Interval Set Cluster Analysis: A Re-formulation
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Abstract. A new clustering strategy is proposed based on interval sets,
which is an alternative formulation different from the ones used in the
existing studies. Instead of using a single set as the representation of a
cluster, each cluster is represented by an interval set that is defined by
a pair of sets called the lower and upper bounds. Elements in the lower
bound are typical elements of the cluster and elements between the upper
and lower bounds are fringe elements of the cluster. A cluster is therefore
more realistically characterized by a set of core elements and a set of
boundary elements. Two types of interval set clusterings are proposed,
one is non-overlapping lower bound interval set clustering and the other
is overlapping lower bound interval set clusterings, corresponding to the
standard partition based and covering based clusterings.

1 Introduction

Cluster analysis focuses on grouping objects of similar kind into categories and
organizing data into meaningful structures [1]. Objects are sorted into groups
so that objects in the same group show a high degree of association and objects
in different group show a low degree of association. A common assumption un-
derlying many cluster analysis methods is that a cluster can be represented by
a set with crisp boundary. The requirement of a sharp boundary leads to easy
analytical results, but may be too restrictive for some practical applications.
Several proposals have been made to remove such a stringent assumption.

In fuzzy cluster analysis, it is assumed that a cluster is represented by a fuzzy
set that models a gradually changing boundary [3]. However, a fuzzy clustering
provides a quantitative characterization of the unsharp cluster boundary at the
expense of losing the qualitative characterization that better shows the structures
provided by a clustering. To resolve this problem, Lingras and his associates [6—
9] propose and systematically study rough clustering and interval set clustering.
The basic idea is to derive and describe a cluster by a pair of lower and upper



approximations. By describing a cluster in terms of a pair of crisp sets, one
recovers the qualitative characterization of a cluster.

There exists a semantic gap in the studies by Lingras and his associates.
On the one hand, rough clustering algorithms are explained in rough set termi-
nology. On the other hand, an equivalence relation that is needed for defining
approximations is not explicitly referred to. The main objective of this paper is
to fill in such a semantic gap by representing a cluster as an interval set defined
by a pair of bounds. This leads to the introduction of interval set cluster anal-
ysis. Elements in the lower bound of an interval set are typical elements of the
cluster and elements between the upper and lower bounds are fringe elements of
the cluster. That is, a cluster is more realistically characterized by a set of core
elements and a set of fringe elements.

The strategy of interval set cluster analysis does not require an equivalence
relation. A set of properties of an interval set clustering is proposed and exam-
ined. Based on these properties, two types of interval set clusterings are proposed,
one is non-overlapping lower bound interval set clustering and the other is over-
lapping lower bound interval set clusterings. They correspond to the standard
partition based and covering based clusterings.

2 Overview of Interval Sets

In cluster analysis, a cluster may be interpreted as the extension of a concept,
that is, the set of objects that are instances of the concept. In some situations,
an object may actually be either an instance or not an instance of a concept.
On the other hand, due to a lack of information and knowledge, one can only
express the state of instance and non-instance for some objects, instead of all
objects. That is, one has a partially known concept defined by a lower bound
and upper bound of its extension. This leads to the interval set representation
of a partially known set [16].

Interval sets are defined and interpreted in a similar way that interval num-
bers are introduced in interval analysis [10]. The notion of interval sets repre-
sents a new kind of sets, defined by a pair of sets, namely, its lower and upper
bounds [13, 16]. Mathematically, interval sets are defined as follows. Let U be a
finite set, called the universe or the reference set, and 2V be its power set. A
subset of 2V of the form,

A=[A,A)={Ac2V | A CACA,}, (1)

is called a closed interval set, where it is assumed that A; C A,. Being an
interval of the power set lattice 2V, an interval set A is also a lattice, with the
minimum element A;, the maximum element A,, and the standard set-theoretic
operations. The set of all closed interval sets is denoted by:

I2Y) = {[A;, Al | A, Ay CU A C Ay} (2)

A degenerate interval set of the form [A, A] is equivalent to the ordinary set A.



Semantically, an interval set, when interpreted as a family of sets of objects,
provides an appropriate means to represent a partially known concept [5,12, 13,
16,19]. Although the extension of a concept is actually a subset of U, a lack of
knowledge makes us unable to specify this subset. We can only provide a lower
bound A; and an upper bound A,. Any subset A that lies between A; and A,
namely, A; C A C A,, can be the actual extension of the concept. The set,

BND([4;, A,]) = A, — Ay, 3)

is called the boundary of the interval set [A;, A,]. For those elements, we are
unable to tell if they are instances or non-instances of the concept.

Interval sets are subsets of the universe U. The symbols €, C, =,N,U may
be used, in their usual set-theoretic sense, to represent relationships between
elements of 2V and an interval set, and between different interval sets. Thus,
A € [A;, A,] means that A is a subset of U such that 4; C A C A,,. We write
[A;, Ay] C [By, By] if the interval set [A;, A,] as an ordinary set is contained in
[B;, B,] as an ordinary set. In other words, by [4;, A,] C [B;, B,] we mean that
By C A C A, C B,. Similarly, two interval sets are equal, written A = B, if
they are equal in set-theoretic sense, that is A = B if and only if A; = B; and
Ay = By.

Let N,U and — be the usual set intersection, union and difference defined on
2V respectively. Following the results of power algebras [2] and interval analy-
sis [10], we can lift set operations into interval set operations. Specifically, for
two interval sets A = [4;, A,] and B = By, B,] we have:

ANB={ANB|Ae€ A B ec B},

AUB={AUB| A€ A,B € B},

A\B={A—-B| A€ A BEeB} (4)
These operations are referred to as interval set intersection, union and difference.

They are closed on I(2V), namely, AN B, AU B and A \ B are interval sets.
They can be explicitly computed by using the following formulas [13, 16]:

ANB=[A; N B, Ay N By,

AUB=[AUB;, A, UB,J,

AN\ B =[A — By, Au — Bi]. (5)
Interval set complement —[A4;, A,] of [A4;, A,] is defined as [U, U] \[A4;, A,]. It is

equivalent to [U — A,,U — Aj] = [AS, Af], where A° = U — A denote the usual
set complement operation. Clearly, we have [, 0] = [U, U] and —[U, U] = [0, 0].

3 Interval Sets, Fuzzy Sets and Rough Sets

Interval sets model concepts that are partially known; they are related to, but
different from, fuzzy sets [18] and rough sets [11]. A brief comparison of the three



notions will provide an argument supporting the proposed framework of interval
set cluster analysis.

Fuzzy sets model concepts with gradual memberships [18]. Suppose p4 :
U — [0,1] is a fuzzy membership function. Given a number « € [0, 1], an a-cut
of p 4 is defined by:

pi =A{z €U | pa(z) > a}. (6)

For a pair of numbers 0 < § < a < 1, the pair of («, 3)-cuts of ua gives rise to
an interval set [, u3] with % C py. Thus, an interval set may be used as a
qualitative approximation of a fuzzy set [13].

Rough sets model the approximations of concepts under indiscernibility [11].
Suppose an equivalence relation on U is used to formally represent the indis-
cernibility of elements in U. The pair apr = (U, E) is called an approximation
space [11]. The equivalence relation E induces a partition of U, denoted by
U/E. The equivalence class containing x is given by [¢] = {y € U | xEy}. The
equivalence classes of F are the basic building blocks to construct rough set

approximations. For a subset A C U, its lower and upper approximations are
defined by [11]:

apr(A) ={z €U | [z] € A};
apr(A) ={z €U | [z]N A # 0} (7)

The pair (apr(A),apr(A)) is referred to as a rough set generated by A. For
a subset A C U, we have apr(4) C A C apr(A). It follows that A induces
an interval set [apr(A),apr(A)]. By applying the ideas of («, 3)-cuts of a fuzzy
set, one can define probabilistic rough set approximations in a decision-theoretic
rough set model [15,17].

Consider now the reverse process of constructing a fuzzy set or a rough set
from an interval set. Given an interval set [A;, A,], we can define a fuzzy set as
follows:

0, zeU-—-A,,
,uA(x) =< 05, z€ A, — A, (8)
1, ze€A.

If min,max and 1 — () are used to define fuzzy set intersection, union, and
complement, respectively, we express interval set operations in terms of such
three-valued fuzzy sets.

In the case of rough sets, given an interval set [A;, A,], in general we may
not be able to find a set A so that A; = apr(A4) and A, = apr(A). Iwiiski [4]
suggests another formulation of rough sets, which is closely related to interval
sets [14]. Let Def(U) denote the family of all definable subsets of U given by:

Def(U) = {A C U | A= apr(A) = apr(A)}. (9)

For a pair of sets A, A € Def(U) with A C A, Iwinski refers to the pair (4, 4) as

a rough set. By definition, it corresponds to the interval set [A, A]. Conversely,
for an interval set [A;, A,] with A4;, A,, € Def(U), we have an Iwinski rough set



(A1, Ay). Thus, the family of all Iwiriski rough sets corresponds to a sub-family
of all interval sets. Furthermore, their set-theoretic operations are the same [4,
14].

Although an interval set may be induced from either a fuzzy set or a rough
set, and the reverse is also true under certain conditions, it does have to be
interpreted in this way. The interpretation of an interval set as the bounds of
a partially known set makes it different from fuzzy sets and rough sets. This
interpretation seems to be appropriate for the task of clustering. A cluster may
be considered to be a partially known set; we know that certain elements must
be in the cluster (e.g., elements in a small neighborhood), and certain elements
may be in the cluster (e.g., elements in a large neighborhood).

4 Strategies of Interval Set Clustering

A main task of cluster analysis is to group objects in a universe so that objects in
the same cluster are more similar to each other and objects in different clusters
are dissimilar. There are two basic strategies of clustering that produce flat non-
overlapping and overlapping clusters, respectively.
Suppose
CcC=(hYC?...,.c™ (10)

is a family of clusters of U, that is, C is a clustering of the universe. Formally,
a non-overlapping clustering is defined by the properties:

i) C'#0,0<i<m,

i (Y c=u
CieC

(i) C'NCI =0,i#j.

Property (i) requires that each cluster cannot be empty. Property (ii) states
that every o € U belongs to at least one cluster, and property (iii) states that x
belongs to at most one cluster. Together they require that every x € U belongs
to exactly one cluster. In this case, C is a partition of the universe. On the
other hand, an overlapping clustering only requires properties (i) and (ii). For
overlapping clustering, it is possible that an element belongs to more than one
cluster. The family C is only a covering of the universe.

An underlying assumption of such a clustering is that one can precisely form
a family of clusters with well defined boundary. A questioning of this assumption
has led to other clustering strategies. For example, fuzzy clustering produces a
family of fuzzy sets, where each cluster is a fuzzy set with gradually changing
boundary. Given a pair of numbers 0 < § < a < 1, the («a, §)-cuts of a fuzzy set
can be viewed as an interval set [16]. This immediately motivates the introduc-
tion of interval set clustering, although in general an interval set clustering can
be interpreted without direct reference to a fuzzy clustering.

We assume that each cluster C? is partially known based on the available
information. One may use an interval set to represent such a partially known



cluster, namely, C" is represented by an interval set [C}, C?] satisfying the con-
straint:

Cicotcol. (11)

The constraint reflects the fact that we do not know the exact cluster C* but
a pair of lower and upper bounds within which C? lies. Any set in the family
[C,Cl ={X | C} C X C C%} may be the actual cluster C*. The elements in C}
may be interpreted as typical elements of the cluster C* and elements in C?, — C/
as fringe elements. With respect to the family of clusters C = (C!,C?,...,C™),
we have the following family of interval set clusters:

IC ([011705]’[03705]77[02’7747017:1])

={(C,C?...,.c™) | CjCcCtCCl1<i<m}.

That is, an interval set cluster is interpreted as a pair of bounds of a family of
possible crisp clusters and an interval set clustering is interpreted as bounds of
a family of crisp set clusterings.

Based on interval set operations, corresponding to properties (i)-(iii), we
adopt the following properties for an interval set clustering:

() G #0,0<i<m,
(I1) U c.=1
[C1,CL]€IC

)  CinC) =0,i#j.

Property (I) requires that the lower bound must not be empty. It implies that
the upper bound is not empty, namely, C? # 0. Thus, C} # () may be viewed as
a strong version and C? # () as a weak version. It is reasonable to assume that
each cluster must contain at least one typical element and hence its lower bound
is not empty. We therefore adopt the strong version, instead of the weak version,
in order to make sure that an interval set clustering is physically meaningful.
Property (II) states that any element of U belongs to the upper bound of a
cluster, which ensures that every element is properly clustered. Property (I1I)
demands that the lower bounds of clusters are pairwise disjoint; a typical element
of one cluster cannot, as the same time, be a typical element of another cluster.

Additional support for adopting properties (I), (II), and (III) is given by the
following theorem that shows the connection of a standard clustering and an
interval set clustering.

Theorem 1. Suppose IC = ([C},CL], [C?,C2],...,[C™,C™) is an interval set
clustering. If IC satisfies properties (1), (I1), and (1), then there exists a family
of clusters C = (C',C?,...,C™) that satisfies the constraint C; C C* C C,
and properties (i), (ii), and (iii). If IC satisfies properties (I) and (II), there
exists a family of clusters C = (C,C?%,...,C™) that satisfies the constraint
C} C C" C C! and properties (i) and (ii).



Proof. The theorem can be proved constructively by building a family of clusters
C from IC. Assume that IC satisfies properties (I), (II), and (III), one can
construct a C as follows. We first construct a family of clusters {C" = C} | 1 <
i < m} based on typical elements of clusters. For each element z in the set of
the fringe elements, F' = [J{C% — C? | 1 <14 < m}, we assign it to only one of
the clusters C%’s that satisfies the condition z € C! — C}. By the property (1),
it follows that C satisfies property (i); by the properties (II) and (III) and the
construction procedure, it follows that C satisfies properties (i) and (iii). To
prove the second part of the theorem, we follow the same procedure except that
we may assign each fringe element to a set of clusters instead of one. It can be
easily seen that the resulting C satisfies properties (i) and (iii).

Based on the results from the theorem, an interval set clustering IC is called
a lower bounds non-overlapping interval set clustering if it satisfies properties (I),
(IT), and (III); it is called a lower bounds overlapping interval set clustering if it
only satisfies properties (I) and (IT). They suggest different interval set clustering
algorithms.

There are several differences between rough set clustering and interval set
clusterings. Rough set clustering requires an underlying equivalence and hence
is only applicable to non-overlapping clustering. In general, one may use a non-
equivalence relation to obtain an overlapping clustering. In this case, it is neces-
sary to refer to this underlying relation in order to properly interpret the rough
set lower and upper approximations. In contrast, interval set clustering does not
require such an underlying relation. In some earlier studies of rough set cluster
analysis, it is assumed that a fringe element must belong to the upper bounds
of at least two clusters [6-9], which is motivated by properties of the upper ap-
proximations in the rough set theory. With interval set clustering, we no longer
need to impose such a constraint. It is possible that a fringe element belongs to
the upper bound of only one cluster.

5 Conclusion

There is a growing interest in rough set cluster analysis. An important issue that
has not received enough attention is a semantic interpretation of the derived
clusters. Since rough set approximations must satisfy certain properties, their
directly application to cluster analysis may be unnecessarily restrictive. In this
paper, we outline a framework of interval set cluster analysis, which is motivated
by, and different from, rough set cluster analysis.

The clarification of rough set cluster analysis and interval set cluster analy-
sis have both theoretical and practical values. Although the results from both
clustering methods are intervals in the power set of a set, they have different se-
mantic interpretations. Rough set approximations are approximation of known
sets in an approximation space defined by an underlying equivalence or non-
equivalence relation. In order to explain rough set cluster analysis, we need to
refer to the relation. In contrast, interval sets are approximations of partially



known sets; interval set cluster analysis does not require such a relation. With
interval set clustering, an object can belong to the upper bound of one cluster,
which is different from rough set clustering where an object, if in the upper ap-
proximation of one cluster, must be in the upper approximation of at least one
more cluster.
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