Probabilistic Combination of Multiple Evidence
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Abstract. In pattern recognition systems, data fusion is an important
issue and evidence theory is one such method that has been successful.
Many researchers have proposed different rules for evidence theory, and
recently, a variety of averaging rules emerged that are better than others.
In these methods, the key issue becomes how to give the weights to
the multiple contributing factors, in order to calculate the average. To
get better weights for the multiple bodies of evidence, we propose the
use of structural information of the evidence. The bodies of evidence
lie on a certain informational structure which can be described by a
probability distribution and the probability of each evidence can serve
as a weight for the evidence. Our experimental results show that our
method outperforms other previous methods.
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1 Introduction

The nature and pace of advances in machine learning techniques is dramatically
enhancing the effectiveness of pattern recognition methods. Many algorithms
have been proposed for pattern recognition (see [1,2] and references therein).
However, usually these algorithms are suitable to handle only one input signal
source, even though the signal might be a mixture from multiple sources (i.e., a
multivariate variable). When humans recognize some kind of pattern, they use
multiple sensors and merge them together, or multiple persons might recognize
something and then combine their opinions. This is because one sensor or a single
person may not be good enough to unambiguously recognize something, and in
this case more sensors or persons may lead to clearer and more stable recognition.
Furthermore, the multiple sources (signals or humans) may have different levels
of uncertainty associated with them. Therefore, in pattern recognition systems,



we need to handle such different levels of uncertainties from multiple sources
or multiple recognition systems which could be implemented as neural networks
(NNs) [3]. In this case, data fusion becomes an important issue, where Bayesian
theory, fuzzy logic, and evidence theory are known to be effective, even though
there is no consensus on which method is more universally applicable [4-7].

Evidence theory (ET) is a mathematically well defined theory for handling
conflict between different bodies of evidence. It is conceptually the same as
Bayesian theory except that it uses epistemic (subjective) uncertainty [8]. The
advantages of ET include its flexibility in theory and easy implementability. In
ET, a set of elements can be considered as a hypothesis with an associated degree
of belief, and the sum of all beliefs does not have to be 1.0, unlike Bayesian
methods where the sum of all probabilities should equal 1.0. After the initial
introduction of ET by Dempster [5], it has been improved [6,9, 7] because in
some cases the original ET’s combination rule is against our intuitive reasoning.
Many researchers have proposed different rules to address this issue, and recently,
some effective averaging rules have emerged, and in these rules, how to assign
the weights becomes an important issue [9-11]. These extensions of ET have
been applied to many pattern recognition problems [12,13].

In this paper, we focus on an averaging method for the combination rule
as proposed in [9-11]. We use the fact that multiple bodies of evidence give a
probability distribution, and the probability of each piece of evidence on this dis-
tribution can serve as a weight for that evidence. Here, we simply use a Gaussian
distribution as an approximation, to get the weights, and in turn calculate the
average for the multiple bodies of evidence. We used the same data set from pub-
lished averaging methods, and compared our method to those previous methods.
Our experimental results are promising since our proposed method uses more
information than other previous methods.

The rest of this paper is organized as follows. First, we briefly review ET
and some averaging rules for ET in section 2. Then, in section 3, we propose
a new probabilistic combination rule with discussions about its merit against
the previous methods and its potential application to neural network systems.
Section 4 shows two experimental results with analysis. Finally, we conclude our
work with a brief outlook in section 5.

2 Related Work

2.1 Dempster-Shafer theory

Dempster [5] proposed evidence theory and Shafer [6] developed it which led to
Dempster-Shafer theory (D-S theory). Here, we give a brief review of the D-S
theory. For details, see [7] and references therein.



Let © be a set of hypotheses, and m be a basic belief assignment (BBA)
which is a function from a subset of © to [0, 1] with the following properties.

m(¢) =0,
1. 1)

ACO

When two evidence bodies m; and mqy are given, the Dempster’s combination
rule for m(A) is defined by

m(4) = Zpne=a ™ B)ma(€) 2

where

K= Y m(B)msy(C). (3)

BNC=4¢

Here, K indicates basic probability associated with conflict. This can be easily
expanded to more than two evidence bodies.

As pointed out in [9], in some cases Dempster’s combination rule is against
our intuitive reasoning. For example, when only one evidence has 0 belief but all
others have 1 belief, still the combination is 0. To overcome this weakness, ET
has been improved in some directions such as Yager’s modified Dempster’s rule,
Inagaki’s unified combination rule, Zhang’s center combination rule, Dubois and
Prade’s disjunctive consensus rule, mixing or averaging, convolutive X-averaging
and so on [7]. Among all these approaches, the averaging approach is known to
be better than others [7,11].

2.2 Averaging rules

In [9], Murphy proposed an averaging rule to avoid the nonintuitive combination
in D-S theory as shown in the previous section. When there are N evidence
bodies, Murphy’s rule first calculates the average of each hypothesis for the
evidence. After calculating the averages, it applies the D-S combination rule
with the averages N — 1 times. That is, Eq. (2) is modified as follows.

Th(A) — ZBQC:{!_iKB)m(C)’ (4)

where -
K= Y mB)m(C). (5)
BNC=¢
Here, m(B) and m(C) are the averages of evidence for B and C, respectively.
Note that it started using a first order statistics which is the average of the
evidence. Here, all bodies of evidence have the same importance with the same
weight in calculating the average, which is not always the case.
As in human decision making, each evidence needs to be assigned with a
different weight. If one evidence is in harmony with other evidence, then it can



be considered with high importance. Likewise, if one evidence is in high con-
flict, it can be considered less important. So, instead of a simple averaging rule,
some other researchers have tried a weighted sum of evidence bodies [11, 10].
Although their methods can not be easily summarized in a few equations, gener-
ally speaking, they use distances between evidence bodies for different weights,
which can be interpreted as a second statistics of the evidence. These methods
have better performance than Murphy’s simple averaging method. However, the
distance-based weight methods do not use all the information of the structure
where the evidence bodies lie on. Also, they are not plugged into probability
theory seamlessly and they are complex to implement.

3 Probabilistic Combination Rule

In this paper, we propose a new probabilistic combination rule for ET. Basically,
as in [9] and [11,10], we calculate a weighted sum of evidence bodies for the
representative value for each hypothesis from all the evidence. However, it is
natural to assume that evidence bodies make a structure as in other data sets
(see manifold learning methods [14-16]) and this structure can be described by
a probability distribution. Then, we can use the probability of evidence on the
distribution for different weights. Here, we calculate a new weighted sum which
uses probability of the evidence.

Let m;(A;) be the jth evidence of ith hypothesis, where ¢ = 1,...,C and j =
1,...,N. p; and o are the mean and the variance of ith hypothesis, respectively.
As in the maximum likelihood (ML) estimate, we use a biased variance instead of
an unbiased one, since the mean is also estimated. Moreover, the biased one gives
more informative result especially with the small number of data points, even
though the unbiasedness is a very attractive property [17, chap 4]. We assume a
Gaussian distribution for the evidence bodies of each hypothesis to get a weight
w;; for mj(A;) as follows.

1 {(mj(A,;) Mi)Q}’ (©)

Wij = — eXp )

Zi (s
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where Z; is a normalization term so that Zj w;; = 1. Note that we cannot
use a multivariate Gaussian model which might be able to use correlations be-
tween hypotheses, because the number of evidence might be less than that of
the hypotheses. Now, the weight for each evidence is given by

_ 1
wj = Nzwi]" (7)

Then, the weighted sum of the evidence bodies for the hypothesis A; is obtained
by

mp(A;) = Z wim;(A;). (8)



After calculating the weighted sums for all the hypotheses, we apply D-S com-
bination rule N — 1 times as other averaging methods do. With Eq. (8), Eq. (2)
is modified as follows.

ﬁlp(A) _ ZBNC:? T_?LPIEVB)mP(C) , (9)
where -
K, = Z mp(B)mp(C)~ (10)
BNC=6¢

So, if one evidence has low probability in the evidence distribution, a very
low weight is assigned to that evidence according to the probability. Likewise,
an evidence with a high probability has high importance. In such a way, we use
the information of the structure where the evidence bodies lie on and this is
mathematically well defined even though the distribution model we assume here
is simple.

Our proposed method uses probability of evidence instead of just mean or
distances. Although the probability is based on corresponding Mahalanobis dis-
tance between the evidence and the mean when we use a simple Gaussian model,
it is simply calculated by the distribution. We can expand this approach to more
complicated distributions with many other density estimation methods such as
a mixture of Gaussian model rather than a simple Gaussian distribution. So, our
method is conceptually different from others, and physically this probability is
more meaningful than the normalized distance for weights [18,19]. Also, proba-
bility is better than distance in terms of performance, which is confirmed in the
next section.

In addition to combining the results from multiple recognition systems, our
technique can be used for data fusion to help develop a more efficient and robust
neural network system. For example, given two sets of measurements, the number
of input nodes have to be doubled, making the system more complex. However,
we can use our technique to combine the measurements, thus reducing the input
layer size. Furthermore, our method can help remove noise or outliers through
the data fusion process. As a result, the neural network can converge faster
(fewer input nodes) and be more robust (noise resistent).

4 Experiments

In order to show the useful behavior of our method, we carried out experiments
with two different data sets used in the previous published methods: (a) the
data set in [11] (Data A) and (b) the data set in [10] (Data B). We compared
our proposed method to their methods proposed in each paper. We implemented
D-S theory, Murphy’s averaging method and Chen’s averaging method in [11]
but we simply used Yong’s results from the paper [10], for comparison with our
results. Actually both cases are for target recognition systems where there is one
true target (for both cases, the hypothesis A is the true target) with multiple
evidence.



4.1 Data A

The belief table used in [11] is in Table 1. There are 5 evidence bodies and 3
BBAs for 3 hypotheses. Note that the second BBA for the hypothesis A is zero
which is seriously conflicted with other evidence and evidence bodies 3, 4 and 5
have the same belief values. Intuitively, the hypothesis A should have a dominant
belief after the combination rule and the hypothesis B should go close to zero.
Also the influence of the second evidence is expected to be decreased as evidence
bodies are added.

Table 1. Evidence of Data A.

Belief| mi1 | ma | ms | ma | ms
m(A)|0.50] 0 [0.55|0.55[0.55
m(B)[0.20{0.90/0.10{0.10|0.10
m(C)|0.30{0.10{0.35/0.35/0.35

Table 2. Comparison of combinations for Data A.

Methods Belief’ mi,2 |M1,2,3|M1,...,4|TM1,...5
Chen’s m(A)|0.1543|0.6026|0.8276|0.9048
)|0.7469|0.2239|0.0355 [ 0.0061
)|0.0988|0.1735(0.1369 | 0.0891
)10.1543]0.7194|0.8594 [ 0.9107
)
)

Prob. Weights
0.7469(0.0945/0.0078|0.0010

(B
(C
(A
(B
(C)]0.0988(0.1861|0.1327|0.0884

33333

Table 2 shows the combination results of two methods as evidence bodies are
added. We can see both methods have the hypothesis A going over 0.9 and the
hypothesis B converging to almost zero after 5 evidence bodies are combined,
which accords with our intuition. However, our proposed method converges faster
than Chen’s method as well as Murphy’s, which we can see more easily in Fig.
1. In this figure, we can see that Murphy’s method converges in a linear way
because it uses uniformly distributed weights, while Chen’s and our proposed
method converge much faster than Murphy’s because they use the structure of
evidence based on distances and probabilities, respectively. Note that the results
of D-S combination for the hypothesis A are zero after evidence 2 no matter how
high other BBAs are because it ignores all the conflicting evidence which can be
interpreted as an AND operation as mentioned in [7].

Fig. 2 shows the weights for the evidence in three methods: Murphy’s, Chen’s
and our proposed method. Fig. 2(a) shows how the weight for the second evidence
changes as other evidence bodies are added. The second evidence is seriously
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Fig. 1. The belief assignments of the hypothesis A from several methods for Data A

conflicted with others, so we want to minimize the effect (or weight) for it.
Our proposed method depress the weight much faster so the effect of the second
evidence gets more minimized than in other methods. Fig. 2(b) shows the weight
of all evidence bodies after all evidence bodies are combined in three methods.
In our proposed method, evidence 2 has less weight and evidence 3,4 and 5
have higher weights than other methods, which means our method finds out the
proper weights aligned with our intuition.

4.2 Data B

The belief table used in [10] is in Table 3. As mentioned earlier, ET can have
a set of elements as one hypothesis. In this table, there are 3 elements (A, B
and C) and 4 hypotheses with ({4, C}) in addition to the 3 elements. There are
5 evidence bodies and the second one is seriously conflicted as in the previous
data.

Table 3. Evidence of Data B.

Belief |mi|ma| ms3 | mq |ms
m(A) (0.5 0 0.55/0.55[0.6

(B) |0.2/0.9/0.1]0.1]0.1
m(C) 10.3/0.1] 0 | O | O
m(A,C)| 0 | 0 0.35/0.350.3

In Table 4 and Fig. 3, our method converges faster than any other methods.
Actually, Yong’s method seems slightly better than ours and much better than
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Fig. 2. The weights of three averaging methods: Murphy, Chen and Probabilistic
Method. (a) The changing weight of the second evidence as the number of evidence
increases, (b) The weights of all evidence bodies when 5 evidence bodies are given

Chen’s when only 3 evidence bodies are combined, because the distribution is
not well developed yet. However, from 4 evidence bodies, our method works
much better than Yong’s as well as any other methods. More interestingly, when
5 evidence bodies are combined, Yong’s method is worst compared to all other
methods, still our method is the best.



Table 4. Comparison of combinations for Data B.

Methods  |Belief| m1,2 |mi,2,3|m1,... 4|m1,... 5
Yong’s m(A)[0.1543|0.4861[0.7773|0.8909
m(B)|0.7469|0.3481]0.0628 | 0.0086
m(C)[0.0988|0.1657[0.1600|0.1005
Prob. Weights|m(A)|0.1543|0.4768|0.9119{0.9879
m(B)|0.7469|0.4518|0.0556 |0.0031
m(C)[0.0988|0.0656{0.0210 |0.0039
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Fig. 3. The belief assignments of the hypothesis A from several methods for Data B

5 Conclusion

In this paper, we proposed a new way to calculate weights for the averaging
method in evidence theory. Our proposed method uses the informational struc-
ture of evidence in the form of a probability distribution. Our method is well
supported mathematically and conceptually, and is simple to implement. The
performance of our method turned out to be superior to other existing methods.

A promising future direction is to replace the simplistic Gaussian distribution
for the evidence to a more complex distribution. This will be especially necessary
when the number of bodies of evidence is great.
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