However, due
to the coupon collector effect, randomized rumor spreading on the star needs
©(nlogn) rounds with probability 1 — o(1).

This type of imbalance in informing one’s neighbors may be avoided by
choosing the destination of the current transmission uniformly at random
from those neighbors which have not yet been contacted by the originat-
ing vertex. However, this requires tracking all previously sent messages and
is therefore less desirable. Motivated by the paradigm of quasirandomness,
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Friedrich, Sauerwald and the first author [DES08] suggest the following quasi-
random rumor spreading protocol.

In this model, each vertex is equipped with a cyclic permutation of its
neighbors. As before, the protocol proceeds in rounds, and all informed ver-
tices participate in the dissemination process. However, each vertex only
directs its first transmission to a random neighbor. Subsequently, it informs
the successors of the first addressee on its list. We shall not make any as-
sumptions about the structures of these cyclic lists.

Before analyzing the quasirandom protocol, let us discuss it from an im-
plementation point of view. From a theory perspective, we immediately note
that the quasirandom model requires each vertex to store the permutation
of its neighbors, which may utilize up to ©(nlogn) bits. This is not nec-
essary for the fully random model. However, we may assume that in most
networks each vertex already has some list or array of its neighbors, since
the information regarding how to contact a neighbor must be stored some-
where. In this scenario, the use of the lists does not increase the complexity.
Rather, it appears that the quasirandom protocol needs less resources. In
particular, it requires significantly fewer random bits. This is beneficial if we
consider randomness costly, and useful if we want to trace an actual run of
the protocol.

The core question to be answered is whether the quasirandom protocol
works well even if we are not permitted to design the lists. Surprisingly, the
answer is yes.

For all lists that can be present at each vertex, O(log n) rounds suffice with
high probability to inform all the vertices of a complete graph K,,, a hyper-
cube @, an expander graph on n vertices (some extra conditions are needed
here), or a random graph G(n,p) with p > (1 +¢)(Inn)/n [DES08, [DES09).
Naturally, the lower bound of log, n rounds valid for the fully random model
also holds for the quasirandom model. Once again these bounds fall within
the right order of magnitude.

Sharper bounds analogous to those defined by Frieze and Grimmett
are known for the complete graph. In [ADHPQ9], it is shown that with
probability 1 — o(1), the number of rounds needed to inform all vertices is
(1+o0(1))(logyn + Inn).

In some settings, we observe better broadcast times than in the classical
model. One example is the random graph with edge probability p = (Inn +
w(1))/n only minimally above the connectivity threshold. Nevertheless, with
probability 1 —o(1), the random graph is such that with high probability the
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quasirandom protocol needs only O(logn) rounds independent of the starting
point. This is a notable advantage over the fully random model. Feige et
al. [FPRU90] demonstrate that for p = (Inn + O(loglogn))/n, the random
graph with probability 1 — o(1) is such that ©(log®n) rounds are necessary
to spread the rumor with high probability.

The bounds obtained for arbitrary graphs are also superior for the quasi-
random model. For the fully random model, we saw above that 12nlnn and
O(A(G)(diam(G) +1log n)) rounds suffice to inform all vertices of an n-vertex
graph G with high probability [FPRU90]. For the quasirandom model, it is
easily proven that after 2n — 3 or A(G)diam(G) rounds, all vertices are
informed with probability one.

1.3 Robustness of the Quasirandom Protocol

The above results show that the broadcast time of the quasirandom rumor
spreading protocol is quite well understood. Together with the experimental
investigation [DFKS09], all results indicate that the quasirandom protocol
achieves comparable or better broadcast times than the random model. For
the equally important aspect of robustness, much less is known. Since it
would typically seem that robustness of randomized algorithms is caused by
the large number of independent random decisions taken by the algorithm,
one may conclude that the quasirandom protocol is less robust.

The experimental evaluation in [DFKS09] debunks this assertion. For
both the hypercube and the complete graph on 2'? vertices, it was observed
that if messages sent across the network using either protocol get lost with
probability %, the broadcast time increases by a factor of between 1.8 and
1.9.

The only theoretical result pertaining to robustness is the one in [DFS09].
Let G be a graph, T' € N and v > 1 such that the quasirandom protocol
independent of the starting vertex with probability 1—n~" succeeds in inform-
ing all other nodes within 7" rounds. Then in the presence of transmission
failures (independently chosen with probability 1 — p), independent of the
starting vertex, 4(1/p)T rounds of a modified quasirandom protocol suffice
to inform all vertices with probability 1 — 2n™". The modification of the
protocol needed to prove this result is that the recipient of a message returns
a feedback message to the sender (which also gets lost with probability p).
Whenever the sender does not receive a feedback message, he tries to reach
the same addressee in the next round. With this modification, however, the



result is slightly weaker, in particular, because the feedback modification
makes the protocol significantly less simple.

In addition, the robustness result in [DES09] leaves room for constant
factor differences between the random and the quasirandom models in the
presence of transmission faults.

To gain a deeper understanding, we study the robustness of quasirandom
rumor spreading (without the feedback modification) on the complete graph
in this work. Recall that the complete graph is the only graph for which a
broadcast time of one of the two models precise up to the leading constant
is published. We show the following main result.

Main Result: For all ¢ > 0 and p € (0,1] the quasirandom ru-
mor spreading protocol with arbitrary lists, despite independent message
losses occurring with probability 1 — p, succeeds with probability at least
1 —n~P/* in informing all other vertices from a given vertex in time at most
(1+¢)(logyy,n+ 1—1) Inn).

This result is interesting for two reasons. Firstly, it shows that the quasi-
random protocol is even more robust than previous results indicate. Note
that the above bound is strictly better than (1/p)(1 + o(1))(log, n + Inn),
that is, (1/p) times the bound for the case without faulty transmissions.

Secondly, our results imply that the quasirandom protocol is at least as
robust as the classical one. To prove this, we show a corresponding lower
bound for the fully random protocol.

We should add that our proof for the upper bound of the quasirandom
model can be modified to yield a corresponding proof for the classical proto-
col. This is the first bound to make the robustness of the classical protocol
precise up to the leading constant.

1.4 Organization of the Paper

In Section 2] we collect some well-known probabilistic tools we require for the
remainder of the paper. We proceed in Section 3 by analyzing the randomized
rumor spreading model, as this is shorter and easier and may serve as an
introduction to the techniques we use. We provide a lower bound on the
broadcast time. We then analyze the quasirandom version of this model in
Section 4. This is the main part of our proof. Our goal is to show that the
rumor is disseminated in the quasirandom model at least as quickly as it is
in the random model, and so in this section we will focus on determining an
upper bound on the broadcast time.



2 Probabilistic Tools

A Dbasic tool that we will use in the following proofs is the Chernoff
bound [Cheb2]. This provides exponentially small bounds for the probability
that a binomially distributed random variable deviates significantly from its
expected value. This classical result can be found for example in [MUOQ5] in
the following form.

Theorem 1 (Chernoff Bounds). Let X, ..., X,, be independent random vari-

n

ables, taking values in {0,1}. Let X := ZX,- and let § € (0,1]. Then

1=1
Pr(X < (1—06)E(X)) < e B2,

and
Pr(X > (14 6)E(X)) < e B3,

For random variables which take more than two values, but are still inde-
pendent and bounded, Theorem 2 from [Hoe63] yields directly the following
upper and lower tail bounds.

Theorem 2 (Hoeffding Bounds). Let Xi,..., X, be independent random
variables, and for every i € [n| := Ng,, let a;,b; € R such that 0 < a; < b;

and X; takes values in [a;,b;]. Let X := ZXZ- and let 6 > 0. Then
i=1

252 B(X)2

Pr(X < (1-6)E(X)) <e Tmlime?,

and
252 B(X)2

Pr(X > (1+0)E(X)) <e Slime?,

There are places where we would like to use Chernoff bounds, but we do
not have independence of the random variables. Here results of Panconesi
and Srinivasan [PS97, [Sri01] show that we may use the classical Chernoff
bounds even under the more general assumption that the random variables
are negatively correlated. This is defined as follows.



Definition 3. The random variables Xy, ..., X,, taking values in {0,1}, are

called negatively correlated, if for every subset I C {1,...,n} we have
Pr (/\XZ- = 1) <[[Pr(xi=1),
iel iel
and

Pr (/\X :0) <[[Prxi=0).

iel iel

The results of Panconesi and Srinivasan [PS97, [Sri01] yield the following
lemma.

Lemma 4 (Chernoff Bounds for negatively correlated random variables).

Let Xy,..., X, be negatively correlated random wvariables, taking values in
{0,1}. Let X :=> " | X; and let 6 € (0,1]. Then

Pr(X < (1 —0)E(X)) < e ¥ EX)/2

Y

and .
Pr(X > (14 0)BE(X)) < e BEX)/3,

Later in this paper we will apply the inequality by Azuma [Azu67]. Intu-
itively, it provides strong bounds on the probability that a function defined
on a set of independent random variables deviates significantly from its ex-
pectation, when the value of the function is affected only slightly by changes
to only one of its arguments. We will use it in the following version, stated
in [McD89, Lemma 1.2].

Lemma 5 (Azuma-Inequality). Let X7, ..., X, be independent random vari-
ables, with X; taking values in a set §; for each i. Suppose that the (mea-
surable) function f: [[;_, 4 — R satisfies

[f(z) = f@)] < e

whenever the vectors x and ' differ only in the ith coordinate. Let'Y be the
random variable f(Xy,...,X,). Then for anyt > 0,

2t2
Pr(|Y — E(Y)| > 1) < 2exp (—n— |
Zi:l sz



3 Lower Bound for Randomized Rumor
Spreading

In this section, we analyze the classical (fully random) rumor spreading model
in which each informed node randomly chooses a neighbor to inform at the
beginning of each round, but only makes successful contact with probabil-
ity p € (0,1]. We prove the following lower bound for the broadcast time.

Theorem 6. Let ¢ > 0 and p € (0,1]. With probability 1 — e‘Q("s/G), the
number of rounds we need to inform all the nodes of the complete graph on
n vertices using the random rumor spreading protocol with message success
probability p is at least

(1—¢) <10g1+pn+1—1)1nn) :

The key to this proof is to split up the rumor spreading process into three
phases. The first phase is composed of the rounds that occur between the
start of the process and the end of the first round at which point n5/2 nodes
are informed. The second phase begins directly after Phase 1 terminates,
and continues until the end of the first round after which n/4 nodes are
informed. Within each round of Phase 2, the number of informed nodes will
grow by a multiplicative factor. The last phase begins directly after Phase 2
terminates, and continues until all the nodes are informed. In this phase we
observe a type of coupon collector process.

In order to establish the lower bound posited above, we give lower bounds
for the durations of Phases 2 and 3. By N; we will denote the set of vertices
that are newly informed at a given time-step ¢. By I; we will denote the set
of vertices informed by time ¢.

Lemma 7. Let ¢ > 0. With probability 1 — e‘Q("Sm), we need more than
(1 —¢)log,,,n rounds to complete Phase 2.

Proof. Let t; denote the number of rounds needed to inform the first n®/?

nodes. Note that this means that n*/? < |I,,| < 2n°/2. Let t > t,. We have
E(|NVit1]) < p|I;|. Enumerate the nodes in I; from 1 to |I;|, and define the
indicator random variables Xy, ... X|;, such that

_J 1 if vertex ¢ has successfully contacted another vertex
' 0 otherwise.
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In this context a successful contact refers only to the transmission of
the rumor, regardless of whether or not the contacted vertex was already
informed or is also contacted by another vertex. Therefore the random vari-
ables Xy,..., X|;, are independent.

If X := >, X;, then E(X) = p|[;]. It is intuitive that | Ny11| < X, because
X not only counts all the nodes in N, 1, but also counts nodes multiple times
if they are contacted by multiple nodes, and counts nodes that are contacted
in round t+1 that have already been informed in previous rounds. Therefore,
any upper bound we can find on the size of X also holds as an upper bound
for the size of N;;. But because of the independence of X;,..., X, the
random variable X is a lot easier to handle.

Using Chernoff bounds, we see that

So with probability 1 — 6_9("5/6), the number of nodes informed after ¢ + 1
rounds satisfies

|| <[] + (1 +”_E/6)p|ft| <(1 ‘l’n_a/G)(l +p) |1

We can therefore infer by using recursion that for every £ € N we have

[Level < (L +n70) (1 + p)*|1]

with probability 1 — ke 2"*) Pick k = (1—¢) log, ,,n. Under the assump-
tion that n is sufficiently large, we compute

|It1+(1—a) 10g1+pn| < (1 + n—E/ﬁ)(l—s) 10g1+pn(1 _'_p>(1—€) log1+pn2ne/2
— (]_ + n_a/G)(l_E) logq4p nn1—82n6/2
< exp (n_€/6(1 —¢)logy,,n) onl—e/?
S 4n1—5/2
<n/4
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with probability 1 — =" So (1 —¢)log, +p 1 rounds are, with probability
1-— 6_9("5/6), not enough to complete Phase 2. O

Lemma 8. Let ¢ > 0. With probability 1 — e~ we need more than
(1— 5)% Inn rounds to complete Phase 3.

Proof. Let ty denote the number of rounds needed to inform the first n/4
nodes. This means that we have n/4 < |I,,| < n/2.

For the remainder of the proof we will consider a modified model in which
every node (not only informed ones) randomly chooses a neighbor at the
beginning of each round, and if this neighbor was uninformed it will then
be considered informed independently with probability p € (0,1]. A lower
bound for the broadcast time of the modified model also is a lower bound for
the broadcast time of the original model.

Enumerate the uninformed nodes at time ¢, from 1 to |V'\ I,|. Define the
indicator random variables X1, ..., Xjy\r,| such that fordi € {1,...,|V\ 1]},
we have

X = 1 if node ¢ is uninformed at time ¢y + (1 — 5)% Inn,
" 10 otherwise.

They are negatively correlated, as in the modified model the following
holds. For any uninformed node i € {1,...,|V '\ I,|}, the information that
other uninformed nodes become informed during rounds ¢t + 1 to to + (1 —
5)% In n makes it more likely for ¢ to remain uninformed, and the information
that other uninformed nodes remain uninformed makes it more likely for ¢
to become informed.

Let X := ZLZ}RQI X;. This is the number of uninformed vertices at time
to + (1 — 5)%lnn. Since |V '\ I,| = n — |I,| > n/2 and because for any
uninformed node i € {1,..., |V \ I,|} we have

D ) (n—l)(l—e)%lnn

Y

n—1
we can bound the expected value as follows.

VAL, |

n D
E(X)= > Pr(X;=1)> 5 (1—

, n—1
=1

) (n—l)(l—a)% Inn

12



Since for small enough z > 0 we have 1 — x > e~*=%* we obtain

E(X) > gexp <—(1 —¢)lnn — b 1(1 —¢) lnn)

n —_—
> lne—(l—a) Inn

1,.¢
"

assuming that n is sufficiently large. By Theorem [] we get
Pr(X =0)<Pr(X <(1-1)EX)) <e BXE < emni/s2,
—n/32

So with probability at least 1 —e , we see that (1 — 5)% Inn rounds
are insufficient to complete Phase 3. 0

Proof of Theorem 1. Follows immediately from Lemmas 2 and 3. O

4 Upper Bound for Quasirandom Rumor
Spreading

In this section we analyze the quasirandom counterpart of the rumor spread-
ing model described in the previous section. This model differs from the
random model in that each vertex is equipped with a cyclic list of its neigh-
bors and only chooses the first neighbor it attempts to contact at random.
After its initial choice, each vertex subsequently attempts to contact the
remaining vertices in the order of its list. Each of these attempts is indepen-
dently successful with probability p. Note that we do not assume that the
sender is notified of a transmission failure.

Our goal is to prove that the rumor in the quasirandom model spreads at
least as quickly as in the random model. To this aim, we prove the following.

Theorem 9. For every ¢ > 0 and p € (0,1], the number of rounds we
need to inform all the nodes of the complete graph on n vertices using the
quasirandom rumor spreading model with message success probability p is at
most

(1+¢) <log1+pn + % lnn)

with probability at least 1 — n /%0,
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Unfortunately, since the rumor spreading process is saturated with many
dependencies, determining the runtime for the the quasirandom model is not
straightforward. Asin [DFS0§], we try to overcome this difficulty by suitably
simplifying the random experiment, in particular, by assuming that certain
vertices stop informing (ignoring), and that other vertices do not immedi-
ately start their own informing process after becoming informed (delaying).
Delaying turns out to be useful as it gives us some influence on when a vertex
uses its one random choice. Nodes that have been informed but have not yet
begun informing new nodes play an important role in our analysis. We call
them newly informed vertices.

To obtain bounds that are precise up to the leading constant, however,
we have to be careful that our delaying and ignoring techniques do not slow
down the rumor spreading process too much. For this reason, we partition
the set of rounds that are necessary to inform all the nodes in the graph into
two different types of phases. For both types of phases, the set of nodes that
are initially active is the set of newly informed nodes.

Lazy phases were also used in the time analysis of [DFS0§]. Only nodes
that are considered active at the beginning of the phase are considered active
for the remainder of the phase. Nodes that are contacted during the phase,
although they are still considered to be informed, remain inactive, and are
therefore unable to spread the rumor themselves for the continuation of the
phase.

Since lazy phases neglect the rumor spreading potential of a significant
portion of the nodes, we also need busy phases. Here, all nodes informed
during the busy phase are active for the remainder of the phase. In other
words, nodes newly informed during the busy phase have the ability to spread
the rumor in each subsequent round until the termination of the phase. By
choosing the lengths of the busy phases suitably, we balance the difficul-
ties with the inherent dependencies and the losses due to ignoring informed
vertices at the end of each phase.

As a result of implementing phases in which vertices that can spread the
rumor in the original model are now inactive, we are only delaying the point
in time at which all the vertices are informed. Therefore, the upper bound
for the quasirandom model with lazy and busy phases holds as an upper
bound for the original quasirandom model.

We will split the rumor spreading process into lazy and busy phases in
the following way. We start with two lazy phases of %5 Inn rounds each. The
main purpose of these two phases, which are easy to analyze, is to inform a
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set of vertices that is sufficiently large enough to maximize the effectiveness
of the subsequent busy phases. We then perform a logarithmic number of
busy phases, each composed of a constant number of rounds. This process
results in a constant fraction of informed nodes, and we only need two more
lazy phases to render the entire network informed.

Let I; denote the set of vertices that are informed at a given time-step t¢.
Similarly, we will denote the set of newly informed vertices at time ¢ by V.

4.1 The First Lazy Phase

The first lazy phase lasts for %5 Inn rounds. Our goal is to prove the following.

Lemma 10. Let ¢ > 0. After one lazy phase of length %511171, at least
speInn nodes are newly informed with probability at least 1 — n=P=/%6.

Proof. Let t; := %5 Inn. At time ¢t = 0 one node, vy, is informed. We perform
a lazy phase of length ¢;. This means that v, contacts each of the first ¢;
nodes from its list with probability p. Therefore,

E(|N,|) = ipelnn.
Using Chernoff bounds we see that

Pr (|Ny| < gpelnn) = Pr (INy | < (1 = 3) E(IN,]))
< exp (— E(|Ny, [)/18)
= exp (—pelnn/36)

_ n—pe/36.

4.2 The Second Lazy Phase

The second lazy phase begins at time t; + 1 and terminates after %5lnn
rounds. Our goal is to prove the following.

Lemma 11. Let € > 0. If, at some point t; in our model, we have %pa Inn <
IN,| < ielnn and |I,| < elnn + 1, then after one lazy phase of length

%5 Inn, at least (%pe In n)2 nodes are newly informed with probability at least
1—=n~7 for any v € [0,1).
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Proof. Let t; € N be such that gpelnn < [N, | < jelnn and that |I,] <
%elnn + 1 and let ¢t :=¢; + %dn n. Enumerate the nodes of V;, from 1 to
| Ny, |, and impose an artificial ordering on the set so that each node i calls
%5 Inn of its neighbors, determined from its cyclic list and its initial random
decision, before node i+ 1 attempts any contact. For each i € {1,...,|Ny, |},
let U; denote the set of vertices that i attempts to contact during the next
%5 Inn rounds and let X; be the indicator random variable of the event that

U; is disjoint from (U;_:ll Uj) UlL,. If X;=1forallie{1,...,|Ny|}, then
| Ny, | is equal to the number of contacts made during this phase.

When vertex i first attempts contact, at most |1, \ {i}|+3(i —1)elnn <
%ie Inn other vertices are already informed. The probability for ¢ to attempt

to contact one of these vertices is largest when they are at distance at least
%5 Inn from each other in the list of 7. Therefore,

(%Elnn) (%ielnn) < (%Elnn)3

IN

Pr(X; = 0) (1)

n—1 n—1

Using a simple union bound, we conclude that

Pr(Vi€ {1,...,[Ny|}: Xi=1)=1—Pr(Fi € {1,...,|N,|} : X; = 0)

‘Ntﬂ
>1-) Pr(X;=0)
i=1
4
— (elnn)
- n—1

Now that we have shown that the chances of contacting an already in-
formed vertex in this phase are sufficiently small, all that is left to do is to
determine how many contacts are made during the phase.

Every node in N;, attempts to contact %Elnn nodes, so there are
1elnn|N,, | possible contacts made during the phase. Each of these is in-
dependently successful with probability p. Let Y be the random variable
denoting the number of contacts that are actually made during the phase.
Then we have

E(Y) = ipelnn|N, | > (3pelnn) (5pelnn). (2)

Using Chernoff bounds, we see that
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Pr (v < (3pelnn)?) < Pr(y < (1- ) E(Y))

o~ BO)/18

IA

—(pelnn)?/108

IA

e

— n—p252 (Inn)/108 )

Therefore, at least (%pe In n)2 vertices are informed during this phase

1 nn *
with probability at least 1 — % — PP In)/108 > 1 _ =7 for any fixed
v €10,1). O

4.3 The Busy Phases

A sufficient number of nodes are informed of the rumor in the first lazy
phase, and so we are ready to commence the set of busy phases. As we have
mentioned earlier, the idea of these phases is that nodes informed during
each busy phase are able to spread the rumor during subsequent rounds of
this phase. Because of the dependencies, these phases require a more refined
analysis. Our goal is to inform a constant fraction of the nodes in the network
by the time we complete this sequence of phases.

4.3.1 The Analysis of a Single Busy Phase.

In order to determine the cumulative effect of the busy phases, we must first
analyze the impact of a single busy phase composed of k£ rounds starting
after time-step t. The theorem we present below is the heart of the precise
analysis of the quasirandom model. The idea of the proof is to investigate
the part of the process originating from each single node in N;. A single such
process can be analyzed with moderate difficulty. Unfortunately, there may
be “conflicts” among these partial processes, that is, several of these partial
processes may inform the same node, possibly at different times. However,
we show that only few of these conflicts occur. By completely ignoring all

parts that are contained in a conflict, we manage to analyze the busy phase.
2k

Let & > 0, k € N, p € (0,1] and ¢ < 2%k(26)_P?’Uﬂﬂ’“*?’_k_l. We will
prove the following statement.
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Theorem 12. Let t € N such that in our model at point t we have |Ny| >
(pe’Inn)? and |I;| < {'n. For any ¢ > 0, if we perform a busy phase of length
k, then at the conclusion of this busy phase, the number of newly informed
vertices satisfies with probability at least 1 — n™¢ the inequality

|Niti| > p(1+p)* 2| Ny

Proof. Let ¢ := 2*C’. Let t be such that we have |N;| > (pe'lnn)? and
|I;| < ('n. Note that the number of informed nodes at time ¢ + & can not
exceed (n, and this even if we consider a failure-free process between time ¢
and t + k which we will do in the following.

Enumerate the nodes of N; from 1 to |Vy|. For each ¢ € {1,...,|Ny|}, we
define the set of potential descendants of i, denoted Pi(k), as the set of nodes
which would be directly or indirectly informed within rounds t+1,...,t+k
by ¢ if no failures occured and only uninformed nodes were targeted. More
general, for any node v € V and any j € [n — 1] the set PY is recursively
defined as follows. Let v; be the randomly chosen neighbor of v which v

attempts to contact in the round after being informed, and let vq,..., v,
be the list of v. Then

PV = {u}, and, for j € [n—2],
POt = {vy,... 01} U Pzgf) U u P”(J‘l)'

We say that ¢ is conflict-free if the following two conditions hold.
1. |[P™]=2F—1 and
2. P® N (Pl(’“) u---uP® U lt) = 0.

Otherwise, we call ¢ conflicting.

Claim 13. For any i € {1,...,|Ny|} and any set M C [i — 1]
Pr (i is conflicting | Ym € M : m is conflicting) < 2" (k.

Proof. To bound the probability that the first condition of conflict-freeness
fails, we impose an ordering on the random decisions of the vertices in Pi(k) U
{i}. For every such decision d, the probability that d creates a conflict with
any previous decision, i.e., that the node in question attempts to contact a
node that is targeted by a different node in Pi(k) U{i}, is bounded from above
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by LQk So the probability that among all decisions a conflict is created is

bounded from above by —*-(2F)2.
The probability that the second condition of conflict-freeness fails is

Pr (PZ.““) N (Pfk) u---uP®u It> ;é @) .

Let d be a random decision of a vertex in Pi(k) U {i}.

For all outcomes of random decisions up to round ¢ + k other than those
of vertices in Pi(k) U {i}, the probability that d creates a conflict with any
such decision can be uniformly bounded from above by (Cn — 2’“) % So

Pr(PP (PP U uPBuL) #0)

< [PP U] (on -2
<28 (¢n—2F) £

Using a union bound, the probability that ¢ is conflicting is bounded from
above by £ (2)2 4 2F ((n — 2F) B = 2k(n -t < 2FFICE, O

Claim 14. For any set M C {1, ..., \Nt|}
Pr(Vie M : 1 is conflicting) < (2k+1k§)|M‘ .

Proof. Let M = {my,...,mjp} where my; < --- < mjy. Then by Claim [I3]
one has

Pr (ml, ..., My are conﬂicting)
| M|

= H Pr (m; is conflicting | my, ..., m;_; are conflicting)
i=1

O

Let N, := {i € {1,...,|Ny|} | i is conflict-free} . We bound the number
of conflicting vertices from above using Claim [I4l Let ¢ = (1;{77’“ Then
the probability that there are at least ¢|Vy| conflicting vertices is
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Z Pr(Vie M : iis conflicting) < Z (2k+1l{:C)‘M|

MCN MCN¢
| M|>q| Ne| | M|>q| Ne|

p3(1+p)k—3

|Ne|
< 9|Vl (2k+1kc)q|Nt\ _ (2 (2k+lk<—)2k1) < e~ 1Vt < n°

for any ¢ > 0.
This means that we have

INe| > (1= q)| Ny (3)
with probability at least 1 — n~¢.

We will now reconsider the actual, defective process. We will condition on
@) for the remainder of the proof. This means that we consider the random
process split into two independent parts: First we run the failure-free process
up to round t + k, then for every transmission in the failure-free process the
biased coin is flipped to decide if the transmission takes place in the defective
process.

Let the set of actual descendants of i, denoted DZ-(k), be the set of nodes
which are directly or indirectly contacted within rounds ¢t +1,...,t+ k by ¢
in the defective process. More precisely, any node v € Pi(k) is in DZ-(k) if all
the contacting attempts on the path from 7 to v which the information takes
in the failure-free process are actually successful.

Let X, C DZ-(k) denote the set of vertices that are actual descendants of ¢
and are contacted in round ¢ + k.

We can say the following about the expectation of X; if ¢ is conflict-free.

Claim 15. Fori € N, we have
B (X)) =p(1+p)* "

Proof. We prove this claim by induction on the number of rounds that have
occurred. Assume that i is conflict-free. At time t + 1, the probability that
7 has successfully contacted a new node is p, and therefore the expected
number of nodes informed by ¢ is p. Let j € {1,...,k — 1} be such that for
all r € {1,...,7} the expected number of actual descendants of i informed
in round ¢ + 7 is p(1 +p)" L.

20



Then the expected number of actual descendants of ¢ informed in round
t+j+1is

p <1 +Y o1 +p)r‘1) =p(1+p).

r=1
]

Let X := > .y, |Xi|. Note that the random variables |X;|,i € Ny are
independent and bounded by 2¢~!. So we can use Hoeffding bounds (Theo-
rem). As ¢ < {7 and E(X) = p(1+p)* '[Ny > p(1+p)" (1 — ¢)| Ny, we
have

Pr (X <p(1 —I—p)k—2|Nt|) <Pr <X < %)
o [ 20— —pg)* E(X)?
< exp ( 22k—2(1 +p)2(1 _ q)z‘ﬁt‘)
< exp <_ (b=a=r)(l +p)%_ﬂ]\fﬂ)

22k—3
<n” ¢

for any ¢ > 0.
So with probability at least 1 —n™¢

[Nepr| > X > p(1+p)* 2Ny
This proves Theorem [12] O

We also have to ensure that after the performance of one busy phase, a
big enough fraction of the informed vertices is newly informed, since only
the newly informed vertices are active in the next phase. We show that this
holds in the proof of the following corollary.

Corollary 16. Define t such that at point t we have |Ny| > (pe'Inn)? and
|| < min{(’n L|Nt|}. If we perform a busy phase of length k,

" p(l+p)E—2-1
then for any ¢ > 0 at the conclusion of this busy phase we have
2k 1
I < N,
| t+k| = p(l _I_p)k_g — 1| t+k|

with probability at least 1 —n~°.
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Proof. If we perform a busy phase of length k, by Theorem [12] we get

k
[ Liri| = [ L] + Z | Nitil

1=1

21 i -
< | N¢| + 2" |
k—2 __
p(1+p) 1 —

p(l+pr2—1 "

2k — 1
S p(]_ +p)k_2 . 1|Nt+k‘

with probability at least 1 —n=¢ for any ¢ > 0. 0

4.3.2 Assembling of the Busy Phases.

Now that we have analyzed a single busy phase, we can put these phases
together to obtain a constant fraction of informed nodes. Let € > 0, p € (0, 1]

and ) )
+¢€
k.= | -+2]).
- (Ogl-l-pp_'_ )

- Lt
As in the previous section, let ( < £(2e) #P0#2F g 1, and (' := 27K, We
show the following.

Theorem 17. Let ¢ > 0. Let ty be such that in our model at point ty we

have |Nt2| Z (ps’lnn)2 and |[t2| S min{C/n, $|Nt2|}

Let { denote the smallest integer such that if we perform £ busy phases
with k rounds we have |Ii, 14| > ('n.

Then
/< (1+5) 10g1+pn
- k
and .
28 —1
‘]t2+fk| S p(l —I—p)k_2 . 1‘Nt2+ﬂ€‘

hold with probability at least 1 —n=¢ for any ¢ > 0.

22



Proof. Since p(1 + p)*=2 > 1 and |Ny,| > (pe’Inn)?, we can use Theorem
inductively and obtain that for all s € {1,...,¢} we have

|Niyssil = p(L4p)* 2| Niyys—1ye = -+ > (p(1 +p)k_2)8 | Ve, |
with probability at least 1 — sn™¢ for any ¢ > 0, and therefore

_on Y
|It2+ék| > (p(l +p)k 2) )

with probability at least 1 — ¢n=¢ for any ¢ > 0. Since n > (n > |11, u|, we
have

logy,,n > log;,(n

_on Y
> logy,, (p(1+p)"?)
= E(k -2+ logl—i-pp)a

which implies that

/< log,,,n _ (14¢)log,,n
~ k—2+logy,,p k

with probability at least 1 —n~¢ for any ¢ > 0.
k
Since |I,| < #|Nt2| by an inductive application of Corollary [I6],

(14p)k—2-1
we get that
el € kN
to+lk| > p(l +p)k_2 1 to+lk
holds with probability at least 1 —n=¢ for any ¢ > 0. O

4.4 Second To Last Phase

Now that we have a small constant fraction of newly informed nodes, a lazy
phase of a constant number of rounds suffices to yield a large fraction of
newly informed nodes.

Lemma 18. Let ¢ € (0,1) and k := == (logHP 14 2). Let t3 be such that

in our model at round t3 we have |I,| < %|Nt3| and that there exist

¢, € (0,1) such that ('n < |I,| < Cn holds. Let S := %Q/O
After one lazy phase of S rounds starting at time ts, at least (1 —3()n

nodes will be newly informed with probability 1 — e~
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Proof. We perform one lazy phase of S rounds starting at time t3. Let
vg € V' \ I,. Then

S|Nts|
Pr(no v € Ny, contacts vy in this phase) = (1 S 1)
n J—

k=2 _
< exp (_PSM) < e (_Sp<p<1+p> 1>ut3|)

n—1 %(n — 1)
SplIL, Spc’
con(-5) = ()

We now calculate the expected number of newly informed nodes after S
rounds. With ¢4 := t3 + .5 we have

E(|N,]) = |V \ I,| - Pr(vg € V' \ I, is informed in this phase)
> (n = [I]) (1 = ¢)
> (n—¢n)(1-0)
> (1 =2¢)n.
We will now use the Azuma-Inequality (see Lemma[d). Number the nodes
of Ny, from 1 to |Ny|. Then for all i € {1,...,|Ny]|}, define the random

variable X; as the set of vertices that ¢ contacts in the S lazy rounds. Now
we can define the function f such that

|Nt3|

FX0 - X)) = | U X\ Iy | = [Vul.
i=1
By this definition, we see that
f(xl,...,x,-,...,x|Nt3|) — flxy, ..., 2}, ..,x‘th‘) < S.

Therefore, we can calculate the probability that we inform less than (1 —
3(¢)n vertices in this phase.
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Pr(INu] < (1-3¢)n) = Pr(Nu| < (1—20)n — Cn)
< Pr(|Ny, — E(INo])| = ¢n) < 2exp (—QC—”>

s se
2 2,2
< 2exp <—%) = ¢ 9

4.5 The Final Phase

The last phase of the protocol is again a lazy phase. We now use the large
fraction of newly informed nodes from the previous phase to inform the few
remaining nodes.

Lemma 19. Let € € (0,1) and n < 5. Let ty be such that in our model

at round ty we have |Ny| > (1 —n)n. After one lazy phase of @S—J;f)lnn
rounds starting at time ty, all the nodes will be informed with probability
1— O(n—a(l—a)/l2)‘

Proof. We will perform one lazy phase of B9 Inn rounds starting at time

3p
ts. Let vg € V \ I;,. Then

D (3+¢)|Nty|Inn/3p
Pr(no v € N, contacts vy in this phase) = (1 - )

n—1
—(3+4¢)Inn|N,| —(B3+¢)(1—=n)nlnn
< <
= eXp( 3(n—1) = o 3(n—1)
< exp <_(3+5)(1—77)1n”) < g (te(-0)/12)
< 3 <

So the probability that all the nodes become informed is
Pr(WVv € V'\ I, : v becomes informed)
=1—Pr(Jv eV \ [, : vdoes not get informed)

>1- Z Pr(v does not get informed)
vEV\It,

>1— nnn—(1+a(1—a)/l2) - 1— O(n—a(l—a)/l2)‘
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4.6 Proof of Theorem
Let ¢ € (0,1), p € (0,1] and k = L= <10g1+p +2) Furthermore, let

ok—1

C ‘— min %(26)_P3(1+p)k’3 —k-l

,%} and (' == 27k,

We start a delayed quasirandom rumor spreading protocol with message
success probability p and with one initially informed vertex. We first perform
one lazy phase of length ¢, := 3¢ Inn. By Lemma [0 this yields that |N;,| >
1peInn holds with probability at least 1 —n™</36. Of course, after one lazy
phase of length t; we have with probability one |N;, | < t; and || < t; + 1.
So we can apply Lemma [[T] and get |V;,| > (%pe In n)z, this phase succeeds
with probability at least 1 — n~7 for any v € [0,1). Furthermore we have

with probability one |[;,| < (lalnn)2 +selnn+1 < ('n as well as |I,,| =

|11, | + | Ney| < %\Nm\ for any sufficiently large n. So we can apply
Theorem [I'] with &’ := £. This gives us an £ < % such that if we

set t3 := ty+ Lk, then for any ¢ > 0 we have with probability at least 1 —n~

2k — 1 N
P il
So with probability at least 1 — n™¢ the preconditions of Lemma are
fulfilled. Therefore, if we set S := 2 1n<}/ 9 and ty = t3 + S, we get |Nt4| >
(1 —3()n with probability at least 1 — n=¢. We can consequently apply
Lemma [I9 with 7 := 3¢. We conclude that after % Inn more rounds all
the nodes will be informed with probability 1 — O(n=s(1-2)/12),

Overall, we perform at most

(n<|I,|<¢n  and |I,] <

%5lnn+(1+5)log1+pn+5+33—*;lnn <(1+¢) (%lnn—l—loglﬂjn)

rounds in our delayed quasirandom rumor spreading protocol with message
success probability p.
The overall failure probability is at most

n—pe/36_|_n—'y_|_n—c_|_6 +O( —e(1— e)/12) n pa/40

4.7 Upper Bound for the Fully Random Protocol

The proof of the upper bound provided in Theorem [0 can easily be modified to
yield the corresponding bound for the classical randomized rumor spreading
protocol.
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Theorem 20. For every e > 0 and p € (0, 1], the number of rounds we need
to inform all the nodes of the complete graph on n vertices using the fully
random rumor spreading model with transmission failure rate 1 — p is

(1+¢) <log1+pn + % lnn)

with probability at least 1 — n /%0,

We omit a formal proof, since all the necessary arguments are used in
the proof of Theorem [9 and can be reapplied to fit our needs. Much of our
reasoning can be simplified significantly since we do not have to cope with
the dependencies present in the quasirandom model.

The only aspect in which the quasirandom model is superior to the ran-
dom model is the first phase. Here we have the advantage that one vertex
does not inform a neighbor more than once in time shorter than its degree.
However, for the fully random model the chance that a vertex informs one
or more neighbors multiple times within ¢ rounds is only ©(#?/n). Hence the
benefits of the quasirandom model are minimal.

5 Conclusion

In this paper, we present the first precise results pertaining to the robustness
of randomized rumor spreading and its quasirandom variant up to constant
factors. We showed that if the network topology is a complete graph on n
vertices and each transmission only reaches its destination with probability

p, then after (1+4¢) (% Inn +log, ., n) rounds, the quasirandom protocol will

have informed all nodes in the graph with probability at least 1—n =7/, For
p = 1, this result coincides with the known sharp bound of (1+0(1))(log, n+
Inn). We also showed that the robustness of the quasirandom model is at
least as good as that of the classical protocol.

This work prompts the question: do we observe similar robustness behav-
ior for other network topologies? We believe that for most natural network
topologies, the quasirandom variant is as robust as the fully random one.
Unfortunately, no other precise analysis up to leading constants of the run-
time of non-trivial graph classes has been published, not even for the fully
random model. Hence, to fully understand robustness, it is necessary to first
conceive of a precise analysis of the classical model, e.g., on hypercubes or
on random graphs.
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