Counting in the Presence of Memory Faults

Gerth Stglting Brodal', Allan Grgnlund Jgrgensen', Gabriel Moruz?-*, and Thomas
Mglhave3:**

! MADALGO* * *, Department of Computer Science, Aarhus University
2 MADALGO* * *, Institut fiir Informatik, Goethe University Frankfurt am Main.
3 Department of Computer Science, Duke University

Abstract. The faulty memory RAM presented by Finocchi and Italiano [1] is a
variant of the RAM model where the content of any memory cell can get cor-
rupted at any time, and corrupted cells cannot be distinguished from uncorrupted
cells. An upper bound, d, on the number of corruptions and O(1) reliable mem-
ory cells are provided. In this paper we investigate the fundamental problem of
counting in faulty memory. Keeping many reliable counters in the faulty memory
is easily done by replicating the value of each counter ©(9) times and paying
©(0) time every time a counter is queried or incremented. In this paper we de-
crease the expensive increment cost to o(d) and present upper and lower bound
tradeoffs decreasing the increment time at the cost of the accuracy of the counters.

1 Introduction

Modern memory chips are made from increasingly smaller and complicated circuits that
work at low voltage levels and offer large storage capacities [2]. Unfortunately, these
improvements have increased the likelihood of soft memory errors, where arbitrary bits
flip, corrupting the contents of the affected memory cells [3]. Soft memory errors are
triggered by phenomena such as power failures, cosmic rays, and manufacturing de-
fects. Even though the occurrence rate of these errors in individual memories is quite
low they are a serious concern in applications running on clusters, where the frequency
of soft memory errors is much larger. The soft memory errors rate is predicted to in-
crease in the future [4]. Since the amount of cosmic rays increases with altitude, soft
memory errors are a serious concern in fields like avionics and space research [5].

Corrupted memory cells can have significant consequences for algorithms. For in-
stance, a single corruption in a sorted array can force a standard binary search to end up
£2(n) cells away from the correct position. Soft memory errors can also be exploited to
break the security of software systems. This has been demonstrated in works breaking
Java Virtual Machines [6], cryptographic protocols [7, 8], and smart-cards [9].

Soft memory errors can be addressed by using replication and error correcting codes
at the hardware level, but this approach is not always popular since the increased cir-
cuitry requirements is costly with respect to performance, storage capacity, and money.

* Partially supported by the DFG grant ME 3250/1-1.
** Work done while at MADALGO.
*** Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation.

In software, memory errors have been addressed in a variety of settings, with the
main focus on ensuring that code runs as expected, anticipating critical errors caused
by hardware errors and malicious attacks. Errors are detected using techniques such as
algorithm based fault tolerance [10], assertions [11], control flow checking [12], proce-
dure duplication [13], and automatically correcting heap-based memory errors [14].

Most algorithms and data structures assume a perfectly reliable storage, but algo-
rithms dealing with unreliable data were also proposed. These include fault-tolerant
pointer-based data structures [15], fault-tolerant sorting networks [16], fault-tolerant
parallel models [17], the liar model [18], and locally mendable distributed networks [19].

Faulty Memory RAM. Recently, the faulty-memory RAM model was proposed in [1].
This model is a regular RAM with word size w where any memory cell can get cor-
rupted at any time during the execution of an algorithm, and a cell containing corrupted
data cannot be distinguished from a cell that does not. Algorithms are provided with an
upper bound, §, on the number of corruptions that may occur during execution. We let
a < J denote the actual number of corruptions that have taken place during the com-
putation. Given that registers in the processor are considered incorruptible, O(1) safe
memory locations are provided. It is assumed that reading a word from memory is an
atomic operation. An algorithm is resilient if it works correctly for all uncorrupted data.
For instance, a resilient sorting algorithm outputs a sequence where all uncorrupted ele-
ments appear in sorted order and corrupted elements can appear anywhere in the output.
The correctness of algorithms is usually proved by assuming that an adaptive adversary
(worst-case) performs up to & corruptions during the execution of an algorithm.

Several problems have been addressed in the faulty-memory RAM, see a recent
survey [20] for more information. For instance optimal comparison based sorting algo-
rithms and (static and dynamic) dictionaries [1,21-23], and priority queues [24] have
been proposed. In [25] it is shown that resilient sorting algorithms are of practical inter-
est. Motivated by the increased soft memory errors frequency on clusters operating with
massive data sets, in [26] resilient algorithms are linked to external-memory algorithms,
providing the first external-memory algorithms resilient to memory faults.

Our results. We investigate maintaining many counters in the faulty memory RAM:

Definition 1. A resilient counter with additive error vy is a data structure with an incre-
ment operation and a query operation. The query operation returns an integer between
v — v and v + v where v is the number of increment operations preceding the query.

We investigate upper and lower bound tradeoffs between the time needed for n increase
operations and the additive error of the counter. We only consider data structures where
no information is stored in safe memory between operations, therefore the counters are
stored completely in unreliable memory. Our results are summarized in Figure 1.

In Section 2 we prove that any resilient counter with non-trivial additive error must
use (2(0) space, and that a deterministic query operation requires {2(J) time. Further-
more, we prove a lower bound tradeoff between the increment time and the additive
error, stating that if an increment operation takes ¢ < ¢ time, the additive error is at
least |d/t] in the worst case, i.e. (increment time) x (additive error) > . The lower

Time (n increments) Query time|Additive error ~v|Space|Section
O(dn) 0(9) 0 o) -
O(ntlog(d/t) + alog(a/t))| O(9) aft 0(6)] 3.1
O(n + alog o) 0(9) alogd 05| 3.1
O(n) 0(8%) 0(a?) 0| 32
O(n + aV/) 0(9) « 0] 33
Expected O(n) 0(9) e} 0| 3.4

Fig. 1. Overview of our upper bounds.

bounds suggest that an optimal resilient counting data structure is characterized by an
O(6) space bound, O(t) increment time, O(«/t) additive error and O(d) query time.

In Section 3.1 and 3.3 we provide deterministic data structures where both the in-
crement time and the additive error depend on «. The first result in Section 3.1 provides
a tradeoff between the increment time and the additive error that does not blow up the
space used by the data structure nor the query time. Given any ¢ > 1 the data structure
has additive error o/t and supports n increments in O (nt log(§/t) + alog(a/t)) time.
A small change to this data structure gives a data structure with additive error «log d
that supports » increments in O(n + «log a) time. In Section 3.3 we describe a data
structure with additive error o that supports n increments in O(n + «v/§) time. This is
optimal for n = 2(a/9).

In Section 3.2 we describe a deterministic data structure where the time used by an
increment is independent of the number of possible corruptions. The data structure sup-
ports increments in O(1) time in the worst case. The additive error of the data structure
is O(a?) and queries are supported in O(5?) time.

Finally, in Section 3.4 we present a randomized data structure with additive error o,
that supports n increments in O(n) time in expectation and supports queries in O(J)
time in the worst case. This is optimal up to constant factors.

The additive error of any of our resilient counters can be reduced by a factor of ¢
by using ¢ counters. Each increment operation increments all ¢ counters and the query
operation returns the sum of all ¢ counters divided by ¢. However, this produces a new
tradeoff by increasing the increment time and space by a factor of ¢. Similarly, any of
our resilient counters can be used to create a new counter that supports both decrement
and increment operations with the same additive error. This is achieved by using two
counters; one to count the number of increment operations and one to count the number
of decrement operations.

Preliminaries. Throughout the paper we denote by reliable value a value stored in
unreliable memory that can be retrieved reliably despite possible corruptions. This is
achieved by replicating the given value in 26 + 1 consecutive cells. Since at most ¢ of
the copies can be corrupted, the majority of the 2§ 4 1 elements are uncorrupted. The
value can be retrieved in O(¢) time with the majority algorithm in [27], which scans the
26 + 1 values keeping a single majority candidate and a counter in safe memory.

2 Lower Bounds and Tradeoffs

We present some simple lower bounds on space and time for resilient counters.

Space. Any resilient counter data structure with non-trivial additive error must use
more than § space. If the data structure uses § space or less, the adversary can corrupt
the entire structure and force a query operation to return any arbitrary value.
Deterministic Query. Any deterministic algorithm uses at least & probes in the worst
case for a query. If a query algorithm reads at most § memory cells the adversary can
simulate any value by corrupting § cells. This means that the adversary can completely
control the value returned by a query, making it impossible to get a non-trivial bound
on the additive error.

Deterministic Increment. If an increment takes k time the adversary can roll back the
changes to the data structure done by the last | §/k] increments, or do the changes to the
data structure corresponding to |d/k| increments. Thus, the counter has additive error
at least |§/k| in the worst case.

3 Data Structures

3.1 Replicating Bits

In this section we describe a data structure that is parameterized with an integer ¢,
1 <t < 4. The data structure uses O(d) space and has additive error | «/t]. The time
used for n increments is O(nt log(d/t) + alog(a/t)), and queries take O(4) time.
Structure. The data structure maintains the bits of the binary representation of the
counter value separately, each bit replicated depending on its significance as follows.
Fori=0,..., |log(d/t)| the i’th least significant bit is replicated 2" times in ¢2¢*+1
different memory cells. The value of the remaining w — |log(d/¢) | most significant bits
are stored in a reliable variable v. The memory cells are stored in one array of size O(J).
Increment. Increments are implemented as binary addition, where we consider the ¢’th
bit to be one if at least t2° of the t2¢+! copies of it are non-zero. The 7’th bit is set by
writing the value of the bit in all of the #2!*! copies.
Query. The query algorithm reliably retrieves the value of the w— |log(d/t) | bits stored
in v. For the lower order bits, we add 2° to the sum, fori = 0, ..., |log(&/t)], if at least
2% of the t2¢+! copies of the 7’th least significant bit are non-zero.
Additive Error. Since the value of the i’th bit is given by the majority value of ¢2¢**
copies, the adversary must use t2° corruptions to alter the 7’th bit. Changing the i’th bit
changes the value stored in the data structure by 2¢, yielding an additive error of | /t].
Complexity. If no corruptions occur, we update the 7’bit of the counter every 2° incre-
ments, taking O(¢2¢) time. Similarly, we update v after ©(§/t) increments in O() time.
Therefore, if we ignore corruptions, the time used for n increments is O(nt log(d/t)).
The only way corruptions can influence the running time of increment operations
is by changing the value of a bit. Assume the adversary corrupts the i’th bit, using ¢2°
corruptions. After a number of increments a cascading carry affects this (corrupted) bit
and the increment operation writes the t2'+1 copies of the i + 1’th bit. We charge the
work needed to move the £2¢ corrupted bits to the corruptions that caused them. These
corrupted bits can be charged in log(é/t) — 4 such cascading carries. However, when
k increments have been performed, where kt > «, the time used by the increments
alone is O(ktlog d/t) dwarfing the time needed to deal with corruptions. Otherwise,

the number stored in the data structure is at most k¥ + «/t < 2«/t. Thus, the most
significant bit written in an increment operation is the [log(a/t)] least significant bit.
We conclude that the extra time needed to deal with corruptions is O(alog(a/t)).

Theorem 1. The counter structure uses O(3) space and has additive error | /t]. The
time used for n increments is O(ntlog(d/t) + alog(a/t)) and queries take O(9) time.

Trading off Additive Error for Increment Time. We can reduce the time for n increments
to O(n + alog «) by storing the |loglog d| least significant bits in the same memory
cell. For i = |loglogd]| + 1,...,logd the i’th least significant bit is replicated in
211 /|log § | memory cells. The remaining bits are stored in a reliable value v as before.
One corruption can change the |log log d | least significant bits causing an additive error
of at most |logé |, and 2¢/|log §| corruptions are needed to corrupt the 4’th bit. The
increment and the query are basically the same.

Corollary 1. The counter structure uses O(3) space and has additive error alogd.
The time used for n increments is O(n + alog «) and queries use O(0) time.

3.2 Round-Robin Counting

In this section we describe a data structure that uses O(§) space and has O(?) additive
error. Increments are supported in constant time, and queries use O(52) time.
Structure. The data structure consists of an array A of k = 2§ + 3 integers C1, ..., Cy
used as counters, and a round-robin index ¢. The structure is initialized by setting all
counters to zero and ¢ to one. We denote by corrupted counter a counter that has been
changed directly by the adversary.

Increment. If ¢ is not in the range 1, . . ., k, it has been corrupted and we reset it to one.
Next, we increment first C; and then . If 7 becomes k + 1 we set it to one. Note that 3
could have been corrupted to a value in 1, . . . , k, but we do not check if this happened.

Let v; be the number of times the increment algorithm has incremented C';, and let
v = E?Zl v; denote the correct value of the counter. If no corruption has taken place,
thenCy =---=C.=d+1andCr41 = =Cy =d, whered = |v/k] andr = v
mod k. Furthermore, if no counter has been corrupted, v = Z§=1 C};, regardless of
corruptions of the round robin index .

Query. Let o; be the number of times ¢ has been corrupted. The key observation for
the query algorithm is that for any two uncorrupted counters, C, and Cj, we have
|ve, — vp| < oy + 1, which means that |[v/k — v,| < a; + 1.

First, we compute a value m larger than or equal to at least one uncorrupted counter,
and smaller than or equal to at least one uncorrupted counter. Since the difference be-
tween two uncorrupted counters is at most a; + 1, m € {f —a; — 1,7 + oy + 1}
After computing m, simply returning mk yields an additive error of O((«w + 1)k) =
O((a + 1)9). To improve the additive error we locate O(«) counters which are too far
from m and ignore them.

We store m in safe memory and compute it as in [21] as follows. Initially, we set m
to —oo. The k counters are scanned [k/2] times. In each iteration we update m to the
minimum counter larger than the current m. Since k = 26 + 3, after [k/2] iterations
there exist two uncorrupted counters, such that one is smaller and one is larger than m.

Next, we find a bound, z, on the number of the counters that are too far away
from m as follows. Initially, we set z to one. Then, the number of counters ¢ outside
the range {m — z,...,m + x} is counted in a scan. If ¢ > z we increment x and
recompute c. This process ends when x becomes larger than c. Finally, we scan the k
counters maintaining a sum, initially zero, in safe memory. If a counter stores a value
in the range {m — x, m + x} we add it to the sum. If a counter is outside the range, it
is far from m, and we add m to the sum. Finally, we return the computed sum.
Additive Error. Let o, be the number of times a counter was corrupted by the adversary.
By definition, c; + a. = « < 4. First we recall that for any two uncorrupted counters,
C, and Cy, we have |vy, — va] < 1 + «y, and that the value of m is in the range
{# —ai — 1,7 + a; + 1}. Therefore, if 2 > a; + 1 in the above algorithm, then c,
the number of counters that are not in the range {m — x, m + z}, is at most «., the
number of counter corruptions. At most o corrupted counters can be counted by ¢, and
we conclude that when the algorithm terminates, then z < «o; + a. + 1.

Let S be the set of counters not counted by ¢, i.e. all counters in the range {m —
x,m + x}. All uncorrupted counters in .S are unchanged and do not contribute to the
error. Let C; be a corrupted counter in S. By definition of m and x we know that
|v;—Cj| < Jvj—m|+|m—C;| < ay+14+x < 2a+1. Therefore, each corrupted counter
in S can affect the additive error by O(«). We add m to the result for all counters outside
the range {m — x, m + x}. By definition of m, the value for uncorrupted counters not
in S differs from m by at most «; + 1. Similarly, for any corrupted counter C; not in S
the difference between m and v; is at most «; + 1. There are at most z = O(«) counters
not in S, and at most «. corrupted counters in S, leading to an additive error of O(ozz).
Complexity. The increment operation uses O(1) time to update a counter and the round
robin index. The query time is given by the time used to compute m and x, that is O(52).

Theorem 2. The counter data structure described uses O(8) space and has an additive
error of O(a?). Increments are supported in O(1) time and queries in O(5?) time.

3.3 Counting by Scanning Bits

We describe a counter data structure that uses O(d) space with additive error «. It
performs n increments in O (n+a+/) time, and answers queries in O(&) time. First, we
describe a simpler data structure with an additive error of « that supports n increments
in O(n + ad) time. Subsequently, we reduce the cost for n increments to O (n + a/9).
Structure. The data structure stores an array A of 6 memory cells, a reliable variable v,
and a round-robin index . Each cell of A is used to store a single bit. We initialize all
values in A to zero, v to zero, and % to one.

Increment. If A[i] = 0 we set A[i{] = landseti = 1+ (i + 1 mod §). Otherwise,
we count the number of non-zero entries in A. We add this number plus one (for the
current increment) to v and set all entries in A to zero.

Query. We count the number v’ of non-zero entries in A, retrieve v, and return v + v’.
Additive Error. Every time we add a value, k, to the reliable value v in an increment
we have seen k — 1 non-zero entries in A. The only way a cell in A can be non-zero
is if it was set to one by an earlier increment operation, or the adversary corrupted it.
Conversely, a cell is set to zero either after updating the reliable value or by a corruption.

Thus, the number returned by a query differs by at most o from the actual number of
increments performed.

Complexity. If no corruptions occur, the increment operation takes O(1) amortized time,
since setting a value in A to one takes O(1) time and updating v takes O(J) time and
occurs every 0+ 1 increments. Every corruption to the round robin index ¢ or an element
of A can force us to scan A and reliably add a value to v, and this takes O(|]4| + ¢) =
O(9) time. Therefore, n increments take O(n +) time.

Improving Increment Time by Packing. We improve the time used for n increments to
O(n + av/3) by packing elements in A to an auxiliary array. In addition to the reliable
value v and the array A of size §, we store an array P of size 9§, which is logically
divided into @(1/4) blocks of /& consecutive memory cells.
Increment. First, we test if ¢ is in the range {1, ..., d}. If not then ¢ has been corrupted
and we set it to one. Then, we test whether A[i] = 0 and if so, we set A[i] = 1 and
increment 4. If 4 becomes § + 1 we set ¢ to one. However, unlike the simpler data
structure, if A[i] # 0, a packing phase is initiated. In the packing phase we scan A from
left to right starting from A[1] until we encounter a zero, or the end of A is reached.
During the scan we count the amount, ¢, of non-zero entries read and set all these entries
to zero. After the scan i is set to one. Then, we set c entries in P to one as follows. Let d;
be the index in P of the first element in the j’th logical block. We scan P from d;. If
we see an entry storing a zero, we set it to one, and decrement c. If we see something
else we go to the start of the following logical block and continue. We stop the packing
phase when c reaches zero or a non-zero element, or the boundary of the last block is
found. If ¢ > 0 after the packing phase, we count the amount of non-zero elements in A
and P in a scan and set all entries to zero. This count summed with c is added to v.
Query. The query operation returns the sum of v and the number of ones in A and P.
Additive Error. Similarly to the simpler data structure, each corruption can only change
the value of the data structure by one. It follows that the additive error is a.
Complexity. We analyze the time used between two consecutive updates of v and this
time-frame we denote a round. The array A consists of a number of sections of non-zero
elements separated by zeros. Note that the packing phase removes at least one section.
If no corruptions occur, increments can only extend sections. A corruption, of a cell
in A or of the index ¢, may extend a section, connect two sections, create a section or
split an existing section in two. The same things can happen in an increment following
a corruption of the index 7. Thus, the number of sections created during a round is
bounded by one plus the number of corruptions, and a section is moved only once in P.

Moving ¢ non-zero entries from A to P in a packing phase takes O(t + /0) time,
and the clean ending the round takes O(J) time. Let ¢, be the number of increments
and o, be the number of corruptions in the p’th round. Since the packing phase is called
at most «, + 1 times, the time used in the p’th round is O(c, + a,V/§ + §). We show
that the O(¢) time used for the clean can be payed for by the ¢, increments and the a,
corruptions, by charging O(1) per increment and O(+/8) per corruption.

If we copy elements to the i’th logical block in P in a packing phase and encounter a
non-zero entry before filling all the v/3 cells, at least one cell in the block is corrupted.
Furthermore, we never put elements in the i’th block again unless a new corruption

occur, setting a zero in the first entry of the block. This means that the only block that
is changed by a packing phase that is not completely filled or has a cell that has been
corrupted since the last time it was updated, is the last block considered in the phase.

When an increment performs a clean, ending the round, the first block of all logical
blocks contained a non-zero entry during the packing phase. We categorize the Vo
logical blocks as filled blocks, corrupted blocks, and last blocks. A filled block is a
logical block which a packing phase has filled with v/ non-zero entries, a corrupted
block contains a cell that has been corrupted during the round and which is not filled,
and a last block is a block that does not contain a corrupted cell, but was not completely
filled during the packing phase that put a one in the first entry of the block.

There are at most «, + 1 packing phases in a round, thus at most «, + 1 last blocks,
and at most o, corrupted blocks. If there are f filled blocks then we have performed at
least fv/8 — oy, increments in the round. This means that there are V6 — f other blocks
(corrupted, last) and since there are O(a,) blocks that are not filled, v/d — f = O(a,).
We have charged each increment ©(1), which means that the increments have payed at
least /6 — a,. It remains to charge § — (V6 — o) = VO(V3 — f) + a to the o,
corruptions. Since v/ — f = O(ayp), we have charged enough if each corruption pays
O(V/6). We conclude that n increments take O(n + a+/§) time.

Theorem 3. The counter data structure uses O(3) space and has additive error a. The
time used for n increments is O(n + a/8) and queries are answered in O(5) time.

3.4 Using Randomization to Obtain Fast Increments

In this section we describe a randomized data structure that uses O(d) space and has
additive error «v. The expected time used for n increments is O(n), and queries are sup-
ported in O(J) time in the worst case. The data structure is similar to the data structures
in Section 3.3 but randomization is used to find an empty cell fast.

Structure. The data structure stores an array A of size k = 39 and a resilient variable v.
Initially, v and all entries in A are set to zero.

Increment. We pick a random index r € {1,...,k} and probe A[r]. If A[r] = 0, we
set A[r] = 1 and return. Otherwise, the probe failed and we do one of two things: with
probability % we restart the increment operation and with probability % we clean the
array. The clean operation counts the number of non-zero entries in A and adds this plus
one (the current increment) to the reliable value v, then it sets all entries in A to zero.
Query. The query operation is the same as the one in Section 3.3, it simply counts the
number of non-zero entries in A and returns the sum of this number and v.

Additive Error. As in Section 3.3 the additive error is « since each unreliable array
entry contributes at most one to the result.

Complexity. The query operation simply scans A and retrieves v in O(d) time. The ex-
pected time analysis of the increment operation is more involved. The sequence of n
increments is logically divided into [n/t] rounds of ¢ = [4/2] increments. We prove
that the expected cost of each round is O(t), and then the bounds follow from linearity
of expectation. We split each full round in two parts, the first part consists of the incre-
ments performed before the first clean in the round, and the remaining increments are
the second part. If a round does not do a clean, we additionally charge for repeatedly

doing failed probes until a clean would be performed. When the first part starts, the state
of the array A could be anything. When the second part starts, the array stores only zero
values. We divide the cost of the ¢ increments into three.

The cost of successful probes, the cost of failed probes and the cost of doing cleans.
The cost of the successful probes is O(¢). The cost of failed probes, is divided into
two, a cost for the failed probes in the first part and a cost for the failed probes in the
second part. The first part ends when the first clean is performed. We charge the first
failed probe in each increment to the increment itself. The remaining number of failed
probes is upper bounded by the number of times we restart the increment operation
before we clean, and a clean is performed with probability % Thus, the probability
of doing exactly f additional failed probes is (%)f % This means that the expected
cost of failed probes in the first part is bounded by t + >-7 FED () =0(@).In
the second part we place at most ¢ ones in A and the adversary can at most introduce &
non-zero entries. Therefore, during each increment in the second part, half of the entries
in A contains a zero. This means that for each increment in the second part we expect
to do one failed probe implying that the expected cost of failed probes in the second
part is linear in the number of increments. Each round makes one clean in the first part,
and for each increment in the second part, the probability of doing a clean is at most
% 2;021 zif(%)f _1% < 2/k. Thus, the expected cost for doing cleans in the second
part is O(1) per increment, we conclude that the expected cost of a full round is O(¢).

Only the last round remains. If this is the first round, it has no first part, and by the
analysis above the cost of this round is linear in the number of increments. If the last
round is not the first round, the expected cost is O(4) even if zero increments has been
performed. We charge this cost to the second to last round.

Theorem 4. The counter data structure described uses O(0) space and has additive
error o. The expected time used for n increments is O(n), and queries use O(9) time.

4 Open Problems

The main open problem is whether there exists a data structure that given any ¢ > 1
has additive error O(«/t), supports increments in O(t) time and queries in O(J) time.
One resilient counter needs 2(9) space. It would be interesting too see if one can store k
counters using o(kd) space with each counter having a non-trivial bound on the additive
error. Most of the counters presented in this paper require ©(§) space for a reliable
variable which seems hard to share among several counters. It may be interesting to
see if one can use the safe memory to store some state to achieve this and possibly
circumventing the lower bound tradeoff between increments and additive error.

References

1. Finocchi, L., Italiano, G.F.: Sorting and searching in the presence of memory faults (without
redundancy). In: Proc. 36th Annual ACM Symposium on Theory of Computing. (2004)
101-110

2. Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE micro 23(4)
(2003) 14-19

10.

11.

12.

13.
14.

15.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

. Tezzaron Semiconductor: Soft errors in electronic memory - a white paper.

http://www.tezzaron.com/about/papers/papers.html (2004)

. Baumann, R.: Soft errors in advanced computer systems. IEEE Design and Test of Comput-

ers 22(3) (2005) 258-266

. Taber, A., Normand, E.: Single event upset in avionics. IEEE Transactions on Nuclear

Science 40(2) (1993) 120-126

. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine. In: IEEE

Symposium on Security and Privacy. (2003) 154-165

. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s guide to

fault attacks. Proceedings of the IEEE 94(2) (2006) 370-382

. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic pro-

tocols for faults. In: Eurocrypt. (1997) 37-51

. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Proc. 4th Interna-

tional Workshop on Cryptographic Hardware and Embedded Systems. (2002) 2—12

Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE
Transactions on Computers 33 (1984) 518-528

Rela, M.Z., Madeira, H., Silva, J.G.: Experimental evaluation of the fail-silent behaviour
in programs with consistency checks. In: Proc. 26th Annual International Symposium on
Fault-Tolerant Computing. (1996) 394—403

Abadi, M., Budiu, M., Ulfar Erlingsson, Ligatti, J.: Control-flow integrity. In: Proc. 12th
ACM conference on Computer and communications security. (2005) 340-353

Pradhan, D.K.: Fault-tolerant computer system design. Prentice-Hall, Inc. (1996)

Novark, G., Berger, E.D., Zorn, B.G.: Exterminator: Automatically correcting memory errors
with high probability. Communications of the ACM 51(12) (2008) 87-95

Aumann, Y., Bender, M.A.: Fault tolerant data structures. In: Proc. 37th Annual Symposium
on Foundations of Computer Science. (1996) 580-589

. Leighton, T., Ma, Y.: Tight bounds on the size of fault-tolerant merging and sorting networks

with destructive faults. SIAM Journal on Computing 29(1) (2000) 258-273

Chlebus, B.S., Gasieniec, L., Pelc, A.: Deterministic computations on a pram with static
processor and memory faults. Fundamenta Informaticae 55(3-4) (2003) 285-306
Ravikumar, B.: A fault-tolerant merge sorting algorithm. In: Proc. 8th Annual International
Conference on Computing and Combinatorics. (2002) 440-447

Kutten, S., Peleg, D.: Tight fault locality. SIAM Journal on Computing 30(1) (2000) 247-268
Finocchi, 1., Grandoni, F., Italiano, G.F.: Designing reliable algorithms in unreliable memo-
ries. Computer Science Review 1(2) (2007) 77-87

Brodal, G.S., Fagerberg, R., Finocchi, L., Grandoni, F., Italiano, G.F., Jgrgensen, A.G.,
Moruz, G., Mglhave, T.: Optimal resilient dynamic dictionaries. In: Proc. 15th Annual
European Symposium on Algorithms. (2007) 347-358

Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient search trees. In: Proc. 18th ACM-SIAM
Symposium on Discrete Algorithms. (2007) 547-553

Finocchi, L., Grandoni, F., Italiano, G.F.: Optimal resilient sorting and searching in the pres-
ence of dynamic memory faults. Theoretical Computer Science (2009) To appear.
Jgrgensen, A.G., Moruz, G., Mglhave, T.: Priority queues resilient to memory faults. In:
Proc. 10th International Workshop on Algorithms and Data Structures. (2007) 127-138
Petrillo, U.F., Finocchi, L., Italiano, G.E.: The price of resiliency: a case study on sorting with
memory faults. In: Proc. 14th Annual European Symposium on Algorithms. (2006) 768-779
Brodal, G.S., Jgrgensen, A.G., Mglhave, T.: Fault tolerant external memory algorithms. In:
Proc. 11th Algorithms and Data Structures Symposium. (2009) 411-422

Boyer, R.S., Moore, J.S.: MIRTY: A fast majority vote algorithm. In: Automated Reasoning:
Essays in Honor of Woody Bledsoe. (1991) 105-118

