Scalable Context-Sensitive Points-To Analysis
using Multi-Dimensional Bloom Filters.

Rupesh Nasre!, Kaushik Rajan?, R. Govindarajan!, Uday P. Khedker?.

! Indian Institute of Science, Bangalore, India
2 Microsoft Research, Bangalore, India
3 Indian Institute of Technology, Bombay, India.

nasre@csa.iisc.ernet.in, kaushik@msr.microsoft.com,
govind@serc.iisc.ernet.in, uday@cse.iitb.ac.in

Abstract. Context-sensitive points-to analysis is critical for several pro-
gram optimizations. However, as the number of contexts grows exponen-
tially, storage requirements for the analysis increase tremendously for
large programs, making the analysis non-scalable. We propose a scal-
able flow-insensitive context-sensitive inclusion-based points-to analysis
that uses a specially designed multi-dimensional bloom filter to store
the points-to information. Two key observations motivate our proposal:
(i) points-to information (between pointer-object and between pointer-
pointer) is sparse, and (i7) moving from an ezact to an approzimate
representation of points-to information only leads to reduced precision
without affecting correctness of the (may-points-to) analysis. By using
an approximate representation a multi-dimensional bloom filter can sig-
nificantly reduce the memory requirements with a probabilistic bound
on loss in precision. Experimental evaluation on SPEC 2000 benchmarks
and two large open source programs reveals that with an average storage
requirement of 4MB, our approach achieves almost the same precision
(98.6%) as the exact implementation. By increasing the average mem-
ory to 27MB, it achieves precision upto 99.7% for these benchmarks.
Using Mod/Ref analysis as the client, we find that the client analysis
is not affected that often even when there is some loss of precision in
the points-to representation. We find that the NoModRef percentage is
within 2% of the exact analysis while requiring 4MB (maximum 15MB)
memory and less than 4 minutes on average for the points-to analysis.
Another major advantage of our technique is that it allows to trade off
precision for memory usage of the analysis.

1 Introduction

Pointer analysis enables many compiler optimization opportunities and remains
as one of the most important compiler analyses. For client analyses, both pre-
cision and speed of the underlying pointer analysis play a vital role. Several
context-insensitive algorithms have been shown to scale well for large programs
[1][2][3][4]. However, these algorithms are significantly less precise for real world

programs compared to their context-sensitive counterparts[5][6][7][8]. Unfortu-
nately, context-sensitive pointer analysis improves precision at the cost of high —
often unacceptable — storage requirement and analysis time. These large over-
heads are an artifact of the large number of contexts that a program might
have. For example, the SPEC2000 benchmark eon has 19K pointers if we do not
consider context information but the number increases to 417K pointers if we
consider all context-wise pointers. Scaling a context sensitive points-to analysis
is therefore a challenging task. Recent research (see Related Work in Section
5) has focused on the scalability aspect of context-sensitive points-to analysis
and achieves moderate success in that direction[9][4]. However, the memory re-
quirements are still considerably large. For instance, in [9], most of the larger
benchmarks require over 100 MB for points-to analysis. Hence, scalability still
remains an issue. Also, none of the current analyses provide a handle to the user
to control the memory usage of a points-to analysis. Such a feature will be useful
when analyzing a program in a memory constrained environment.

The objective of a context-sensitive points-to analysis is to construct, for
each pointer and context, a set containing all the memory locations (pointees)
that the pointer can point to in that context. This paper proposes a new way of
representing points-to information using a special kind of bloom filter[10] that
we call a multi-dimensional bloom filter.

A bloom filter is a compact, and approximate, representation (typically in
the form of bit vectors) of a set of elements which trades off some precision
for significant savings in memory. It is a lossy representation that can incur
false positives, i.e., an element not in the set may be answered to be in the set.
However, it does not have false negatives, i.e., no element in the set would be
answered as not in the set. To maintain this property, the operations on a bloom
filter are restricted so that items can only be added to the set but can never
be deleted!. Our motivation for using bloom filters for context-sensitive flow-
insensitive points to analysis stems from the following three key observations.

— Conservative static analysis: As with any other compiler analysis, static
points-to analysis tends to be conservative as correctness is an absolute re-
quirement. Thus, in case of static may-points-to analysis, a pointer not point-
ing to a variable at run time can be considered otherwise, but not vice-versa.
As a bloom filter does not have false negatives, a representation that uses
bloom filters is safe. A bloom filter can only (falsely) answer that a pointer
points to a few extra pointees. This only makes the analysis less precise and
does not pose any threat to correctness. Further, as a bloom filter is designed
to efficiently trade off precision for space it is an attractive representation to
enable scalability of points-to analysis.

— Sparse points-to information: The number of pointees that each context-
wise pointer (pointer under a given context) actually points to is many or-
ders of magnitude less than both the number of context-wise pointers and
the total number of potential pointees. Hence, though the points-to set can

1 Some modified bloom filter structures[11] have been proposed that can support dele-
tion but they do so at the expense of introducing false negatives.

potentially be very large, in practice, it is typically small and sparse. A
bloom filter is ideally suited to represent data of this kind. When the set is
sparse, a bloom filter can significantly reduce the memory requirement with
a probabilistically low bound on loss in precision.

— Monotonic data flow analysis: As long as the underlying analysis uses
a monotonic iterative data flow analysis, the size of the points-to set can
only increase monotonically. This makes a bloom filter a suitable choice as
monotonicity guarantees that there is no need to support deletions.

The above observations make a bloom filter a promising candidate for represent-
ing points-to information. However, using the bloom filter as originally proposed
in [10] is not efficient for a context sensitive analysis. We therefore extend the
basic bloom filter to a multi-dimensional bloom filter (multibloom) to enable ef-
ficient storage and manipulation of context aware points-to information. The
added dimensions correspond to pointers, calling contexts, and hash functions.
The bloom filter is extended along the first two dimensions (pointers and calling
contexts) to support all the common pointer manipulation operations (p = g,
p = &q, p = *q and *p = q) and the query operation DoAlias(p,q) efficiently.
The third dimension (hash functions) is essential to control loss in precision. We
theoretically show and empirically observe that larger the number of hash func-
tions, lower is the loss in precision. In effect, multibloom significantly reduces
the memory requirement with a very low probabilistically bound loss in pre-
cision. The compact representation of points-to information allows the context
sensitive analysis to scale well with the program size.
The major contributions of this paper are:

— We propose a multi-dimensional bloom filter (multibloom) that can com-
pactly represent the points-to information with almost no loss in precision.

— Using extended bloom filter operations, we develop a context-sensitive flow-
insensitive points-to analysis for C programs in the LLVM compilation in-
frastructure.

— We show that by using multibloom, a user can control the total memory
requirement of a compiler analysis, unlike in most other analyses.

— We demonstrate the effectiveness of multibloom through experimental evalu-
ation on 16 SPEC 2000 benchmarks and 2 real world applications. With less
than 4MB memory on average (maximum 15MB), multibloom achieves more
than 98% precision, taking less than 4 minutes per benchmark on average.

— We also evaluate precision of a client Mod/Ref analysis. We find that using
multibloom, the NoModRef percentage is within 1.3% of the exact analysis
while requiring 4MB memory and 4 minutes on average for the points-to
analysis.

2 Background

General purpose languages like C pose many challenges to the compiler commu-
nity. Use of pointers hinders many compiler optimizations. Pointers with multiple

void main() { int *f(int *a) { int *g(int *b) {

S1: pl = f(&x); int *u, *v; return b;
p3 =pl; S3u=9(&x); }
S2: p2 = f(&y); S4:v =g(&y);
} return a;

}

Fig. 1. Example program and its invocation graph.

indirections, pointers to functions, etc. only add to these challenges. For ana-
lyzing such complicated programs, however, it is sufficient to assume that all
pointer statements in the program are represented using one of the four basic
forms: address-of assignment (p = &¢q), copy assignment (p = ¢), load assignment
(p = *q) and store assignment (xp = ¢)[12] (we describe how these statements
are handled by our analysis in Section 3). Our analysis handles all aspects of C
(including recursion), except variable number of arguments.

2.1 Context-Sensitive Points-to Analysis

A context-sensitive points-to analysis distinguishes between various calling con-
texts of a program and thus, is able to more accurately determine the points-to
information compared to the context-insensitive version [5]. This precision, how-
ever, comes at a price: storing the number of contexts, which is huge in a large
C program. Consider the example program and its invocation graph shown in
Figure 1. The invocation graph shows that for different contexts, function f has
2 instances and function g has 4 instances. The number of distinct paths from
main to the leaf nodes in the graph is equal to the number of different con-
texts the program has. In general, the number of contexts in a program can
be exponential in terms of the number of functions. For instance, the number
of methods in the open source program pmd is 1971, but it has 10%® context-
sensitive paths[9]. Therefore, for a context-sensitive points-to analysis, the num-
ber of points-to tuples can be exponential (in the number of functions in the
program). The exponential blow up in the number of contexts, typically results
in an exponential blow up in the storage requirement for exact representation of
context-wise points-to tuples.

Reducing the storage requirements of a context-sensitive points-to analysis
has attracted much research in pointer analysis. Several novel approaches have
been proposed for scalable pointer analyses (see Section 5 for related work).
Despite these advances, absolute values of memory and time required are sub-
stantially high. For instance, in [9], all the benchmarks having more than 10K
methods (columba, gantt, jeplorer, jedit, gruntspud) require over 100MB of mem-
ory. For the benchmarks we evaluate, we find that the number of pointers in-
creases by 1 or 2 orders of magnitude if we track them in a context-wise manner.
So it is possible that the memory and time requirements of a context-sensitive

analysis will be a few orders of magnitude higher than a context insensitive
analysis.

Our goal, in this paper, is to reduce this storage and execution time require-
ment of a context-sensitive points-to analysis. This is achieved by using a variant
of bloom filter, which sacrifices a small amount of precision. As we shall see in
the next subsection, once the user fixes the size of a bloom filter, he/she can es-
timate a probabilistic bound on the loss in precision as a function of the average
number of pointees of a pointer (in a given context).

2.2 Bloom Filter

A bloom filter is a probabilistic data structure used to store a set of elements
and test the membership of a given element[10]. In its simplest form, a bloom
filter is an array of N bits. An element e belonging to the set is represented
by setting the kth bit to 1, where h(e) = k and h is the hash function mapping
element e to k" bit. For instance, if the hash function is hy(e) = (3xe+5)%N,
and if N = 10, then for elements e = 13 and 100, the bits 4 and 5 are set.
Membership of an element e is tested by using the same hash function. Note
that element 3 also hashes to the same location as 13. This introduces false
positives, as the membership query would return true for element 3 even if it is
not inserted. Note, however, that there is no possibility of false negatives, since
we never reset any bit.

The false positive rate can be reduced drastically by using multiple hash
functions. Thus, if we use two hash functions for the above example, with
ha(e) = (le/2] + 9)%N, then the elements e = 13, 100 get hashed to bits
5, 9. Note that a membership query to 3 would return false as location 0 (cor-
responding to hs(3)) is 0, even though location 4 (corresponding to hq(3)) is set.
Thus, using multiple hash functions the false positives can be reduced.

The false positive rate P for a bloom filter of size IV bits after n elements are
added to the filter with d hash functions is given by Equation 1 (from [10]).

b (2 "

d
(1-4)
This is under the assumption that the individual hash functions are random and
different hash functions are independent. Unlike traditional data structures used

in points-to analysis[5][8], time to insert elements in a bloom filter and to check
for their membership is independent of the number of elements in the filter.

3 Points-to Analysis using Bloom Filters

A points-to tuple (p, ¢,) represents a pointer p pointing to variable z in calling
context c. A context is defined by a sequence of functions and their call-sites. A
naive implementation stores context-sensitive points-to tuples in a bloom filter
by hashing the tuple (p, ¢,) and setting that bit in the bloom filter. This simple

operation takes care of statements only of the form p = &x. Other pointer
statements, like p = ¢, p = *q, and *p = ¢ require additional care. For example,
for handling p = ¢ type of statements, the points-to set of ¢ has to be copied to
p. While bloom filter is very effective for existential queries, it is inefficient for
universal queries like “what is the points-to set of pointer p under context ¢?’.
One way to solve this problem is to keep track of the set of all pointees
(objects). This way, the query FindPointsTo(p,c) to find the points-to set for a
pointer p under context ¢ is answered by checking the bits that are set for each
of the pointees. Although this is possible in theory, it requires storing all possible
pointees, making it storage ineflicient. Further, going through all of them every
time to process a p = ¢ operation makes this strategy time inefficient. Further
complications arise if we want to support a context-sensitive DoAlias query.
Therefore, we propose an alternative design that has more dimensions than a
conventional bloom filter in order to support the pointer operations.

3.1 Multi-Dimensional Bloom Filter

Our proposed multi-dimensional bloom filter (multibloom) is a generalization of
the basic bloom filter introduced in Section 2.2. It has 4 dimensions, one each for
pointers, contexts, hash functions and a bit vector along the fourth dimension. It
is represented as mb[P][C][D][B]. The configuration of a multibloom is specified
by a 7-tuple (P,C, D, B, M,,, M., H) where P is the number of entries for point-
ers, C is the number of entries for contexts, D is the number of hash functions, B
is the bit-vector size for each hash function, M), is the function mapping pointers,
M. is the function mapping contexts and H is the family of hash functions. The
first 4 entries (P, C, D, B) denote the number of unique values that can be taken
along each dimension. For example C' = 16 would mean that the multibloom has
space for storing the pointee set for 16 contexts in which a pointer is accessed.
We will have to map every context of a given pointer to one among 16 entries.
The total size of the structure is Size = P x C' x D x B. Functions M, and M,
map the pointer p and context ¢ to integers Pidx and C'idx in the range [0, P — 1]
and [0, C' — 1] respectively. A family of hash functions H=(hy, ha,---,hp) map
the pointee x to D integers Hidxy, Hidxs, - - -, Hidxp respectively. These play
the same role as the hash functions in Section 2.2.

Given a points-to tuple (p, ¢, x), it is entered into the multibloom as follows.
Pidx, Cidz and (Hidz,, Hidxs, - -, Hidep) are obtained using M, M, and H
respectively. The tuple is added to multibloom by setting the following D bits:

mb [Pidzx] [Cidz] [i| [Hidx;) = 1, Vi € [1, D]

Extending Bloom Filter Operations for p = ¢ Statement: While process-
ing p = ¢ type of statement under context ¢, all we need to do is to find the
B x D source bits from the multibloom that correspond to pointer ¢ under the
context ¢ and bitwise-OR it with the B x D destination bits corresponding to
pointer p under context c¢. This logically copies the pointees of g on to p without
having to universally quantify all the pointees that ¢ points to. The pseudo-code
is given in Algorithm 1.

Algorithm 1 Handling statement p = ¢ under context ¢ in multibloom, with D
hash functions and a B bit vector
Pidzsre = Mp [q], Cidzsre = M. [c]
Pidzgst = M,y [p], Cidzast = M. [c]
fori=1to D do
for j =1to B do
mb [Pidxgst] [Cidxast] [1] [j] = mb [Pidxast] [Cidxast] [] [1]
V mb [Pidzsrc] [Cidzsre [1] 4]

end for
end for
statement iteration 1 iteration 2
hl
p3 =pl 03 hi | p3l 1 i\
h2 1 1 2
h1 1 1 h1
p2
p2=p3 P2 h2 1 1 h2
pl = &x p1l hl No change.
1 h2
- p 1 h1 No change.
2=& Y.
p y p 1 h2
1 hl
= 3 No change.
p3 =p2 p 1 h2 9

Fig. 2. Example program to illustrate points-to analysis using bloom filters. First col-
umn shows the program statements. Later columns show the state of bloom filters for
different pointers after successive iterations over constraints until a fix-point is reached.

Example: Consider the program fragment given in the first column of Fig-
ure 2. Consider a multibloom with configuration

<P70aDaBa]\/[paM07H> = <3117218717007(h17h2)>

The map M), is an identity function I that returns a different value for p1, p2
and p3. The two hash functions h; and hg are defined as hy(x) = 0, ha(z) =
5, h1(y) = 3 and ha(y) = 3. Cp maps every context to entry 0, since C' = 1. As
there is only one entry for context and each statement modifies one pointer, we
illustrate the multibloom as 3 bloom filters. For clarity, we depict the multibloom
as multiple 2-dimensional arrays in Figure 2. Initially, all the bits in the buckets
of each pointer are set to 0. The state of bloom filters after every iteration (the
analysis is flow-insensitive) for the example code is shown in Figure 2.
Extending Bloom Filter Operations for #p = ¢ and p = xq: There
are two ways to handle statements of the form xp = ¢ and p = %q. One way
is to extend the above strategy by adding more dimensions to the multibloom.
This is extensible to multiple levels of indirection. This strategy would add more
dimensions to our 4-dimensional bloom filter, one for each pointer dereference.

Clearly, this adds to storage and analysis time requirements. The second way is
to conservatively assume that a pointer to a pointer points to the universal set
of pointees and process the statement conservatively. The number of pointers to
pointers is much less in programs compared to single-level pointers. Therefore,
depending on the application, one may be willing to lose some precision by this
conservative estimate. To obtain a good balance of storage requirement, analysis
time and precision, we employ a combination of the above two techniques. We
extend multibloom for two-level pointers (**p) and use the conservative strategy
(universal set of pointees) for higher-level pointers (***p, ****p and so on). The
conservative strategy results in little precision loss considering that less than
1% of all dynamic pointer statements contain more than two levels of pointer
indirections (obtained empirically).

Extending multibloom for two-level pointers makes it look like mb[P][S][C][D][B]
where S is the number of entries for pointers that are pointees of a two-level
pointer. For single-level pointers, S is 1. For two-level pointers S is configurable.
For higher-level pointers S is 1 and an additional bit is set to indicate that the
pointer points to the universal set of pointees.

To handle load statement p = xq where p is a single-level pointer and q is
a two-level pointer, all the cubes mb[Q][i] (i.e., C' x D x B bits) corresponding
to pointer ¢, Vi = 1..5 are bitwise-ORed to get a resultant cube. Note that
S = 1 for the result, i.e., the result is for a single-level pointer. This cube is
then bitwise-ORed with that of p, i.e., with mb[P][1]. This makes p point to the
pointees pointed to by all pointers pointed to by q.

To handle store statement xq = p where p is a single-level pointer and ¢
is a two-level pointer, the cube mb[P][1] of p is bitwise-ORed with each cube
mb[Q][i] of ¢, Vi = 1..S. Tt makes each pointer pointed to by ¢ point to the
pointees pointed to by p.

Handling context-sensitive load/store statements requires a modification to
address-of assignment p = &q. If p is a two-level pointer, then to process the
address-of statement in context ¢, D x B bits of ¢ are bitwise-ORed with D x B
bits of p in the appropriate hash entry for ¢ (see example below).

For mapping a pointer onto the range 1..5, we need a mapping function Mj.
The multibloom configuration is thus extended to include S and Mj.

Example: Consider the program fragment given in the first column of Figure
3. Consider a multibloom with configuration

<P75707D7B7MP7M87M07H> = <5727171787[7h57_7(h)>

The map M, is an identity function I that returns a different value for pl
through p5 The hash function h is defined as h(z) = 1 and h(y) = 4. The
mapping function hy is defined as hs(pl) = 1 and hs(p2) = 2. Initially, all bits
in the buckets for each pointer are set to 0. The state of bloom filters after each
statement is processed is shown in the second column of Figure 3. Third column
describes the multibloom operation. Note that the above strategy of using an
additional dimension for two-level pointers can be extended to include more
dimensions to accommodate higher-level pointers.

statement multibloom processing. comments.
pl = &x pal Tl T T T T 11 set bit 1 corresponding to x.
p2 = &y p2[| | | | 1| | |] set bit 4 corresponding to y.
p3=&pl | p3—1L bitwise—OR p1'’s bucket.
p4 = &p2 p4 1 bitwise—OR p2’s bucket.

_ bitwise—OR corresponding
p3 =p4 P32+ I buckets of p3 and p4.
p5 = *p3 pS[(2] [[[[| bitwise-OR p3's buckets,

bitwise—OR with p5’s bucket.

Fig. 3. Example program to illustrate handling load/store statements. First column
shows the program statements. Second column shows the bloom filter state after each
statement is processed. Third column describes the multibloom operation.

Storage Requirement of Multibloom: A quick analysis explains why
multibloom is space efficient. Consider the SPEC 2000 benchmark parser which
has about 10K pointers and an average of 3 pointees per context-wise pointer,
on an average about 16 contexts per pointer, and around 20% two- or higher-
level runtime pointer-statements. Consider a multibloom with P = 10K, S = 5,
C =8, D =8 and B = 50. The total memory requirement for the multibloom
is 10K x (0.2 x 5+ 0.8 x 1) x 8 x 8 x 50 bits = 4.32MB. This is much less than
what a typical analysis would require, which is at least a few tens of megabytes
for a program having 10K pointers.

To measure the false positive rate we will now try to map the values back
from a 4-dimensional multibloom to a 2-dimensional bloom filter so that we can
apply Equation 1. As there are 16 contexts on an average per pointer and C' = 8,
on average 2 contexts would map to a given context bin. Therefore the number
of entries per bloom filter would be twice the average number of pointees per
context-wise pointer. Now assuming the representation across pointers is more
or less uniform, we can use the equation with N = Bx D =400, d=D =8, n =
3 x 2 =6 (average number of contexts per bin multiplied by average number of
pointees per context-wise pointer). This gives a false positive rate of 0.5% per
Equation 1. In practice we find that the loss in precision is not perceivable at
all. The NoAlias percentage, a metric used in [13] (explained in Section 4), in
this case for the approximate representation is exactly the same as that for an
exact representation which takes significantly higher amounts of memory.

3.2 Querying the Multibloom

The ultimate goal of alias analysis is to answer whether two pointers p and ¢
alias with each other either in a specific calling context or in a context-insensitive
manner. We describe below how multibloom can be used to answer these queries.

Algorithm 2 Handling context-sensitive DoAlias(q1, g2, ¢)
Pidxq = My [q1], Cidzgr = M. [c]
Pidzqo = My [q2], Cidxgz = M. [c]
fori=1to D do
hasPointee = false
for j =1 to B do
if mb[Pidzq1] [Cidxgi] [1] [j] == mb[Pidxzg2] [Cidzge] [i] [j] == 1 then
hasPointee = true
break
end if
end for
if hasPointee == false then
return NoAlias
end if
end for
return MayAlias

Algorithm 3 Handling context-insensitive DoAlias(q1, q2)

for c=1to C do
if DoAlias(q1,q2,c) == MayAlias then
return MayAlias
end if
end for
return NoAlias

Context-Sensitive Query A context-sensitive query is of type DoAlias(q1, gz, ¢).
To answer this query we need to first extract the B x D bit sets that belong to
¢q1 and g2 under the context c. For each hash function the algorithm needs to
determine if the corresponding bit vectors have at least one common bit with
the value 1. If no such bit exists for any one hash function, then ¢; and g» do not
alias. The pseudo-code is given in Algorithm 2. Note that this procedure is for
single level pointers. In case q; and g2 are higher-level pointers, the outermost
for-loop of the procedure needs to be run for each value of s where s € [1..5].

Context-Insensitive Query A context-insensitive query will be of type
DoAlias(qi, q2). The query is answered by iterating over all possible values of the
context ¢ and calling the context-sensitive version of DoAlias: DoAlias(q1, g2, ¢).
Only if under no context do ¢q; and g alias, it concludes that there is no alias.
The pseudo-code is shown in Algorithm 3.

4 Experimental Evaluation.

4.1 Implementation Details and Experimental Setup

All our implementation is done in the LLVM compiler infrastructure[13] and the
analysis is run as a post linking phase. We implement two points-to analyses, one

which has an exact representation (without false positives) of the points-to set
and the other uses our proposed multiblooom representation. For an exact repre-
sentation we store pointees per context for a pointer using STL vectors[14]. Both
versions are implemented by extending Andersen’s algorithm [15] for context-
sensitivity. They are flow-insensitive and field-insensitive implementations that
use an invocation graph based approach. Each aggregate (like arrays and struc-
tures) is represented using a single memory location. Neither version implements
optimizations like offline variable substitution[16].

Bench |KLOC |Total |Pointer|No. of Bench Memory (KB) |Precision
-mark Inst Inst Fns -mark S=1 S=5 |S=1|5=5
gce 222.185(328425| 119384| 1829 gce 220973|302117.00| 84.2| 85.3
perlbmk | 81.442/143848| 52924| 1067 perlbmk [99346.9(143662.00| 89.3| 90.6
vortex 67.216| 75458| 16114| 963 vortex |44756.4| 62471.00f 91|91.5
eon 17.679|126866| 43617 1723 eon 108936|131552.00| 96.3| 96.8
httpd |125.877|220552| 104962| 2339 httpd 221633|233586.00| 92.8| 93.2
sendmail|113.264|171413| 57424 1005 sendmail| 122310|127776.00| 90.2| 90.4
parser 11.394| 35814| 11872| 356 parser |23511.4| 43093.10| 97| 98
gap 71.367|118715| 39484| 877 gap 74914.8| 84551.70|96.7|97.4
vpr 17.731| 25851 6575 228 vpr 15066.4| 23676.60| 93.6| 94.2
crafty 20.657| 28743| 3467| 136 crafty 10223.9| 10891.20| 96.9| 97.6
mesa 59.255| 96919 26076/ 1040 mesa 50389.7| 55066.90| 99.2| 99.4
ammp 13.486| 26199 6516| 211 ammp |12735.8| 15282.90| 99.1{ 99.2
twolf 20.461| 49507| 15820 215 twolf 29037.2| 33663.10{99.1|99.3

gzip 8.618| 8434 991 90 gzip 2807 3005.9190.6| 90.9
bzip2 4.650| 4832 759 90 bzip2 2128.51| 2333.82|87.7| 88
mcf 2.414| 2969 1080 42 mcf 2122.09| 3758.17|94.5/94.5
equake 1.515 3029 985 40 equake 2245.6| 3971.50(97.6|97.7
art 1.272| 1977 386 43 art 1090.72| 1693.82| 88.6| 88.6

Table 1. Benchmark characteristics Table 2. Sensitivity to parameter S.

We evaluate performance over 16 C/C++ SPEC 2000 benchmarks and two
large open source programs: httpd and sendmail. Their characteristics are given in
Table 1. KLOC'is the number of Kilo lines of code, Total Inst is the total number
of static LLVM instructions, Pointer Inst is the number of static pointer-type
LLVM instructions and No. of Fnsis the number of functions in the benchmark.
The LLVM intermediate representations of SPEC 2000 benchmarks and open
source programs were run using opt tool of LLVM on an Intel Xeon machine
with 2GHz clock, 4MB L2 cache and 3GB RAM. To quantify the loss in precision
with a multibloom implementation, we use the NoAlias percentage metric used
in LLVM. It is calculated by making a set of alias queries for all pairs of pointer
variables within each function in a program and counting the number of queries
that return NoAlias. Larger the NoAlias percentage, more precise is the analysis
(upper bounded by the precision of the exact analysis).

We evaluate the performance of a multibloom for many different configura-
tions and compare it with the exact implementation. In all evaluated configu-
rations we allow the first dimension (P) to be equal to the number of unique
pointers. We empirically found that the number of entries S for pointers pointed

Precision (NoAlias %) Memory (KB)

Bench multibloom multibloom

-mark exact|4-4-10|8-8-10| 8-12-50(8-16-100|| exact|4-4-10|8-8-10| 8-12-50|8-16-100
tiny | small{medium| large tiny | small|medium/| large

gee OOM| 71.8| 79.6 83.4 85.3|| OOM| 3956|15445| 113577| 302117

perlbmk [OOM| 75.3] 85.0 89.3 90.6|/| OOM| 1881| T7345| 54008| 143662
vortex |OOM| 85.7] 90.1 91.2 91.5|| OOM| 818| 3194| 23486| 62471
eon 96.8| 81.5| 88.9 94.3 96.8((385284| 3059|11942| 87814| 233586
httpd 93.2] 90.1} 92.1 92.9 93.2{(225513| 1673| 6533| 48036 127776
sendmail| 90.4| 85.6| 88.2 90.3 90.4((197383| 1723| 6726| 49455| 131552
parser 98.0| 65.8] 97.3 97.9 98.0([121588| 565| 2204| 16201| 43094

gap 97.5| 88.2| 93.5 96.7 97.4|| 97863| 1107| 4323 31786| 84552
vpr 94.2| 85.9| 93.9 94.1 94.2]| 50210| 310 1211 8901 23677
crafty 97.6| 97.1| 97.6 97.6 97.6|| 15986| 143| 557 4095 10892
mesa 99.4| 89.6| 96.6 99.1 99.4|| 8261| 721} 2816| 20702| 55067
ammp 99.2] 98.4| 99.0 99.2 99.2]| 5844| 201 782 5746 15283
twolf 99.3] 96.7 99.1 99.3 99.3|| 1594| 441] 1721 12656| 33664
gzip 90.9] 88.8| 90.5 90.8 90.9|| 1447 42| 164 1205 3205
bzip2 88.0| 84.8| 88.0 88.0 88.0 519 31, 120 878 2334
mcf 94.5| 91.3| 94.3 94.5 94.5 220 501 193 1413 3759
equake 97.71 96.9] 97.7 97.7 97.7 161 52| 204 1494 3972
art 88.6| 86.6| 88.4 88.6 88.6 42 23 87 637 1694

Table 3. Precision (NoAlias %) vs Memory (in KB). OOM means Out Of Memory.

to by two-level pointers gives a good trade off between memory and precision for
S = 5. The hash family H, the context mapper M. and the pointer-location map-
per M, are derived from the in-built pseudo random number generator. Many
different combinations were tried for the other three dimensions: C' = (4, 8,16),
B = (10,20,50,100) and D = (4,8,12,16). From now on, when we report the
results, we refer to the multibloom configuration by the tuple (C'— D — B). Below
we report the results for select configurations that showed interesting behavior.

4.2 Tradeoff between Precision, Memory and Analysis Time

In Tables 3-4 we report the precision, time and memory requirements for various
benchmarks. We compare 4 different multibloom configurations namely tiny t (4-
4-10), small s (8-8-10), medium m (8-12-50) and large | (8-16-100) with ezact
which does not have any false positives.

Three out of the 18 benchmarks run out of memory when we run an exact
analysis, highlighting the need for a scalable context-sensitive points-to analy-
sis. All the multibloom configurations ran to completion successfully for these
three benchmarks. The tiny configuration indicates significant reduction in both
memory and analysis time. The memory requirement is three orders less, while
the access time is reduced to about one-fourth for all benchmarks which take at
least 20 seconds. The precision (in terms of NoAlias percentage) is within 7% for
tiny of an exact analysis on average. At the other end, medium and large config-

Precision (NoAlias %) Time (s)

Bench multibloom multibloom
-mark exact t s| m 1 exact t S m 1
gce OOM|71.8]79.6|83.4|85.3|| OOM.|791.705|3250.627|10237.702|27291.303

perlbmk |OOM|75.3|85.0{89.3|90.6|| OOM.| 76.277| 235.207| 2632.044| 5429.385
vortex |OOM|85.7/90.1]91.2|91.5|| OOM.| 95.934| 296.995| 1998.501| 4950.321
eon 96.8(81.5|88.9194.3|96.8(|231.166| 39.138| 118.947| 1241.602| 2639.796
httpd 93.2190.1|192.1192.9|93.2|| 17.445| 7.180| 15.277 52.793| 127.503
sendmail| 90.4|85.6/88.2190.3|90.4|| 5.956| 3.772 6.272 25.346 65.889
parser 98.0(65.8/97.3|97.9|98.0|| 55.359| 9.469| 31.166| 145.777| 353.382

gap 97.5|88.2|193.5|96.7|97.4||144.181| 5.444| 17.469| 152.102| 419.392
vpr 94.2185.9193.9|94.1]|94.2|| 29.702| 5.104| 18.085 88.826| 211.065
crafty 97.6]97.1|197.6|97.6|97.6|| 20.469| 2.636 9.069 46.899| 109.115
mesa 99.4189.6/96.6|99.1199.4|| 1.472| 1.384 2.632 10.041 23.721

ammp 99.2198.4199.0199.2199.2|| 1.120| 1.008 2.592 15.185 38.018
twolf 99.3196.7|99.1199.3199.3|| 0.596| 0.656 1.152 5.132 12.433

gzip 90.9(88.8/90.5|90.8/90.9]| 0.348| 0.192 0.372 1.808 4.372
bzip2 88.0(84.8|88.0|88.0|88.0(| 0.148| 0.144 0.284 1.348 3.288
mcf 94.5191.3|94.3|194.5|94.5|| 0.112| 0.332 0.820 5.036 12.677
equake 97.7196.9(97.7|97.7|197.7|| 0.224| 0.104 0.236 1.104 2.652
art 88.6/86.6/88.4|88.6|88.6/| 0.168| 0.164 0.408 2.404 6.132

Table 4. Precision (NoAlias %) vs Time (in sec). OOM means Out Of Memory. t is
tiny, s is small, m is medium and [is large configuration.

urations achieve full precision for all the benchmarks with significant savings in
memory requirement for those requiring at least 15MB memory. However, this
comes at a price in terms of analysis time. Thus medium and large are good
configuration to use if precision is an absolute requirement. Even for the larger
benchmarks they will lead to termination as they still provide a compact storage.

The small configuration proves to be an excellent trade off point. It achieves
a good precision (within 1.5%) on average and achieves more than 10-fold mem-
ory reduction for benchmarks requiring more than 10MB memory for an exact
analysis. It takes around the same amount of time on benchmarks that termi-
nate with exact analysis. It should be noted that for smaller benchmarks (mesa,
ammp, twolf, gzip, bzip2, mcf, equake and art) the configuration small requires
more time than exact configuration. However, for larger benchmarks we see sig-
nificant improvements in analysis time using bloom filter. One unique advantage
of using multibloom is the user-control over various parameters to trade off pre-
cision for memory or vice versa. To reduce memory requirement for medium
and large, we experimented with smaller values of S. The results for S = 1
versus S = 5 are given in Table 2 (memory in KB and precision as NoAlias per-
centage). We observe that with at most 1% reduction in average precision, we
can obtain around 18% reduction in average memory requirement. In summary,
a multibloom representation guarantees a compact storage representation for
context-sensitive points-to analysis and allows the user to pick the configuration
depending on whether analysis time or accuracy is more desirable.

me—s-10
70— 8—12--50
60— [l 8—16--100

NoModRef percentage

o e e s i o

Fig. 4. Mod/Ref client analysis.

4.3 Mod/Ref Analysis as a Client to Points-to Analysis

Next we analyze how the loss in precision in the points-to analysis due to false
positives affect the client analyses. We use the Mod/Ref analysis as the client of
our multibloom based points-to analysis. For a query GetModRe f (callsite, pointer),
the Mod/Ref analysis checks whether callsite reads or modifies the memory
pointed to by pointer. It has four outcomes: (i) NoModRef: call-site does not
read from or write to memory pointed to by pointer, (ii) Ref: call-site reads from
the memory pointed to by pointer, (iii) Mod: call-site writes to (and does not
read from) the memory pointed to by pointer, and (iv) ModRef: call-site reads
from and writes to the memory pointed to by pointer. ModRef is most conser-
vative and should be returned when it is not possible to establish otherwise for
a safe analysis. The more precise an approximate points-to analysis the more
often will it answer NoModRef (upper bounded by an ezact analysis). Figure 4
shows percentage of queries answered NoModRef by the analysis. From the fig-
ure, it can be seen that the NoModRef percentage with multibloom is 96.9% of
the exact analysis even with a tiny configuration. For small configuration, it im-
proves further to 98.7%. This shows that a client analysis is hardly affected due
to loss in precision by using an approximate representation, while still enjoying
the benefits of reduced memory and time requirements.

An important aspect of using multibloom is the provision of selecting a con-
figuration on need basis. For more precise analysis, one can trade off memory
and speed requirements by choosing larger values for C; D and B. For scalable
analyses, one can reduce these values trading off some precision.

5 Related Work.

Many scalable pointer analysis algorithms are context- and flow-insensitive [1].
As scalability became an important factor with increasing code size, interest-
ing mechanisms were introduced to approximate the precision of a full blown

context-sensitive and flow-sensitive analysis. [17] proposed one level flow to im-
prove precision of context-insensitive, flow-insensitive analyses, still maintaining
the scalability. Later, several inclusion-based scalable analyses were proposed
[2][3][4], based on some novel data structures for points-to analysis like BDD.
Similar to ours, several context-sensitive but flow-insensitive analyses have been
recently proposed. Since inclusion-based analyses are costly, several unification-
based algorithms were introduced, trading off precision for speed [1], [18]. Several
context-sensitive algorithms proposed earlier [5][6][7][8] are flow-sensitive. Flow-
sensitivity adds to precision but typically makes the analysis non-scalable. The
idea of bootstrapping [19] enables context- and flow-sensitive algorithms to scale.

Various enhancements have also been made to the original Andersen’s inclusion-
based algorithm: online cycle elimination[20] to break dependence cycles on the
fly, offline variable substitution[16] to reduce the number of pointers tracked
during the analysis, location equivalence[21] and semi-sparse flow-sensitivity[22].
These enhancements are orthogonal to the usage of bloom filters. One can im-
plement a points-to analysis with, for instance, online cycle elimination with
points-to tuples stored in bloom filters and enjoy combined benefits.

Several novel data structures have been used in the last decade to scale
points-to analysis, like ROBDD|2][23][9], ZBDD[24]. These data structures store
exact representation of the points-to information and have no false positives. In
contrast, bloom filters are useful for storing information in an approximate way.
Also, our multibloom filter approach provides the user to control the memory
requirement with a probabilistic lower bound on the loss in precision. Optimistic
results for pointer analysis hint that bloom filters would be very useful for other
compiler analyses as well.

6 Conclusions

In this paper we propose the use of multi-dimensional bloom filter for stor-
ing points-to information. The proposed representation, though, may introduce
false positives, significantly reduces the memory requirement and provides a
probabilistic lower bound on loss of precision. As our multibloom representa-
tion introduces only false positives, but no false negatives, it ensures safety for
(may-)points-to analysis. We demonstrate the effectiveness of multibloom on 16
SPEC 2000 benchmarks and 2 real world applications. With average 4MB mem-
ory, multibloom achieves almost the same (98.6%) precision as the exact analysis
taking about average 4 minutes per benchmark. Using Mod/Ref analysis as the
client, we find that the client analysis is not affected that often even with some
loss of precision in points-to representation. Our approach, for the first time,
provides user a control on the memory requirement, yet giving a probabilistic
lower bound on the loss in precision. As a future work, it would be interesting
to see the effect of approximation introduced using bloom filters with the ap-
proximations introduced in control-flow analyses such as kCFA or in unification
of contexts.

References

1.
2.

3.

4.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

B. Steensgaard, “Points-to analysis in almost linear time,” in POPL, 1996.

M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Umanee, “Points-to analysis
using BDDs,” in PLDI, 2003.

N. Heintze and O. Tardieu, “Ultra-fast aliasing analysis using CLA: A million lines
of C code in a second,” in PLDI, 2001.

O. Lhotak and L. Hendren, “Scaling Java points-to analysis using spark,” in CC,
2003.

M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural points-
to analysis in the presence of function pointers,” in PLDI, 1994.

. W. Landi, B. G. Ryder, and S. Zhang, “Interprocedural modification side effect

analysis with pointer aliasing,” in PLDI, 1993.

J. Whaley and M. Rinard, “Compositional pointer and escape analysis for java
programs,” in OOPSLA, 1999.

R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer analysis for C
programs,” in PLDI, 1995.

J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams,” in PLDI, 2004.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” in
Communications of the ACM 13(7):422426, 1970.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable wide-
area web cache sharing protocol,” in SIGCOMM, 1998.

R. Rugina and M. Rinard, “Pointer analysis for multithreaded programs,” in PLDI,
1999.

http://llvim.org, “The LLVM compiler infrastructure,”
http://en.wikipedia.org/wiki/Standard_Template_Library, “Standard Template
Library,”

L. O. Andersen, “Program analysis and specialization for the C programming lan-
guage,” in PhD Thesis, 1994.

A. Rountev and S. Chandra, “Offline variable substitution for scaling points-to
analysis,” in PLDI, 2000.

M. Das, “Unification-based pointer analysis with directional assignments,” in
PLDI, 2000.

M. Fahndrich, J. Rehof, and M. Das, “Scalable context-sensitive flow analysis using
instantiation constraints,” in PLDI, 2000.

V. Kahlon, “Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis,” in PLDI, 2008.

M. Faehndrich, J. S. Foster, Z. Su, and A. Aiken, “Partial online cycle elimination
in inclusion constraint graphs,” in PLDI, 1998.

B. Hardekopf and C. Lin, “Exploiting pointer and location equivalence to optimize
pointer analysis,” in SAS, 2007.

B. Hardekopf and C. Lin, “Semi-sparse flow-sensitive pointer analysis,” in POPL,
2009.

J. Zhu and S. Calman, “Symbolic pointer analysis revisited,” in PLDI, 2004.

O. Lhotak, S. Curial, and J. N. Amaral, “Using ZBDDs in points-to analysis,” in
LCPC; 2007.

