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Abstract

In this paper we present algorithms that compute large matchings in planar graphs
with fixed minimum degree. The algorithms give a guarantee on the size of the computed
matching and run in linear time. Thus they are faster than the best known algorithm
for computing maximum matchings in general graphs and in planar graphs, which run in
O(
√
nm) and O(n1.188) time, respectively. For the class of planar graphs with minimum

degree 3 the bounds we achieve are known to be best possible. Further, we discuss how
minimum degree 5 can be used to obtain stronger bounds on the matching size.

1 Introduction

A matching is a set of independent (i.e., pairwise non-adjacent) edges in a graph. A maximum
matching is a matching of maximum cardinality, and a maximal matching cannot be enlarged
by adding edges.

The problem of finding maximum matchings in graphs has a long history, dating back
to Petersen’s theorem [19], which states that every biconnected 3-regular graph has a perfect
matching, i.e., a matching that matches every vertex.

Finding maximum matchings, or large matchings in general, has many applications, see
for example the book on matching theory of Lovász and Plummer [12]. To-date the asymptot-
ically fastest (but rather complicated) algorithm for finding maximum matchings in general
graphs runs in O(

√
nm) time [13], where n and m are the numbers of vertices and edges of the

given graph, respectively. Only recently faster algorithms for dense graphs, for planar graphs,
for graphs of bounded genus, and for general H-minor free graphs have been suggested. They
are all based on fast matrix multiplication (which, as a tool, is not very practical) and run
in O(nω) time for dense graphs [15], O(nω/2) time for planar graphs [16] and for graphs
of bounded genus [27], and in O(n3ω/(ω+3)) ⊂ O(n1.326) time for H-minor free graphs [27],
where ω ≤ 2.376 is the exponent in the running time of the best-known matrix-multiplication
algorithm [5]. However, for practical purposes often slower, but less complicated algorithms
are used: both LEDA [1] and the Boost Graph Library [23] provide maximum-matching al-
gorithms that are based on repeatedly finding augmenting paths and have a running time of
O(nmα(n,m)) [24].

There has been a sequence of more and more general characterizations of graphs with
perfect matchings [19, 8, 26]. This has also led to algorithms that test the existence of
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or compute perfect matchings in o(
√
nm) time in, e.g., bipartite k-regular graphs [22, 4],

3-regular biconnected graphs [2], and subgraphs of regular grids [25, 10, 11]. The last four
algorithms all work in linear time for the corresponding subclasses of planar graphs. Moreover,
for planar bipartite graphs a perfect matching can be computed in O(n log3 n) time if it exists
[14, 6]. There is also a fast algorithm for finding unique maximum matchings [7]. It takes
O(m log4 n) time in general and O(n log n) time in planar graphs.

There are combinatorial results that prove lower bounds on the size of maximum matchings
in certain graph classes. Nishizeki and Baybars [17] show that planar graphs with minimum
degrees 3, 4 and 5 have matchings of size at least (n + 2)/3, (2n + 3)/5 and (5n + 6)/11,
respectively. Biedl et al. [3] show that maxdeg-3 graphs have a matching of size (n − 1)/3,
3-regular graphs have a matching of size (4n − 1)/9 and 3-connected planar graphs have a
matching of size (n + 4)/3. However, these proofs are not constructive, in particular they
do not indicate a way to find such a matching faster than by computation of a maximum
matching. The only simple way to exploit these bounds algorithmically is to use the fact that
a maximal matching (which can be computed quickly) has at least half the size of a maximum
matching. The bounds obtained in this way are, however, rather weak, e.g., (n + 2)/6 for
planar graphs with minimum degree 3 compared to the tight (n+ 2)/3.

Recently, Rutter and Wolff [21] (a preliminary version appeared in [20]) gave fast algo-
rithms that achieve the tight bounds of Biedl et al. Their algorithms compute matchings
of size (n − 1)/3 in maxdeg-3 graphs in linear time, of size (4n − 1)/9 in 3-regular graphs
in O(n log4 n) time and of size (n + 4)/3 in 3-connected planar graphs in linear time. For
graphs with bounded maximum degree k lower bounds for the size of maximal matchings
where considered [9].

However, none of these results can be used to obtain matchings of guaranteed size in planar
graphs with fixed minimum degree. In fact the question how fixed minimum degrees can be
exploited algorithmically was posed as an open question in [21]. We answer this question
and show that the tight bounds of Nishizeki and Baybars [17] for minimum degree 3 can be
reached in linear time. We further analyze our algorithm in the context of minimum degree 5
and show that with some small modification it yields a matching of size (2n + 1)/5 in this
case.

The bounds of Nishizeki and Baybars [17] for 1-connected planar graphs with minimum
degree 3 were also obtained by Papadimitriou and Yannakakis [18]. They analyze the structure
of maximum matchings and show that the structure is such that the free vertices can be
balanced against the matching edges. We show that if we construct the matching accordingly,
this balancing can be done locally: there is a pairing of free vertices with matching edges such
that each free vertex is adjacent to its partner.

The paper is structured as follows. In Section 2 we propose a simple algorithm that
already gives a non-trivial guarantee on the matching size, yet fails to reach the tight bound
of (n+ 2)/3 for planar minimum degree 3 graphs. We then analyze the algorithm and come
up with additional structural conditions for the matching that allow us to improve its size.
Section 3 then shows how these structural constraints can be employed to obtain a linear-time
algorithm that finds matchings of size (n+2)/3 in planar graphs with minimum degree 3. We
discuss how our approach can be generalized to obtain better bounds for planar graphs with
minimum degree 5 in Section 4. We conclude and pose some open questions in Section 5.
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2 Exploiting Minimum Degrees

In this section we describe a simple linear-time matching algorithm that already gives a non-
trivial guarantee for planar mindeg 3 graphs. Our tight analysis then shows which aspects
of the algorithm need to be improved in order to achieve the tight bounds of Nishizeki and
Baybars [17].

We then show that certain additional structural requirements on the matching ensure
that for minimum degree δ = 3 we obtain the tight bound of Nishizeki and Baybars [17].
This analysis forms the basis of the algorithm presented in Section 3 where we show that a
corresponding matching can be found quickly.

In order to present the algorithms we need some standard notation for graphs and match-
ings. Let G = (V,E) be a graph and let M be a matching of G. We denote the degree of a
vertex v by d(v). A vertex in V is free (with respect to M) if it is not incident to an edge of
M . An augmenting path P (with respect to M) is a path that alternates between edges in M
and edges in E \M and starts and ends at different free vertices. In this case the symmetric
difference of P and M is a matching of size |M |+ 1. A matching is k-free if it does not admit
an augmenting path of length up to k.

2.1 Algorithm Based on Short Augmenting Paths

We propose the following two-step algorithm Match3Aug: (1) Compute a maximal match-
ing. (2) Iteratively find augmenting paths of length 3.

Lemma 1. Let G = (V,E) be a connected graph with m edges. Match3Aug computes a
3-free matching in O(m) time.

Proof. Step 1 is performed by choosing edges greedily. For Step 2 it is sufficient to consider
the matching edges one by one and to check whether they are contained in an augmenting
path of length 3. For an edge uv this can be done in O(d(u)+d(v)) time. The overall linearity
follows from the fact that edges that are added to the matching during Step 2 need not be
checked: Let xy be an edge that is added in Step 2 such that x was free after Step 1. If
xy was contained in an augmenting path of length 3 then x would have a free neighbor x′

contradicting the maximality of the matching after Step 1.

In the following we analyze the size of 3-free matchings in planar graphs with minimum
degree δ. To this end, we divide the free vertices into two disjoint sets that we bound
independently.

Let G = (V,E) be a planar graph with minimum degree δ and let M be a 3-free matching.
Let e ∈M be an edge such that there is a free vertex v ∈ V that is adjacent to both endpoints
of e. We say that v covers e and that e is covered. An edge of the matching that is not
covered by a vertex is open. Let MC and MO denote the set of covered and open edges of
M , respectively. Moreover, let FC denote the set of vertices that cover an edge and let FO be
the set of free vertices that do not cover any edge. Note that by definition MC and MO form
a partition of M and FC , FO form a partition of the free vertices of V . Hence we have that
|M | = |MC |+ |MO| and n = 2 · |M |+ |FC |+ |FO|. We now bound the number of free vertices
by independently bounding |FC | and |FO|.
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Lemma 2. Let G = (V,E) be a planar graph with minimum degree δ, let M be a 3-free
matching and let MC ,MO, FC and FO be defined as above. Then,

|FC | ≤ |MC | (1)

|FO| ≤ 2 · |MO| − 2
δ − 2

. (2)

Proof. First note that Equation (1) holds since the vertex covering an edge is unique as there
would be an augmenting path of length 3 otherwise.

For the proof of Equation (2) consider the bipartite auxiliary graph G′ = (V ′, E′) whose
vertices are the vertices in FO and the open edges of M . We connect a vertex v ∈ FO with an
edge m ∈MO if v is adjacent to an endpoint of m in G. The graph G′ is planar as it can be
obtained as a minor of G by removing all vertices that are either incident to an edge in MC

or cover an edge, contracting the remaining matching edges and removing edges that are not
incident to a free vertex. Since no vertex of FO is adjacent to an endpoint of a covered edge
(there would be an augmenting path of length 3 otherwise), each vertex in FO has degree
at least δ in G′. Equation (2) now follows from |E′| ≤ 2 · |V ′| − 4 = 2 · (|FO| + |MO|) − 4
(bipartite, planar) and |E′| ≥ δ|FO| (minimum degree).

Theorem 1. Let G = (V,E) be a planar graph with n vertices, minimum degree δ ∈ {3, 4}
and let M be a 3-free matching. Then the following holds:

|M | ≥ (δ − 2) · n+ 4
2 · (δ − 1)

. (3)

Proof. Follows from Lemma 2 and |V | = 2 · |M |+ |FO|+ |FC |.
Equation (3) does not hold for δ = 5 as in this case the bound on |FC |, which is independent

of δ, is too weak. By Theorem 1 Match3Aug computes in linear time matchings of size at
least (n + 4)/4 in planar graphs with minimum degree 3 and matchings of size (n + 2)/3 in
planar graphs with minimum degree 4.

In order to obtain the bound (n + 2)/3 for δ = 3 we would like to improve the bound of
|FO| from Equation (2). However, Fig. 1 shows that our analysis is tight. Roughly speaking
the problem is that the graph induced by the matching in this example is not connected. In
the next section we give a precise definition of the desired property of the matching.

2.2 More Structure via Pure Tree-Like Matchings

Let G = (V,E) be a planar graph with a fixed planar embedding, i.e., for every vertex v we
have a cyclic ordering σ(v) of its incident edges, and let M be a matching of G. Let GM be
the graph that is induced by the matched vertices of M . A matched vertex v is cyclically pure
if its incident edges in GM form an interval in σ(v), further M is called pure if all matched
vertices are cyclically pure. The matching M is called tree-like if GM is a tree.

Lemma 3. Let G = (V,E) be a planar embedded graph and let M be a pure tree-like matching
in G such that all free vertices have degree at least δ. Let FM be the set of free vertices that
have only matched neighbors. If FM is not empty then there is a vertex v ∈ FM that has
matched neighbors x1, . . . , xδ−2 such that each xi has no other neighbor in FM .
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Figure 1: Planar graph with n vertices, min-
deg 3 and a 3-free matching with only (n+4)/4
edges.

Figure 2: Construction of curve C that
separates matched and free vertices of a
pure tree-like matching.

Proof. In this proof we distinguish between outer vertices, i.e., matched vertices with free
neighbors and inner vertices, i.e., matched vertices that are not outer. To prove the lemma
we consider the subgraph G′ of G that is induced by the edges that have one endpoint in
FM . We show that all outer vertices share a common face in the embedding inherited from
G. Hence, by planarity, the vertices in FM must have a parenthetical structure, where the
most interior ones have the desired property.

Assume we have a planar drawing of G that realizes its given embedding. We construct
a simple closed curve C that contains all outer vertices, encloses all inner ones and separates
the matched vertices from the free vertices.

To construct C we pick an arbitrary outer vertex v as starting point and traverse the Euler
tour of the tree GM induced by the embedding and draw the curve along the edges of GM .
Beginning from v we traverse GM starting along one of the edges bounding the interval of
edges that connect v to a vertex in FM . We position an imaginary pencil on the point where
v lies in the plane and draw along the edges of GM . Whenever we reach an outer vertex v′

and would have to cross an edge that is incident to a free vertex to pass it, we instead draw
right through v′ and thus separate the free neighbors of v′ from the matched ones. Since all
vertices are cyclically pure the line visits every vertex at most once. Hence C is a simple cycle
that contains every outer vertex. By construction C does not cross any edge and encloses all
inner vertices but none of the free vertices (Fig. 2). Removing the interior of C (including
edges) and free vertices that are not in FM yields G′ with all outer vertices sharing a common
face.

There is at least one outer vertex that is incident with the outer face of G′: Since all
vertices in FM are outside C there is at least one vertex x in FM that is incident to the outer
face of G′. Let e be an edge that is incident to x and bounds the outer face. The other
endpoint of e is the desired vertex as it is matched and hence belongs to C. Let b1, . . . , bk
be the outer vertices as they occur along C in clockwise order, where b1 is incident with the
outer face of GM .

Now consider the vertices of FM (note that all their neighbors belong to C). For each
vertex v in FM we set b`(v) and br(v) to be the vertex bi with the smallest, respectively
largest, index i such that bi is incident to v. We attach an opening parenthesis with label v to
the edge {b`(v), v} for each v in FM . Analogously we attach a closing parenthesis with label
v to the edge {br(v), v}. We then traverse b1, . . . , bk and collect at each vertex all parentheses
in clockwise order. This yields a sequence of opening and closing parentheses where matching
opening and closing parentheses have the same label since a structure like (a (b )a )b would
contradict planarity.

Now pick a pair of parentheses that does not enclose any other parentheses. Let v be
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the vertex that induces this pair. In addition to the two matched neighbors at which the
parentheses were placed there have to be at least δ−2 further matched neighbors x1, . . . , xδ−2

since the degree of v is at least δ. Each of these vertices has only one free neighbor in FM ,
namely v.

This result on pure tree-like matchings can be used to improve the bound on |FO| and
hence the bound on 3-free matchings.

Lemma 4. Let G = (V,E) be a planar graph with minimum degree δ, let M be a pure tree-like
3-free matching and let MO and FO be defined as above. Then,

|FO| ≤ |MO| − 2
δ − 2

. (4)

Proof. Let C be the curve from the proof of Lemma 3. Similar to the proof of Lemma 2
let G′ be the graph obtained from G by contracting the edges in MO, removing the vertices
in FC , the endpoints of edges in MC and all edges in the interior of C. This again yields a
bipartite planar graph where one of the vertex sets corresponds to the open matching edges.
Note that C is still a simple cycle since C contains at most one endpoint of each edge in MO.
However, since the interior of C is empty, the graph obtained from duplicating the vertices
in FO (together with their incident edges) is still planar and bipartite. Thus the bound is
improved by a factor of 2, yielding the claim.

With the stronger bound of Equation 4 it follows that a pure tree-like 3-free matching in
a planar graph with n vertices and minimum degree 3 has size at least n/3. For minimum
degrees 4 and 5 the bound on |FC | is now weaker than the bound on |FO|. Hence to obtain
even stronger bounds we would need to improve the bound on the size of FC .

Unfortunately, it is not easily possible to find a maximal matching that is both pure and
tree-like in a given graph. Instead we show that we can construct such a matching by carefully
removing free vertices when we cannot continue with enlarging the matching. The main part
is to show that the number of removed vertices is bounded by the number of matching edges.

3 Algorithm

In this section we describe an algorithm that computes in linear time a matching of size at
least (n+2)/3 in planar graphs with minimum degree 3. To show that our algorithm actually
finds a matching of this size we use the following argument. In the course of the algorithm we
perform a series of steps each of which either increases the size of the matching by 1 or deletes
a free vertex. However, whenever a vertex is deleted, we make sure that there is an edge in
the matching that “remembers” it in such a way that each matching edge “remembers” at
most one vertex and no vertex is ever “forgotten”. The algorithm finishes when there are no
free vertices left. The bound then follows from the observation that there can be at most as
many free vertices as matching edges.

The algorithm works as follows. We start by adding an arbitrary edge to the matching,
which clearly is both pure and tree-like. We then enlarge the matching and make sure it
remains pure and tree-like. To find an adequate spot to try to enlarge the matching we use
Lemma 3: If there are only free vertices that also have free neighbors (i.e., FM = ∅), we can
easily find an edge that can be used to enlarge the matching, see Section 3.1. If FM is not
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empty (i.e., there are free vertices which have only matched neighbors) the lemma yields a
free vertex v and a matched vertex x such that v is the only neighbor of x in FM . In this case
we try to enlarge the matching by two different strategies: a) If there is an augmenting path
vxyu of length 3, we will use this fact to swap xy for two new matching edges (Section 3.2).
b) If x has free neighbors that have further free neighbors, we will use one of these and add
an edge between two free vertices to the matching (Section 3.1).

In case neither of these strategies can be applied we remove v and show that there is a
suitable matching edge that can remember it. The algorithm stops when no free vertices are
left. In the following sections we describe these steps in detail and prove that they preserve
a pure tree-like matching.

3.1 Enlargement by Adding a Suitable Edge

In this section we discuss how to enlarge a pure tree-like matching M by adding a suitable
edge such that the outcome is still pure and tree-like. Consider a matched vertex x that has
free neighbors and some of these have further free neighbors. Since the edges that connect x
to free vertices form an interval in σ(x), there exist a leftmost and a rightmost free neighbor
of x (they coincide if x has only one free neighbor). To preserve cyclic purity we need that
the leftmost or rightmost free neighbor u of x has a free neighbor u′. This situation occurs if
x has at most one free neighbor that belongs to FM and x is adjacent to a free vertex that is
not in FM , see Fig. 3a. The exact procedure is shown in the proof of the following lemma.

Lemma 5. Let G = (V,E) be a planar graph and let M be a pure tree-like matching in G
such that each free vertex has degree at least δ. Further let x be a matched vertex such that
the leftmost or rightmost free neighbor of x is adjacent to a free vertex. Then there is a graph
G′ = (V,E′) with E′ ⊆ E and a pure tree-like matching M ′ of G′ such that |M ′| = |M | + 1
and each free vertex has degree at least δ in G′.

Proof. Without loss of generality, we can assume that the leftmost free neighbor u of x has
a free neighbor. We now scan σ(u) beginning with x until we find the first free neighbor u′.
Let M ′ be M ∪ {uu′} and let G′ be the graph that we obtain from G by removing all edges
between u or u′ and another matched vertex except for xu and uu′. We show that G′ and
M ′ satisfy the claim.

First, it is obvious that |M ′| = |M | + 1 holds and each free vertex has the same degree
as before since we only deleted edges that have both endpoints matched. It remains to show
that M ′ is pure and tree-like. The vertex x is cyclically pure since u was the leftmost free
neighbor of x and a possible edge xu′ has been removed. Vertex u is cyclically pure, since
it has just two matched neighbors x and u′ and the edges ux and uu′ are adjacent in σ(u).
Vertex u′ is cyclically pure, because u is its only matched neighbor. The other matched
vertices remain also cyclically pure as removing edges never violates cyclic purity. Thus M ′

is pure. Moreover, M ′ is tree-like since G′M ′ can be obtained by adding the branch xuu′ to
GM (u and u′ were free and thus not in GM ).

3.2 Exploiting Existence of an Augmenting Path of Length 3

In this section we describe how to make use of an augmenting path of length at most 3 in our
context. Let G = (V,E) be a planar embedded graph, let M be a pure tree-like matching
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Figure 3: Illustration of the different cases that can occur in the algorithm for the candidate
vertex x and its unique neighbor v in FM .

in G such that all free vertices have degree at least 3 and let vxyu be an augmenting path
of length 3. We show that we can modify G and M such that M is enlarged by 1 and
remains pure and tree-like. The problem is that just using the augmenting path to enlarge
the matching may violate cyclic purity at the vertices u, v, x and y. Instead we show that
there exists a suitable augmenting path of length 3 which leads (after removing some edges
whose endpoints are both matched) to an enlarged pure tree-like matching. An example of
this situation is shown in Fig. 3b.

Lemma 6. Let G = (V,E) be a planar graph and let M be a pure tree-like matching in G
such that each free vertex has degree at least δ. Let vxyu be an augmenting path of length 3.
Then there is a graph G′ = (V,E′) with E′ ⊆ E and a pure tree-like matching M ′ such that
|M ′| = |M |+ 1 and each free vertex has degree at least δ in G′.

Proof. Let x` and xr be the leftmost and rightmost free neighbor of x, respectively, and define
yr,y` analogously. Choose v′ ∈ {x`, xr}, u′ ∈ {y`, yr} such that v′ and u′ are distinct. This is
always possible, otherwise x` = xr = y` = yr and x and y both have only one free neighbor,
which is actually shared by x and y, contradicting v 6= u.

We set M ′ := (M \{xy})∪{v′x, yu′} and let G′ be the graph obtained from G by removing
all edges that connect v′ or u′ to a matched vertex other than their matching partner. Clearly
|M ′| = |M | + 1 holds. We claim that M ′ is a pure tree-like matching in G′ and every free
vertex of G′ has degree at least δ.

First note that by the choice of v′ and u′ the edges v′x and yu′ do not violate cyclic purity
of x and y. The only edges that might violate cyclic purity at x and y are the edges v′y
and xv′. They are however removed when going from G to G′. Hence x and y are cyclically
pure. By construction of G′, v′ and u′ each have only one matched neighbor hence they are
cyclically pure as well. All vertices different from v′, x, y, u′ may only have lost edges to free
neighbors in G. Hence they all remain cyclically pure and M ′ is pure.

The graph G′M ′ is a tree since it can be obtained from the tree GM by inserting the edges
v′x and u′y, which add the new leaves v′ and u′. Thus M ′ is tree-like. Since we only remove
edges that are not incident to free vertices the degrees of all free vertices are preserved.

3.3 Linear-Time Algorithm

Lemma 5 and Lemma 6 yield together with Lemma 3 the simple algorithm MatchMinDeg3,
whose structure was outlined in the beginning of this section. A pseudo-code description of
the algorithm is shown as Algorithm 1.
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Algorithm 1 MatchMinDeg3

1: Select an arbitrary edge e and set M ← {e}
2: while there are still free vertices do
3: if FM 6= ∅ then
4: Select a matched vertex x and a free vertex v according to Lemma 3
5: if there is an augmenting path vxyu then
6: Enlarge the matching according to Lemma 6
7: else if x has a free neighbor outside of FM then
8: The leftmost or rightmost free neighbor of x suits to apply Lemma 5
9: else

10: Remove v (the matching edge that is incident to x remembers v)
11: else
12: Select a matched vertex that has free neighbors and apply Lemma 5

Theorem 2. Let G be a planar embedded graph with n vertices and minimum degree 3. The
algorithm MatchMinDeg3 computes a matching of size at least (n+ 1)/3 in O(n) time.

Proof. We begin this proof by stating and justifying some loop invariants for the while-loop
in MatchMinDeg3.

(a) Each removed vertex is remembered by an adjacent matching edge

(b) Each matching edge remembers at most one vertex.

(c) The matching is pure and tree-like.

(d) Each free vertex has degree at least 3.

Invariants (a) and (b) are needed to prove the correctness of the algorithm while Invariants
(c) and (d) ensure that the conditions of Lemmas 3, 5 and 6 are satisfied.

We now show that the algorithm preserves the invariants. When we delete a free vertex
v, it is remembered by a matching edge xy (x and v are adjacent) that is not part of an
augmenting path of length 3 and x has no other adjacent free vertices. Thus also y cannot be
adjacent to a free vertex apart from v since there would be an augmenting path of length 3
otherwise. Hence xy will not have to remember another vertex and it is never removed from
the matching (Fig. 3c, 3d). Thus Invariants (a) and (b) hold throughout the algorithm.
Invariant (c) holds since we change the matching only by using Lemmas 5 and 6, which
preserve the invariant. These lemmas together with the fact that we exclusively remove
vertices that have only matched neighbors guarantee Invariant (d).

The size of the computed matching can now be seen as follows. Invariants (a), (b) and
the observation that the last removed vertex has an additional remembering edge yields the
bound |F | ≤ |M | − 1 where F is the set of free vertices of G with respect to the output
matching M . Using the equation |F | = n− 2 · |M | yields the bound (n+ 1)/3 ≤ |M |.

Next, we discuss how to realize MatchMinDeg3 in linear running time. In each iteration
the number of free vertices is decreased by at least 1. Thus the algorithm stops after at most
n iterations. Next, we show that each iteration of the while-loop runs in amortized O(1) time.

For each vertex we store whether it is matched and if it has free neighbors. When a vertex
v becomes matched it requires O(d(v)) time to propagate this information to its neighbors
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such that they can update their number of free neighbors. The overall-time spent in this
step is linear since a matched vertex remains matched (although its matching partner may
change).

For matched vertices with free neighbors, we additionally store the first and the last edge
leading to a free vertex. Note that given a matching edge we can hence easily check whether
it is part of an augmenting path of length 3 since this involves only a constant number of
vertices which can be found quickly using the first and last edge information. Note that the
first and last edge can be updated in constant time when we remove an edge or match a
free vertex. Moreover, for each matched vertex we store its FM -degree, i.e., its number of
neighbors in FM . When the last free neighbor of a free vertex v gets matched or v is deleted,
v notifies its neighbors, which then update their FM -degree. Both cases occur at most once
for each free vertex and thus this notification work needs linear time in total. By keeping a
list of vertices with FM -degree 1 we can find a candidate vertex x as in Lemma 3 in constant
time.

The check whether Lemma 5 or Lemma 6 can be used to enlarge the matching can be
done in O(1) time: We only need to check a constant number of vertices for membership in
FM , which can be done by storing whether a vertex has free neighbors or not. The vertices we
need to check can easily be addressed via the leftmost and rightmost free neighbor pointers.

The total time that is needed for all applications of the procedures provided by Lemma 6
and Lemma 5 is linear. This can be seen by considering occurrences of these cases. For
applying Lemma 5 we first have to scan the neighborhood of a free vertex u for a free neighbor
v, which requires O(d(u)) time. For the application of Lemma 6 the two vertices u and v that
are newly matched can be identified in O(1) time. In both cases in order to ensure the cyclical
purity for the two newly matched vertices u and v we scan σ(u) and σ(v), which requires
O(d(u) + d(v)) time. Since u and v are matched afterwards, they will not be processed in the
same way again. Finally, removing a free vertex v can also be done in O(d(v)) time.

Note that we can miss the tight bound of (n + 2)/3 by 1. We can, however, enlarge the
matching by 1 in O(n) time by computing an augmenting path [24].

4 A Better Bound for Minimum Degree 5

In this section we show how to improve the bound for δ = 5 by ensuring that each removed
vertex is remembered by more than one matching edge.

In case FM is not empty, we previously considered a matched vertex x that had only
one neighbor v in FM . Now, instead, we consider more such matched vertices with the same
neighbor in FM at once. Either one of them can be used to enlarge the matching via Lemmas 5
and 6 or none of them and their matching partners are adjacent to another free vertex. In this
case all their matching edges can be used to remember v. For δ = 5 Lemma 3 yields a free
vertex v that has three such neighbors and hence at least two matching edges can remember
v.

Theorem 3. Let G = (V,E) be a planar graph with n vertices and minimum degree 5. A
matching of size at least (2n+ 1)/5 can be computed in O(n) time.

Proof. Let M be the matching computed by the modified algorithm. As shown above each
free vertex F is remembered by at least two matching edges. Together with the observation
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that the last free vertex is remembered by at least three edges we get 2 · |F |+ 1 ≤ |M |. The
bound then follows from n = 2 · |M |+ |F |.

Next we show that the modified algorithm still runs in linear time. We need a way to
maintain the set of candidate vertices with δ − 2 matched neighbors according to Lemma 3.
Instead of the FM -degree of a matched vertex (i.e., the number of neighbors in FM ) we store a
list of its neighbors in FM . Whenever the length of this list changes to 1 or from 1 to another
number we notify the (previously) last neighbor. This notification enables vertices in FM to
keep track of their neighbors with FM -degree 1 by maintaining a list of them. Hence we can
maintain a list of vertices in FM that have at least δ − 2 neighbors with FM -degree 1. Thus
we can pick such a candidate in O(1) time and try to enlarge the matching using δ − 2 of its
FM -degree 1 neighbors. The procedures given by Lemmas 5 and 6 are called at most δ − 2
times per iteration.

5 Conclusion and Future Work

In this paper we have shown that it is possible to exploit minimum degrees in planar graphs
algorithmically to obtain algorithms that compute matchings of guaranteed size quickly. Our
algorithms run in linear time and yield matchings of size at least (n + 2)/3 and (2n + 1)/5
for planar graphs with minimum degrees 3 and 5, respectively.

While (n+2)/3 is tight for planar graphs with minimum degree 3, it is known that planar
graphs with minimum degree 4 and 5 admit matchings of size (2n + 3)/5 and (5n + 6)/11,
respectively. We leave open the question, whether these tight bounds can be achieved in
linear time.
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