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Abstract 

 

Localization and environmental mapping are two fundamental functions for an 

autonomous mobile robot.  This thesis develops a new framework that allows a robot 

with a vision sensor to simultaneously achieve both of these functions.  The novel 

approach attempts to interpret video images for their meaning, generating a map and 

localization data from these meanings.  The experiments show promising results for 

this new approach. 

 

If robots are to perform robustly with no a priori knowledge of their 

environment then they must have the ability to perform Simultaneous Localization 

and Mapping (SLAM), whereby the robot incrementally builds a map of the 

environment it is navigating while simultaneously keeping track of its location within 

the built map.  SLAM might be considered a solved problem.  There is certainly a 

large body of literature, discussed in this thesis, which provides decent models for 

building robust solutions.  However, most, if not all, of the current state of the art 

SLAM techniques rely on solutions with a tight loop of detecting and tracking low-

level features to update the robots current pose, or location.  We argue these methods 

are brittle and do not offer general purpose solutions to the problem.  This thesis takes 

a cognitive approach to the subject and develops a new SLAM model based on 

extracting semantic information from the robot‟s sensor data.   
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In this thesis, we develop a new SLAM framework which analyses video 

streams for semantic content.  We do this with inspiration from the Content Based 

Image Retrieval (CBIR) research area.  We use the well-established Tamura texture 

features to decompose the video stream into a grid of lexemes (or recognized 

categories) which we then use to construct grammatical sentences.  These sentences 

form place descriptions and are used for constructing the environmental map and 

localization.  In contrast to engineered methods, our framework does not return 

precise location information as we argue it is enough to know roughly where one is 

located. 

 

We have implemented a proof of concept model and tested within both indoor 

and outdoor environments.  The results show that our model can construct useful 

semantic descriptions from the video stream and use these descriptions to implement 

SLAM.  Although the derived semantic descriptions are fairly coarse (based on the 

limitations of the Tamura texture features), the technique could be refined by adopting 

a richer set of the feature vectors, however, we leave this as future work. 

 

 

 

 

 

 

 

 



vii 

 

Table of Contents 

 

Acknowledgements ............................................................................................................... i 

 

Publication List ................................................................................................................. iiii 

 

Abstract .............................................................................................................................. iv 

 

Chapter 1 – Introduction .................................................................................................... 1 

1.1 Traditional SLAM methods ............................................................................................. 4 

1.2 Other Main Approaches ................................................................................................... 7 

1.3 A Semantic Approach to SLAM .................................................................................... 10 

1.4 Image Retrieval as Applied to SLAM ............................................................................ 12 

1.5 Research Question and Objectives ................................................................................. 14 

1.6 Overview of Chapters .................................................................................................... 15 

 

Chapter 2 – Literature Review ......................................................................................... 17 

2.1 Mapping Semantically ................................................................................................... 17 

2.1.1. Multi-Hierarchical Semantic Maps ......................................................................... 18 

2.1.2. Probabilistic Semantic Mapping for Building/Nature Detection .............................. 22 

2.2 Image Processing........................................................................................................... 26 

2.2.1 Boosting Image Retrieval ........................................................................................ 26 

2.2.2 Image Retrieval Based on Weighted Features .......................................................... 30 

2.3 Chapter Summary .......................................................................................................... 36 

 

Chapter 3 – Methodology .................................................................................................. 37 

3.1 The Semantic SLAM Pipeline ....................................................................................... 37 

3.1.1 Feature Extraction................................................................................................... 38 

3.1.2 Classification and Storage ....................................................................................... 38 

3.1.3 Semantic Analysis .................................................................................................. 39 

3.1.4 Location Resolving ................................................................................................. 41 

3.2 Available Sensors .......................................................................................................... 42 



viii 

 

3.3 Cameras as a Sensor Input ............................................................................................. 45 

3.4 Overview of the Current Implementation ....................................................................... 45 

3.5 Chapter Summary ...................................................................................................... 52 

 

Chapter 4 – Implementation ............................................................................................. 53 

4.1 Overall Structure of Program Code ................................................................................ 53 

4.1.1 The PreRecorded Function ...................................................................................... 55 

4.1.2 The Fuzzy Inference System ................................................................................... 56 

4.1.3 Tamura Texture Features and Image Signatures ...................................................... 59 

4.1.3.1 Coarseness ....................................................................................................... 60 

4.1.3.2 Contrast ........................................................................................................... 62 

4.1.3.2 Directionality ................................................................................................... 63 

4.1.4 The Adaptive Resonance Theory Module ................................................................ 65 

4.1.5 Clustering of Detected Categories ........................................................................... 67 

4.1.6 Creation of Semantic Information ........................................................................... 70 

4.1.6.1 Location ........................................................................................................... 70 

4.1.6.2 Topographical Relationships ............................................................................ 71 

4.1.7 Comparison of Semantic Information ...................................................................... 73 

4.1.7.1 Comparing Quadrant Locations ........................................................................ 74 

4.1.7.1 Comparing Relationships ................................................................................. 77 

4.1.7.2 Evaluating Differences Through The FIS ......................................................... 79 

4.2 Chapter Summary .......................................................................................................... 81 

 

Chapter 5 – Patch Categorization and Image Reconstruction......................................... 83 

5.1 Patch Categorization ...................................................................................................... 84 

5.2 Image Reconstruction .................................................................................................... 90 

5.3 Chapter Summary .......................................................................................................... 95 

 

Chapter 6 – Definition of Semantics ................................................................................. 96 

6.1 Cluster Filtering ............................................................................................................ 96 

6.2 Semantic Descriptors ................................................................................................... 101 



ix 

 

6.3 Chapter Summary ........................................................................................................ 102 

 

Chapter 7  – The Semantic Location Resolver ............................................................... 104 

7.1 First Corridor Video Stream ........................................................................................ 104 

7.2 Second Corridor Video Stream .................................................................................... 110 

7.3 First Outdoor Video Stream ......................................................................................... 117 

7.4 Second Outdoor Video Stream..................................................................................... 119 

7.5 Chapter Summary ........................................................................................................ 121 

 

Chapter 8 – Conclusion ................................................................................................... 122 

8.1 Main Contributions...................................................................................................... 123 

8.2 Summary of Performance ............................................................................................ 124 

8.3 Future Work ................................................................................................................ 125 

 

References ....................................................................................................................... 127 

 

Appendix A – Key Frames from Video Streams ............................................................ 133 

A.1. Second Corridor Set (58 secs, 291 frames) ................................................................. 133 

A.2. First Outdoor Set (30.6 secs, 154 frames) ................................................................... 136 

A.3. Second Outdoor Set (22.2 secs, 111 frames)............................................................... 138 

 

Appendix B – Categories from Video Streams ............................................................... 141 

B.1. First Corridor Set (20 Categories) .............................................................................. 141 

B.2. Second Corridor Set (15 Categories) .......................................................................... 148 

B.3. First Outdoor Set (16 Categories) ............................................................................... 154 

B.4. Second Outdoor Set (10 Categories) ........................................................................... 160 

 

Appendix C – Image Reconstruction of Key Frames ..................................................... 164 

C.1. Second Corridor Set (58 secs, 291 frames) ................................................................. 164 

C.2. First Outdoor Set (30.6 secs, 154 frames) ................................................................... 169 

C.3. Second Outdoor Set (22.2 secs, 111 frames) ............................................................... 172 

 

Appendix D – Cluster Distribution of Key Frames ........................................................ 176 

D.1. Second Corridor Set (58 secs, 291 frames) ................................................................. 176 



x 

 

D.2. First Outdoor Set (30.6 secs, 154 frames) ................................................................... 181 

D.3. Second Outdoor Set (22.2 secs, 111 frames)............................................................... 184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

Table of Figures 

 

Figure 1.1 Overview of the SLAM process ............................................................................ 5 

Figure 1.2 The basic concept of SLAM ................................................................................. 6 

Figure 1.3. A feature-based map (left) compared to a grid-based one (right), both representing 

the same hallway. .................................................................................................................. 9 

Figure 2.1. The Spatial and Conceptual Hierarchies. ............................................................ 19 

Figure 2.2. (a) Occupancy grid; (b) Fuzzy morphological opening; (c) Watershed 

segmentation; (d) Extracted topology .................................................................................. 20 

Figure 2.3. Level 1 of the Conceptual Hierarchy .................................................................. 21 

Figure 2.4 An omni-directional image (top), an unwrapped version of the same image 

(middle), and flat images extracted from the unwrapped image (bottom) ............................. 23 

Figure 2.5 A sample of 25 primitive feature maps ................................................................ 27 

Figure 2.6 Average recall (left) and average precision (right) for all five classes of natural 

images ................................................................................................................................ 29 

Figure 2.8 The feature statistic T for various images ............................................................ 34 

Figure 2.9 Precision results based on different features ........................................................ 35 

Figure 3.1 The various stages within the semantic SLAM pipeline....................................... 37 

Figure 3.2 Relative locations between patch clusters ............................................................ 40 

Figure 3.3 The various stages of the current implementation ................................................ 46 

Figure 3.4 The concept of clusters, where an image in (a) possesses 5 areas with a semantic 

context in (b), resulting in each patch to be assigned to a related cluster in (c). ..................... 48 

Figure 3.5 Situations where relationship links between clusters are considered to be dissimilar 

due to a small change in measurement ( (a) and (b) ), and where the relationships are still 

similar due to a more generalized scope ( (c) and (d) ). ........................................................ 49 

Figure 3.6 Determining the reference image during comparison of image ............................ 51 

Figure 4.1 The flow of data through the prototype system .................................................... 54 

Figure 4.2 The membership functions for any particular input variable in the Fuzzy Inference 

System ................................................................................................................................ 57 

Figure 4.3 The membership functions for the output variable in the Fuzzy Inference System 57 

Figure 4.4 The rules of the FIS ............................................................................................ 59 

../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418621
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418622
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418623
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418623
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418624
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418625
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418625
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418626
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418627
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418627
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418628
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418629
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418629
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418630
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418631
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418632
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418633
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418634
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418635
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418635
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418636
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418636
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418636
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418637
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418638
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418639
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418639
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418640
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418641


xii 

 

Figure 4.5 Translation of categories to clusters .................................................................... 68 

Figure 4.6 The calculated location of a centroid, as opposed to its actual location ................ 69 

Figure 4.7 The size and identities of all 9 quadrants spread across each image ..................... 71 

Figure 4.8 This cluster is considered to be in quadrant [3, 1] even though some portions are in 

other quadrants. ................................................................................................................... 71 

Figure 4.9 The topographical relationships in which a particular cluster possesses ............... 72 

Figure 4.10 A visual example of how a particular cluster (shown in grey) is related to the 

other clusters as shown in Figure 4.9 ................................................................................... 72 

Figure 4.11 Three possible descriptor tags (out of 12 in total) that can be attached to a 

particular cluster pairing, and the regions which defines them. ............................................. 73 

Figure 4.12 The indicated distance measure values to be extracted. All other values are 

discarded. ............................................................................................................................ 76 

Figure 4.13 Translating high-level descriptor tags into angles (calculated in degrees) .......... 78 

Figure 4.14 The difference values that result in the highest possible similarity score ............ 80 

Figure 5.1 Selected frames (out of 322) from a video stream traversing through a corridor, a 

room and then back ............................................................................................................. 86 

Figure 5.2 Selected categories (out of a total of 20), containing patches from best-fit (top-left) 

to worst-fit(bottom-right) .................................................................................................... 89 

Figure 5.3 The patch signature values for categories 9 and 16 .............................................. 90 

Figure 5.4 Comparisons between original and reconstructed key frames .............................. 94 

Figure 6.1 The filtering process of non-trivial clusters where (a) is the original image frame, 

(b) is the set of categorized patches, (c) are the generated clusters, and (d) is where trivial 

clusters of size 1 are discarded............................................................................................. 97 

Figure 6.2 Comparisons between original key frames and generated clusters ..................... 101 

Figure 6.3 An example of a set of semantic descriptors associated with an image frame ..... 102 

Figure 7.1  The similarity scores for each of the 322 frames from the first corridor set ....... 105 

Figure 7.2 Results for the first corridor set, with a modified threshold score value of 5.2. .. 106 

Figure 7.3 Image frames and significant clusters associated with events B to D. ................ 107 

Figure 7.4 The cluster distribution and score values for event E and the image frame 

immediately preceding it. .................................................................................................. 109 

Figure 7.5 The image frame for event F ............................................................................. 110 

../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418642
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418643
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418644
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418645
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418645
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418646
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418647
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418647
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418648
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418648
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418649
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418649
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418650
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418651
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418652
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418652
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418653
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418653
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418654
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418655
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418656
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418656
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418656
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418657
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418658
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418659
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418660
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418661
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418662
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418662
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418663


xiii 

 

Figure 7.6 Results for the second corridor set. ................................................................... 111 

Figure 7.7 Image frames and significant clusters associated with image 1 to event B. ........ 112 

Figure 7.8 Image frames and clusters of event C and its preceding and subsequent time 

moments ........................................................................................................................... 114 

Figure 7.9 Image frames and clusters associated with events D and E. ............................... 114 

Figure 7.10 The 6 low-scoring instances in Event F ........................................................... 116 

Figure 7.11 Results for the first outdoor set. ...................................................................... 117 

Figure 7.12 Image frames and clusters of image 1 and events A and B ............................... 118 

Figure 7.13 Results for the second outdoor set. .................................................................. 119 

Figure 7.14 Image frames and clusters of image 1 and 58 .................................................. 120 

 

 

 

 

 

 

 

 

 

 

 

 

../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418664
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418665
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418666
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418666
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418667
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418668
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418669
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418670
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418671
../../../../../Tan%20Choon%20Ling/Desktop/thumbdrive/PhD/Thesis.doc#_Toc286418672


1 

 

Chapter 1 

 

Introduction 

 

Simultaneous Localization And Mapping (SLAM) is the problem of 

determining if an autonomous mobile vehicle or robot - equipped with one or more 

low-level sensors - is able to start in an unknown area of an unexplored environment, 

and then proceed to incrementally build a map of the current environment while 

simultaneously using this information to accurately deduce its location in relation to 

other landmarks within the environment (Dissanayake et al., 2001). 

 

The SLAM problem has its roots from the 1970‟s, where mobile robots on the 

moon and Mars were required to autonomously formulate their own methods of 

navigating around hostile environments (Moravec, 1980). During this time period, the 

operation of SLAM as applied to mobile robots was useful in implementing obstacle 

avoidance and path planning.  

 

The direct origin of SLAM comes from (Smith, Self & Cheeseman, 1990) 

where the issue of representing spatial information during the application of robotics 

is brought up. However, the term SLAM was not actually used in this paper (which 

preferred to favor the term stochastic maps, instead), and was initially coined by 

(Leonard & Durrant-Whyte, 1991; Leonard & Durrant-Whyte, 1992) 
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Leonard & Durrant-Whyte summarizes the problem of SLAM into answering 

three main questions: “where am I?”, “where am I going?” and “how should I get 

there?”. The first question is related to localization: determining what location in the 

current environment one is, given what one can currently see and what information 

one has been given previously. The second and third questions revolve around setting 

a goal and planning a path to achieve that goal, which are related to navigation and 

mapping. 

 

The SLAM problem is considered to be hard due to three issues that are yet to 

be solved: uncertainty, scaling, and the relationship between localization and 

mapping. Uncertainty is caused due to the fact that in the area of robotics, 

observations made within an environment by external sensors can be imprecise (for 

example, due to signal noise or features simply being out of sensor range) (Goldman, 

1994) (Stentz, 1994). Furthermore, traversing the environment itself can also be 

imprecise (due to issues like wheel slippages), which further compounds the issue of 

uncertainty in an already uncertain pose when a small error in localization can be 

compounded over time (by internal sensors that measure the current location via 

wheel position) and thus, create wholly inaccurate maps (Sims, 2004). While some 

research has been made in order to make more precise estimates, this issue is still yet 

to be considered trivial. 

 

The second issue, scaling, involves the amount of computational power 

required to perform SLAM, which grows with the number of environmental features 

mapped. This is clearly a huge issue, considering that a mobile robot has a limited 

amount of resources available at hand. 
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The third issue pertaining to SLAM, which is the relationship between 

localization and mapping, is related to uncertainty. (Siegwart & Nourbakhsh, 2004) 

states that if a mobile robot performs the task of localization based on uncertain 

observations, the estimate of its current pose will itself be uncertain. In the same vein, 

maps that are created will become inaccurate if the process of mapping is based on an 

uncertain robot pose. This causes SLAM to be akin to that of the chicken-and-egg 

problem: in order to accurate estimate its location, a robot needs to accurately 

estimate surrounding landmarks, and in order to build accurate maps, the robot needs 

to know its current position accurately. Unfortunately, due to the nature of the SLAM 

problem, a mobile robot would initially have neither and would have to begin the 

process of SLAM with a blank slate. 

 

 The importance of solving the problem of SLAM would be of great benefit as 

doing so would truly ensure that a mobile robot would no longer require artificial 

infrastructures or a priori knowledge of the environment in order to simultaneously 

navigate and build maps – it would therefore, truly become autonomous. A solution to 

the SLAM problem would prove to be highly beneficial in various real-world 

applications where absolute position or highly accurate maps are unavailable, which 

include: autonomous planetary exploration, autonomous air and sub-seaborne 

vehicles, and autonomous all-terrain vehicles in tasks such as mining and construction 

(Dissanayake et al., 2001). 
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It should be noted that not all SLAM algorithms place the same emphasis on 

both sides of the localization – mapping spectrum, resulting in different behavior, or 

even purposes between different SLAM algorithms.  

 

1.1 Traditional SLAM methods 

 

In the paper by (Riisgaard & Blas, 2005), the problem of SLAM is stated to 

consist of multiple smaller processes, which are: landmark extraction, data 

association, state estimation, state update, and landmark update.  

 

Figure 1.1 (shown in the next page) demonstrates the relationship between the 

various stages involved in the process of SLAM. As relying solely on robot odometry 

(i.e. dead reckoning) would produce unreliable results due to reasons stated earlier, 

data will have to be streamed from some low-level sensor (i.e. ultrasound, sonar, laser 

scanners, cameras, etc.) in order to interpret the surrounding area of the environment. 

For this to be accomplished, some common type of landmark, or feature, which is 

native to the environment, is extracted from the sensor input. Such features can be 

either low-level like lines and circles, or high-level, such as chairs and trees. 
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After feature extraction is performed, data association is carried out in order to 

determine if two features observed in different points in time correspond to one and 

the same object in the real world (or not). Accuracy during this stage is crucial when 

conducting two range scans in close proximity; or when visiting a previously traveled 

area in the environment (Jensfelt et al., 2006) (Hahnel et al., 2003) (Gutmann & 

Konolige, 1999). The results from observing new and/or old features are used to 

update their estimated location, which is then used to determine, and update the 

change in odometry/pose/state of the mobile robot. Figures 1.2(a) and 1.2(b) 

demonstrate the problem of navigating through “dead reckoning”, while Figures 

1.2(c) – 1.2(e) show the sequence of events that revolve around the process of SLAM. 

 

Figure 1.1 Overview of the SLAM process 
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Figure 1.2 The basic concept of SLAM 

 (c) At robot’s initial position, two features 

are observed. 

(d) Due to re-observing the first two 

features (dashed lines), the estimates 

for both robot and feature are 

improved (note the smaller shaded 

circles). 

(a)  (b) 

Navigation with “dead reckoning”, note that the shaded circles in Figure 1.2(b) show the 

possible area in which the robot is actually located, which increases over time. 

 (e) Once again, re-observing the first four 

features results in improved estimates 

for both robots and all features. 
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 The afore-mentioned approach to conducting SLAM is generally known as a 

feature-based approach. One specific feature-based approach used in order to exploit 

information to continuously make new (close) estimates of features and the robot 

itself, is to implement what is known as an Extended Kalman Filter (EKF) to 

construct a stochastic map which keeps track of the spatial relationships between the 

various features and the pose of the robot (Borges & Aldon, 2002).  

 

To perform localization, the robot observes any features in range (both old and 

new), and the map is updated in order to reflect the measured locations of all observed 

features as well as the robot poses. As shown in Figure 1.2(c) – (e), this has the 

advantage of producing accurate measurements in the stochastic map, while also 

accounting for false returns, drop-outs and ambiguities with data association (Zunino, 

2002). The main issue with such an implementation is that it is susceptible to the 

scaling problem: increased computational requirements as the number of tracked 

features increase. 

 

1.2 Other Main Approaches 

 

 Two decades of research efforts into SLAM have also yielded other main 

approaches in tackling the problem. Two more general approaches have been put 

forward by Zunino (2002): grid-based, and topological approaches. 

 

The grid-based approach is a technique in which the environment is 

represented by a grid of cells, with each cell containing the probability of being 
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occupied by an obstacle or object in its relative position within the real-world: a cell 

with the value of 0 is definitely known to be free, while a cell with the value of 1 is 

definitely known to be occupied by some obstacle or object. Through this method, a 

map of the environment can be generated, which is known as a certainty grid, or an 

occupancy grid (Elfes, 1989) (Elinas & Little, 2007) (Grisetti, Stachniss & Burgard, 

2007). 

 

In order to perform localization, the robot compared the currently obtained 

certainty grid with a set of previously constructed ones, and the pose with the 

maximum correlation between both the new and old map will be considered as the 

new pose estimate. Once this is done, the new and old maps are merged to increase 

the accuracy of the certainty grid. (Siegwart & Nourbakhsh, 2004) illustrate how a 

feature-based map differs from a grid-based one is shown in Figure 1.3. 

 

The main advantages to implementing grid-based approaches in SLAM are 

that it is easy to understand and implement, as well as being able to naturally extend 

to higher dimensions if required. However, due to storage of the certainty grids over 

time, the main disadvantage with such an approach is naturally, high storage and 

computational requirements (Zelinsky, 1992), quite similar to that faced by feature-

based approaches.  
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 Instead of maintaining a precise metric map like those seen in Figure 1.3, 

topological approaches to SLAM constructs a graph-like representation of the 

environment, which consists of nodes connected by arcs: nodes reflect “significant 

areas” within the environment, while arcs represent the sequence of actions 

connecting these areas together. Such an implementation works well for navigation in 

small and simple environments, but has yet to be shown to do so for large and 

complex environments. 

  

 Further information on feature-based, grid-based and topological approaches 

to the SLAM problem can be obtained by works from (Ni & Dellaert, 2010), 

(Strasdat, Montiel & Davison, 2010), (Duckett, Marsland & Shapiro, 2000), (Zunino, 

2002) and (Thrun, 2002) while (Frese, 2006) provides a more in-depth insight into the 

background history of SLAM as well as a performance summary of some of the 

established methods developed for this particular estimation problem. 

 

Figure 1.3. A feature-based map (left) compared to a grid-based one (right), both 
representing the same hallway. 
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1.3 A Semantic Approach to SLAM 

 

 One common detail behind the three previous approaches to SLAM, is that 

they have all dealt with the problem on a geometric level (i.e. Room A of size B at 

location C, or obstacle D at location E), which essentially, is a purely engineered 

approach towards the SLAM problem. This research effort will put its focus upon a 

different idea of approaching SLAM, which is more biological in nature – a semantic 

approach. 

 

 The term “semantic” refers to the meaning of words, which in essence, is a 

form of knowledge representation. Robots that implement a form of mapping 

semantically would no longer be restricted to just knowing that a room of a certain 

size is at a certain location, but would have the benefit on knowing that a certain area 

of the current environment is a living room, or that a certain corridor is more crowded 

in the daytime compared to nighttime. A robot possessing such knowledge can then 

be said to possess semantic information (Galindo et al., 2005), and would possess an 

understanding of the environment on a semantic level. This is significantly different 

compared to a geometric level of understanding as there are many different levels of 

abstraction that can be afforded to robots that implement a semantic approach to 

handling SLAM (Oberlander et al., 2008). One such example is that a single location 

can possess multiple descriptions allocated to it (i.e. the instruction “go to the 

kitchen” can be the same as “go to the red room” or “go to the room with a stove and 

a fridge”). 
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Research into semantic approaches is fairly new, though several significant 

bodies of work have already been identified (Nuchter et al., 2003) (Dellaert & 

Bruemmer, 2004) (Rottmann et al., 2005) (Galindo et al., 2005) (Persson et al., 2007) 

(Wolf & Sukhatme, 2008) and selected techniques will be further discussed upon in a 

later chapter. As research into semantic mapping is still fairly new, there has yet to be 

a consensus as to which type of low-level sensor input is considered to be the 

“standard” (Currently, a specific SLAM application or environment would dictate the 

appropriate set of sensors). However, there have already been efforts to fuse 

information from multiple low-level sensors, most notably from Thrun (2004). 

 

Relevant research has also been made into conducting semantic mapping with 

cameras (Persson et al., 2007) (Flint et al., 2010), laser scanners (Nuchter et al., 2003) 

(Ekvall, Jensfelt & Kragic, 2006), as well as a combination of a sonar ring, laser and 

color camera (Galindo et al., 2005). 

 

The concept of a semantic approach to SLAM has the potential of changing 

the way that SLAM has been conducted, as opposed to the other approaches that have 

been discussed thus far. Instead of just representing the environment purely on a 

geometric level, semantic mapping is capable of representing captured data on 

multiple levels of abstraction, and convey that meaning to human operators in a more 

natural form (Dellaert & Bruemmer, 2004).  Because of this advantage, we choose to 

determine if the semantic SLAM model further described in later chapters is one such 

possible method. 
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1.4 Image Retrieval as Applied to SLAM 

 

As a semantic form of SLAM relies upon analyzing captured data related to a 

particular environment, it is necessary to determine if current image retrieval 

techniques, as used in large image databases, be successfully transferred to the 

domain of real-time robotics for the purposes of implementing a more „natural‟ 

SLAM model. 

 

Image retrieval is the process of searching through a vast amount of entries that is 

stored within a database, and retrieving a set of images based on some form of search 

criteria. While many image retrieval systems are in existence, they can be classified 

into one of two frameworks: text-based and content/feature-based (Lakdashti, Moin & 

Badie, 2008) (Deselaers, Keysers & Ney, 2008). Text-based image retrieval is a 

concept where textual descriptions (i.e. also known as keywords or labels) are 

attached, or associated with each image within a database. When a user poses a 

textual query, the system returns the relevant images that possess similar keywords as 

those from the query.  

 

One disadvantage towards a text-based approach to image retrieval is that 

human intervention consists of a large portion of the system; a large amount of human 

labor is required to connect textual descriptions with image entries. Also, describing 

an image is highly subjective to the human mind and can lead to inaccurate or 

misleading labels.  

 



13 

 

 The approach of Content-Based Image Retrieval (CBIR) attempts to overcome 

such disadvantages. In CBIR, images are classified according to some aspect related 

to their visual content, such as color, texture, hue and contrast (Jhanwar et al., 2004). 

Conventional methods then represent these features as a vector or histogram that is 

associated with a particular image such as in (Swain & Ballard, 1991) (Pass & Zabih, 

1999) (Berens, Finlayson & Qiu, 2000) (Siggelkow, 2002) (Jonsgård, 2005) . Another 

contrast of this approach compared to text-based image retrieval is that the user 

queries themselves are images. One or more example images are submitted to the 

system instead of providing keywords, which the system will analyze and output 

images from the database which are similar, based on various distance measures. This 

allows the possibility of manual human labor to be completely excluded from the 

image retrieval process and thus, rendering the process to be complete autonomous. 

 

One issue with CBIR is that training usually needs to be carried out (either 

fully or semi-automated) for a certain number of iterations before any queries can be 

submitted. This training phase is a common requirement of CBIR as proper 

categorization/classification of image content is an important factor towards an 

effective CBIR technique (Chou & Cheng, 2006). Another issue is known as the 

semantic gap (Chiu, Lin & Yang, 2003) (Lakdashti, Moin & Badie, 2008), which is 

based on the premise that the low-level visual details obtained from CBIR aren‟t able 

to relate well towards the high-level descriptions that humans are used to identifying 

and describing images. For example, assuming a user provides example photos of a 

green cup to the system; while it might be able to extract all images which contain 

green (a low-level feature) as the dominant color from the database, not all of them 

are guaranteed to have cups (a high-level concept).  
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Despite the potential drawbacks, it has been determined that CBIR methods 

are the most suitable for implementation with the proposed SLAM method. The 

autonomous nature of CBIR is crucial as the proposed SLAM model is also intended 

to be independent from manual human intervention. In addition, while CBIR does not 

directly understand the content of images (as how object recognition methods do), it is 

possible that relationships between detected feature vectors of images can be 

determined, thus adding an additional semantic layer on top of the CBIR process. This 

will be described in greater details in later chapters. 

 

1.5 Research Question and Objectives 

 

Currently, efforts into implementing SLAM specifically with semantic 

mapping methods are still in it‟s infancy as compared with other traditional SLAM 

methods. As a result, there are still many issues related to semantic mapping that have 

yet to be resolved. The primary research question that is related to semantic SLAM 

can be phrased as such: 

 

“Can we apply CBIR techniques to the domain of SLAM to 

generate a robust SLAM model?” 

 

To answer this question in a satisfactory manner; the following research 

objectives have been devised: 
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1. To develop a real-time semantic SLAM model, by exploring the methods 

currently used for image retrieval as used in large image databases. 

2. In addition to exploring current image retrieval techniques, semantic 

approaches in scene analysis will be researched upon. 

 

1.6 Overview of Chapters 

 

This section will serve as an overview of the remaining chapters that are in 

this thesis, by providing a brief description of the content within each chapter. 

 

Chapter 2 reviews several pieces of literature that is related to the fields of 

SLAM and CBIR. The content of these conference papers and journal articles are 

discussed, where their strengths and weaknesses are highlighted. 

 

Chapter 3 discusses the methodology of the current research effort, where a 

semantic SLAM model is shown, and the various stages within this model is 

explained. 

 

Chapter 4 demonstrates a specific implementation of the semantic SLAM 

model that is introduced in Chapter 3. Explanations for each and every step in the 

current implementation are provided, with examples shown where necessary. 

 

Chapters 5 to 7 are devoted towards discussing the various experiments that 

were conducted on the semantic SLAM model during the course of the research 
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effort. Chapter 5 is focused on determining if (1) image patches are correctly 

categorized, and (2) reconstruction of images from categorized patches is correctly 

performed. The experiments in Chapter 6 demonstrate the process of creating the 

semantic descriptors that define each image, and Chapter 7 analyses the accuracy of 

similarity scores generated throughout several indoor and outdoor video streams. 

 

Lastly, Chapter 8 acts as a conclusion for this thesis and also summarizes the 

outcome for each chapter as well as the performance of the implemented model. 

Suggestions for future work subsequent to the submission of this thesis are also 

discussed here. 
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Chapter 2 

 

Literature Review 

 

In this chapter, a review on various papers related to this research will be 

provided. In addition, a summation of the fields that are relevant to this research effort 

will also be discussed. This discussion will cover domains that include semantic 

mapping and image processing. The fundamental concepts of these topics will be 

explained in order to facilitate a better understanding of how these topics are inter-

related and integral to the process of SLAM through mapping semantically, and what 

the contributions of this research effort will be. 

 

2.1 Mapping Semantically 

 

 As stated previously, while not as prevalent as traditional methods, the idea of 

mapping semantically has been proposed before by (Dellaert & Bruemmer, 2004), 

where goal setting can be on a semantic level (for example, “go to the red room”) 

which traditional SLAM methods are incapable of handling, yet. However, it should 

also be understood that the probabilistic understanding of an environment has still not 

yet proven to be foolproof (i.e. a robot can interpret an entity in a certain environment 

to have an 80% chance to be a chair with dimension X or 20% it is a sofa with 

dimension Y). Therefore, the proposed model within this paper requires human 

intervention to provide further information or action when such a situation creates 
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indecision on the part of the autonomous robot, which is clearly unacceptable in the 

context of SLAM. 

 

 One possible method in overcoming this issue is detailed by (Nuchter et al., 

2003) who states that the architectural structure of any environment follows a 

standard convention, either from tradition or utility. This knowledge would provide 

general attributes of any one domain (i.e. plane walls, ceilings and floors) which can 

be used to reconstruct the environment (in this case, an indoor environment). While 

this implies that different domains would require different knowledge, another 

possible variation upon this suggestion similar to the research of (Galindo et al., 

2005) would be to implement existing knowledge in order to clarify the identity of an 

“ambiguous” entity. For example, in a room with a fridge and a stove (which have 

already been identified), it would be natural to assume that the unidentified object 

would be a chair rather than a sofa. Another useful model (albeit simple) proposed in 

the paper is the implementation of a semantic net, which demonstrates the relationship 

between objects within a certain environment/room. 

 

2.1.1. Multi-Hierarchical Semantic Maps 

 

 While it has been suggested so far that semantic mapping belongs within a 

distinct category compared to more traditional methods of SLAM, (Galindo et al., 

2005) suggests that it is possible for the knowledge provided by both geometric and 

semantic levels to be integrated in order to assist in the process of SLAM. The 

semantic perspective would be used for goal-setting (i.e. “go to the bedroom”, which 
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is a room which contains a bed), while the spatial perspective will be used for 

navigation (i.e. go 2 meters along this corridor, turn right 90°, etc. etc.).  

 

This paper proposes a model which maintains two different hierarchies in 

order to represent the current environment: spatial, and conceptual, where basic links 

between the two hierarchies are established through anchoring. This can be seen 

below in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction of the Spatial Hierarchy is done by building an occupancy grid of 

the surrounding area, which is then filtered through fuzzy mathematical morphology, 

and then segmented through a technique known as water-shedding. The result is an 

extracted topology of large open spaces that can be anchored to room names. This 

process can be seen in Figure 2.2.  

Figure 2.1. The Spatial and Conceptual Hierarchies. 
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The Conceptual Hierarchy, developed by a knowledge representation system 

known as NeoClassic (Borgida et al., 1989), models semantic information available 

within the environment. This hierarchy functions similar to the parent-child concept 

of object-oriented programming languages; all conceptual objects have a common 

ancestor named Thing. The next level (Level 2) consists of two general “child” 

categories within the context of the current domain named Objects and Rooms. Level 

1 has more specific categories, such as Stove and Bed (which are children of Objects) 

or Bedroom and Kitchen (children of Rooms). The last level, Level 0, has individual 

instances of the concepts from Level 1, such as room-2 and sofa-b. On each level, 

each conceptual category can possess either a vertical link pointing to the higher level 

(to indicate an “is-a” relationship) or a horizontal link pointing to other categories on 

Figure 2.2. (a) Occupancy grid; (b) Fuzzy morphological 
opening; (c) Watershed segmentation; (d) Extracted 

topology 
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the same level (to indicate a “has-a” relationship), or both. This can be seen in Figure 

2.3 which demonstrates the structure of Level 1 on the Conceptual Hierarchy. 

 

 

 

 

. 

 

 

 

 

 

 The process of anchoring then follows as this is necessary in order to ensure 

that the correspondence between sensor data (i.e. categories within the Spatial 

Hierarchy) and semantic symbols (i.e. categories within the Conceptual Hierarchy) 

truly refer to the same physical objects or rooms, as shown previously in Figure 2.1. 

The proposed inference system as a result of anchoring proves to be interesting as it 

allows a robot to traverse to the location of an object which was not previously 

observed or identified. For example, a robot receiving the goal of “go to the TV set” 

would infer that a TV set would be located either within a bedroom or a living room, 

which the robot would traverse to. However, this would only succeed if such 

information was known beforehand, which presents the issue of determining how 

much a priori knowledge a robot should possess before it can be considered 

sufficient. The issue of indecision would also arise if more than one room possesses a 

Figure 2.3. Level 1 of the Conceptual Hierarchy 
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TV set: while the process of goal-setting can be revised to be more specific, the 

eventual indecision resulting from ambiguity should not be taken lightly. 

 

The issue of ambiguity arises again when it comes to the model‟s ability to 

self-diagnose localization errors. The model indicates that the detection of relevant 

objects that belong to certain rooms would ensure that the robot would be able to 

constantly perform localization at all times (i.e. picking it up from a bedroom and 

putting it in a kitchen will not fool it, as it would be able to recognize various kitchen 

appliances that are in the room). However, the paper does not address the issues of 

multiple rooms that possess a uniform structure. A house may not have more than 1 

kitchen, but an office environment would contain many office cubicles that are of a 

similar nature. 

  

Finally, the vision system for this model has not yet shown the capability to 

identify real-world objects; the conducted tests have only used simple shapes of 

various colors, which would then be identified as furniture. It would be interesting to 

note how the process of identifying real-world objects (or the ambiguity of it) would 

have an effect upon the performance and results of the model. 

 

2.1.2. Probabilistic Semantic Mapping for Building/Nature 

Detection 

 

While previous papers have dealt with mapping semantically in an indoor 

environment, (Persson et al., 2007) has shown that mapping with a semantic approach 
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is possible in an outdoor environment as well. It is also from this paper which 

indicates that 360° vision is possible with commercially available products, which 

provides the inspiration for this research effort. This omni-directional image is then 

unwrapped, and then flattened in order for feature extraction to occur. Figure 2.4 

shows the structure for all three types of images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature extraction is then performed in order to detect artificial man-made 

structures. In this paper, three different groups of features are detected, which are: 

edges, combinations of edges (i.e. corners and rectangles), and grey level clusters (i.e. 

large homogenous regions within an image). Training with AdaBoost (a machine 

learning algorithm by (Freund & Schapire, 1999) is then conducted in order to 

Figure 2.4 An omni-directional image (top), an unwrapped version of 
the same image (middle), and flat images extracted from the 

unwrapped image (bottom) 
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maximize accuracy with building and non-building detection, as well as decrease the 

likelihood of false positives/negatives from occurring. 

 

Following this, the local grid map – which is probabilistic representation of a 

sector in the current occupancy grid that is currently visible by the robot – is updated 

where probabilities Pi (class | VS
T
, αi) are assigned to all of the n objects in view of 

the mobile robot according to: 

 

 

 where: 

αi = horizontal covering angles α1, α2, …, αi = n of all objects within the current 

sector. 

θ = sector opening angle, and  

P(class|VS
T
) = conditional probability that a view is class when the sensor 

classification at time T is also class. 

 

 The global semantic map is then updated with the local map. Each grid cell 

(x,) is assigned a probability of being occupied after T number of sensor updates with 

P(occx,y | s
1
, s

2
, …, s

T
), which can also be computed as: 

 

 

(2.1) 

(2.2) 
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Since the sensor update s
T
 is the output VS

T
 from the sensor at time T, and the 

grid cells are assigned probabilistic values on whether they belong to class, the update 

formula above for each x-y coordinate can be rewritten to: 

 

 

 

This will result cells within the global map to contain one of three different 

classes: 

 Building if P(class|VS
1:T

) > 0.5 

 Unknown  if P(class|VS
1:T

) = 0.5 

 Non-building if P(class|VS
1:T

) < 0.5 

 

All cells within the global map will be initialized to possess a value of 0.5 and 

will be incrementally updated to one of the other two classes as the robot traverses the 

environment. 

 

The classification of environmental entities into 2 classes has been shown to 

produce maps similar to those of traditional methods. However, while the paper has 

stated that positioning (i.e. localization) issues can be handled with either SLAM or 

GPS, only the GPS method has been used. The results shown in the paper also do not 

indicate the time taken to obtain and process visual data, which is crucial when 

implementing a real-time SLAM algorithm; while the paper indicates that the 

(2.3) 

(2.4) 



26 

 

occupancy grid is either supplied or built by the robot, it does not explicitly show its 

effects (if any) on the performance of the proposed algorithm. 

 

2.2 Image Processing 

 

 In order for a SLAM algorithm to be considered real-time, incoming visual 

data must be processed at a fast rate (at least as fast as the robot is traversing from one 

point to another) such as those demonstrated by (Tieu & Viola, 2000) (Davison, 2005) 

(Rosten & Drummond, 2006) and (Konolige et al., 2006) where a very rapid scanning 

of images is demonstrated.  While experiments have been made on a database of 

3000+ images, the authors have made the claim of possibly scanning a million images 

a second. This is an important feature to note for this current research effort, as while 

the robot would start with an initially empty set of images within its database, this set 

will eventually grow to a set of extremely large proportions as the robot traverses 

more and more unknown portions of the environment. 

 

2.2.1 Boosting Image Retrieval 

 

 In this paper from (Tieu & Viola, 2000), highly selective visual features are 

automatically generated that respond to a very selective group on image within an 

image database. The process of generating such features begins by extracting a feature 

map for each type of simple feature, such as those seen in Figure 2.5. 
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 After being rectified and down-sampled by a factor of 2, each of these 25 

feature maps are then used as input for extraction of the same set of features, thus 

yielding 625 (25 * 25) feature maps. This is done again in order to yield 13,625 

feature maps (625 * 25). 46,875 feature maps are then obtained by filtering over the 

red, green and blue color channels. Each feature map is finally summed to yield a 

single feature value. 

 

 Each level of processing as detailed previously is done in order to discover 

arrangements of features on a previous level. For example, a second order feature 

might be sensitive towards horizontal features arranged diagonally, which can be 

visible as a staircase pattern. Such features are computed from an image from the 

following equation: 

 

where Mi, j, k, c is the feature map that is connected with primitive filters i, j, and k, and 

c is the color channel. Mi, j, k, c is also defined by the following: 

Figure 2.5 A sample of 25 primitive feature maps 

(2.5) 
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where  is the image, f is a primitive filter, and  is the down-sampling operation by 

a factor of 2. 

 

 This paper argues that such features do indeed reflect upon the structure of 

images, which is supported by the argument that with an image database of 3000 

images, the number of such detected features are sparse where the kurtosis (or 

“peakedness”) of the data distribution curve is 8 on an average and can reach as high 

as 120 for certain features (In comparison, the standard Gaussian data distribution 

curve has a kurtosis of 3). With this data, it is reasoned that this form of distribution 

curve is highly unusual, and therefore, very meaningful as well. 

 

 Once again, AdaBoost is used to run the proposed learning algorithm for 20 

iterations in order to yield a strong classifier that is dependent upon 20 features. The 

proposed learning algorithm is described in the following steps: 

 

 For example images (x1, y1), … (xn, yn), each and every yi = 0,1 for negative 

and positive examples respectively. 

 Initialize the value for weights, w1, i = 1 / (2m), 1 / (2l) for each yi = 0, 1 

respectively, where m and l are the number of negative and positive examples, 

respectively. 

(2.6) 
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 For t = 1, … T: 

o Train one hypothesis hj for each feature j with wt, with an error, Єj = 

 

o Select ht(·) = hk(·), so that  (i.e. select the hypothesis 

with the lowest error). Set Єt = Єk. 

o Set  where ei = 0, 1 for each example image xi that is 

classified correctly or incorrectly, respectively, and  . 

Normalize  so that wt+1 is a distribution. 

 The final resulting hypothesis is: 

 

 

  

where αt = log (1 / βt). 

 

 Testing of the proposed algorithm is performed with five different classes of 

images, divided into sunsets, lakes, waterfalls, fields, and mountains, where each class 

consists of 100 images. Figure 2.6 indicates the average precision and recall for each 

of the five classes. 

 

 

 

 

 

 

Figure 2.6 Average recall (left) and average precision (right) for all five 
classes of natural images 

(2.7) 
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The results of this paper shown previously have indicated that as the number 

of images in the database increases, recall increases while precision decreases. This 

establishes that as recall increases, precision decreases. While one might argue that 

this is merely a natural outcome due to the immense size of the database, the results 

obtained, which will be discussed later, appears to prove otherwise. 

 

Another issue pertaining to this proposed algorithm is that it is initially a weak 

classifier, which is required to undergo training (i.e. solving a sequence of learning 

problems) in order to produce a strong classifier that is actually a weighted 

combination of weak classifiers. Training of the classifier is required to be conducted 

each time a query is produced to the algorithm, which would most likely prove to be 

detrimental to the performance of real-time SLAM.  

 

2.2.2 Image Retrieval Based on Weighted Features 

 

 (Liu et al., 2007) proposes an interesting idea where different weights are 

assigned towards deciding the importance of detected low-level features. These 

weight values are adapted according to an automatically define feature statistic, which 

is capable of reflecting the visual difference between images with starkly different 

pre-dominating low-level features. This is based on the premise that the desired 

images requested by a user should have similar low-level features as the query image. 

For example, when a user submits a close-up image of a tree trunk, the proposed 
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system will disregard from returning images which do not have a similar emphasis 

(such as a blank wall or ceiling). The proposed algorithm consists of several main 

steps, which are: 

 

1. Dividing images: Each image is divided into sub-blocks of 4 * 4 pixels with each 

sub-block possessing a six dimensional feature vector, f(k,l) = [f1(k,l), f2(k,l), f3(k,l), 

f4(k,l), f5(k,l), f6(k,l)] that contains color and texture information of its respective sub-

bloc where (k, l) is the position of the image pixel. The first three dimensions f1(k, l) – 

f3(k, l) represent the average values of Hue, Saturation and Value, respectively, and 

are defined by the following equations: 

 

 

 

The latter three dimensions consists of high frequency data for each sub-block that is 

defined during wavelet transformation. 

 

2. Wavelet transformation: A Harr wavelet transform operation is performed on the 

Value component of each sub-block, which yields four 2 * 2 pixel transform 

coefficients, presenting the LL, HL, LH, and HH frequency bands, as shown below in 

Figure 2.7. 

 

 

Figure 2.7 The Harr wavelet 

transform operation 

(2.8) 
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The average value for the LH frequency band is represented by f4(k,l) according to the 

following definition: 

 

 where c1 = {ck, j, ck, j + 1, ck + 1, j, ck + 1, j + 1}. Following this, f5(k, l) and f6(k, l) are 

defined as: 

 

 

3. Feature clustering: Each image is segmented into 10 clustering areas according to 

the ISODATA clustering method (a classification method similar to k-means, with the 

difference being that ISODATA allows for different number of clusters, while the k-

means algorithm requires a priori knowledge on the number of clusters) and is 

defined as {ri, i = 1, 2, …, 10}. The ISODATA clustering algorithm itself consists of 

three portions: 

  

i. Initial clustering: Select K number of feature vectors from image feature 

database as the initial clustering centers (in this case, K = 10), where: 

 

Cn = Xn, n = 1, 2, …, K 

 

ii. Prototype assigning: Each vector Xq is assigned to the nearest cluster 

center, where: 

 

(2.9) 

(2.10) 

(2.11) 
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iii. Refresh clustering center: Each center of mass is designated as the new 

clustering center. Repeat step ii. until the clustering centers are stable:  

 

 

   

where clust[q] is the cluster number. 

 

4. Calculate feature statistics: In this paper, all supplied images are 256 * 256 pixels, 

which are then divided into 16 sub-blocks Z1, Z2, .., Z16. If the image consists of only 

pure textures, then the proportion of a clustering area ri falling into sub-block Zj is 1 / 

16, and is defined as: 

 

where #ri, j is where the clustering area ri belongs to sub-block Zj, and for each ri, 

. The featur'e st‟atistic for each ri is defined by the following: 

 

 

 

and the feature statistic for each image is: 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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The value of T reflects the difference between an image that consists solely of 

textures and one that consists only of pure colors, with a complete texture image 

possessing a T value of 0. Some examples are shown in Figure 2.8. 

 

 

 

 

 

After the T value for all images within the database have been calculated, 

normalize their values into: 

 

 

 

Following this, the value of T‟ determines which image feature is to have a 

higher weight. For example, with a T‟ value of 0, a heavier weight value should be 

assigned towards texture features, whereas this weight value should be reduced as the 

T‟ value increases. The weight values are defined by the following equation: 

 

W1 = 1.0 + ((1 – T‟) / 2), W2 = 1 – T‟ 

 

Figure 2.8 The feature statistic T for various images 

(2.16) 

(2.17) 

(2.18) 



35 

 

where W1 and W2 are the weight values for color and texture features, 

respectively. 

 

This method of image retrieval was tested upon 1550 images, separated into 

classes of landscapes, cars, animals, buildings, and others. Results pertaining to 

precision (but not recall) are compared to other methods, and are shown in Figure 2.9. 

 

 

 

 

 

 

However, the results from this paper are questionable, as the description of the 

proposed model initially states that four low-level features are considered, but only 

two appear to play a role within the actual description of the model as well as in 

determining results. The result also contains details on precision, but not on recall, 

and does not provide the time required to return relevant images to the user. 

 

The model proposed by (Lakdashti, Moin & Badie, 2008) appears to be well-

suited for adaptation to SLAM as feature extraction is initially performed from the 

query image. Also, training of the algorithm is automated, and can be run after a robot 

performs a short initial run of SLAM within an environment, and possibly even prior 

to that. In conducted experiments, the feature vector related to each image was a 3-D 

histogram of RGB colors and Tamura texture features, which could possibly prove to 

be useful in the theoretical framework of this current research effort. This will be 

Figure 2.9 Precision results based on different features 
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explained in further detail in a later chapter. The results also prove to be quite 

interesting as they are more favorable compared to that of (Tieu & Viola, 2000); 

while the results appear to have the same trend, precision begins to increase alongside 

with recall at an early stage. It has also been suggested (though not proven) that with 

the implementation of more sophisticated features, the results will be significantly 

better as well. 

 

2.3 Chapter Summary 

 

The focus of this chapter is on discussing any pre-existing method of 

conducting SLAM through a semantic approach. As semantic SLAM methods are not 

as well developed or established compared to traditional methods, published papers 

related to semantic SLAM techniques are relatively few. Therefore, many 

opportunities exist towards the refinement and development of this particular field. To 

further this end, existing methods of knowledge representation that may prove to be 

beneficial towards conceiving a viable SLAM model are discussed. 

 

As CBIR is intended to be part of the proposed SLAM model, selected papers 

within the field of image processing are reviewed as well. In this portion of the 

chapter, papers related to (low-level) feature maps and feature extraction are 

discussed in order to determine the feasibility of classifying images according to 

different feature vectors.. The advantages and disadvantages of each reviewed method 

are also discussed in order to determine which of these are deemed to be beneficial 

towards a semantic form of SLAM. 
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Chapter 3 

 

Methodology 

 

In the previous chapter, the fundamental concepts of SLAM were discussed. 

This knowledge serves as a basis for the semantic SLAM algorithm that has been 

developed for this research effort. This chapter will provide an explanation regarding 

the various processes that constitute the entire algorithm. 

 

3.1 The Semantic SLAM Pipeline 

 

A pipeline that serves as a basis for the semantic SLAM model is shown in 

Figure 3.1. This model consists of four separate stages that have the goals of (1) 

feature extraction, (2) classification and storage, (3) semantic analysis, and (4) 

location resolving. A description of each stage will be provided beginning on the next 

page. 

 

 

 

 

 

 

 

Figure 3.1 The various stages within the semantic SLAM pipeline 
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3.1.1 Feature Extraction 

 

While entire images can be analyzed, retrieved and categorized according to 

some metadata or feature vector associated with it, this method is too generalized to 

be able to gather semantic information for any particular image. Therefore, images are 

to be divided into a certain number of segments, or patches, before proceeding further 

with low-level feature extraction for each patch.  

 

The specific feature vector that will serve as an identifier for each patch (or 

patch signature) is dependent on the sensor input being used, as well as the specific 

method of image retrieval that is being implemented. These patch signatures 

collectively form a single image signature, which is similar in concept to shape 

signatures used in (Zhang & Lu, 2001). This feature vector will then be submitted as 

input into the next stage. 

 

3.1.2 Classification and Storage 

 

After the process of constructing patch signatures is completed, they are then 

presented to a fuzzy/neural network classifier, or some other appropriate self-

organizing network, similar in concept to that in (Li, Shi & Luo, 2007). This is an 

important factor to consider, as the classifier should not be limited to a fixed number 

of classes, but grow accordingly instead as the variance in signatures demands an 

increasing number of classes. 
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Each class is determined by a <patch signature, patch> pairing, which are 

required during image reconstruction in the next stage. Note that a graphical, visual 

reconstruction of images is not necessary at this development stage, as the proposed 

semantic analysis would work equally as well on class labels generated from the self-

organizing neural network. Such an action may still prove to be useful in later 

developments in order to aid in enhancing semantic descriptions (i.e. using object 

recognition or further CBIR techniques). 

 

Thus, the classifier acts as the short-term memory portion of this stage, while 

<patch signature, patch> pairs being copied into long-term memory whenever a 

semantic description uses that pairing. However, it is possible for the classifier to 

generate classes that will never be used while a robot traverses through any particular 

environment. 

 

3.1.3 Semantic Analysis 

 

Once patch signatures have been classified into various groups, each and every 

captured image is to be reconstructed through the use of only the unique patch 

signatures that have been stored within the database. Following this, reconstituted 

images are then analyzed in order to determine the semantic context that is present. 

For example, each cluster of patches that are within the same classification is given 

labels denoting the semantic relationship with other patch clusters as well as its size 

and current location within the entire image. One example of this is shown in Figure 
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3.2, where the patch cluster of C1 possesses the relationship of being to the left of 

cluster C2. 

 

 

 

 

 

 

 

Therefore, the cluster of C1 is to be annotated with the relationship labels of: 

 

Right(C1) = C2 

Location(C1) = top left 

 

In order to provide a certain degree of flexibility in regards to relationships 

between clusters, we attach high-level descriptors to them, rather than noting the 

specific patch indices that constitute a cluster. For instance, if cluster C1 were to shift 

left, the labels denoting the relationship between C1 and C2 would still hold, whereas 

that might not necessarily be true if specific patch indices were recorded. 

 

The aggregate of all labels related to one cluster is considered to be the 

semantic location signature for that cluster. There also exists the possibility of 

detecting high-level features that are present within the captured images such as 

object recognition (Rottmann et al., 2005) to further contribute towards the amount of 

semantic data present within each semantic location signature.  

Figure 3.2 Relative locations between 
patch clusters 
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The semantic descriptions for each and every cluster (and hence, the entire 

reconstructed image) is then entered into a semantic descriptor database. This 

database is responsible for comparing existing descriptors against their incoming 

counterparts to determine if a match is possible. (Daoutis, Coradeschi & Loutfi, 2009) 

is one example where a semantic reason system is implemented with Research Cyc (a 

general knowledge base and inference engine). 

 

3.1.4 Location Resolving 

 

As a result of the previous stage, a set of location hypothesis (i.e. a set of 

locations each labeled with a probability) is generated. Such sets are generally caused 

by noise and perceptual aliasing (a situation where different locations appear similar 

to each other). Therefore, this final stage of resolving which location the robot is 

currently at is required, as simply selecting the location with the highest probability is 

naïve.  

 

Bayesian reasoning opens up the possibility of determining the most likely 

location the robot is currently at by considering where the robot assumes its current 

location is, along with a new set of location hypothesis.  However, a common 

problem that arises from this is method is the issue of location, or orientation 

independence. As an example, it can be difficult to recognize that a previous location 

has been revisited as it was viewed from a significantly different angle. One solution 

towards this problem is to implement a panoramic image sensor, which can be 



42 

 

financially prohibitive and not easily available. Therefore, we attempt to overcome 

the aforementioned issue through another method, where locations are semantically 

related to each other by tracking either unique patches, or a unique ordering of 

patches. 

 

3.2 Available Sensors  

 

 As stated earlier in Chapter 1, a wide range of sensors are available for mobile 

robots to utilize during the implementation of SLAM. Sensors perform various 

measurements that are both internal and external to the mobile robot, such as 

measuring the internal temperature of a robot‟s electronics or determine a robot‟s 

global position (through the use of omni-directional images, as previously mentioned 

in Section 2.1.2). These sensors can consist of ultrasound, sonar, infra-red/laser 

scanners and many more. However, only a certain class of sensors would prove to be 

useful during SLAM, this class is known as exteroceptive sensors. Exteroceptive 

sensors measure information that is external to the robot (as opposed to 

proprioceptive sensors) such as distance measurement, sound amplitude and light 

intensity (Siegwart & Nourbakhsh, 2004).  

 

Even accounting for only exteroceptive sensors, providing an in-depth detail 

for each and every single sensor available would require more space than this report 

can accommodate. Therefore, explanations will be provided for two of the most 

common exteroceptive sensors used in the field of SLAM research: laser rangefinders 

and cameras. 
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Laser rangefinders are capable of performing distance measurement through a 

technique known as time-of-flight. This behaves very similarly to how sonar works, 

as the sensor transmits a laser beam to illuminate a target while a receiver that is on 

the same axis as the transmitted laser beam detects the reflected laser beam that 

bounces off the target. By determining the time it takes for a laser beam to hit a target 

and reflect back to the robot, an estimate of the range between the robot and the target 

can be calculated. While some researchers employ the use of a laser scanner instead, 

the fundamental principle of operation remains unchanged. Research efforts that have 

used laser rangefinders include (Gutmann & Konolige, 1999) (Newman, Cole & Ho, 

2006) (Thrun et al., 2004) and (Weingarten, 2006). 

 

 There are several issues that prevent the laser rangefinder from being 

considered as the only sensor of choice for SLAM, however. While a laser 

rangefinder is fast and accurate, it is not a vision sensor and hence, unable to detect 

certain types of semantic information, such as color and texture. In addition, while the 

beam from a laser rangefinder sweeps across various obstacles in the area, it is only 

capable of providing information limited to a plane. Therefore, any obstacles that 

exist above or below this plane will remain undetected by the sensor (i.e. a shoebox 

placed on top of a refrigerator). Finally, due to the very nature of light reflection, 

surfaces with a high degree of specular reflectance would reflect the project laser 

beam away (Zheng, Fukagawa & Abe, 1995). 

 

 Vision sensors (like cameras), avoid such drawbacks, which allows them to be 

considered as another viable sensor input. As the amount of sensory information 
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recorded by cameras is similar to that of human vision, a large body of data is 

obtained (especially in artificial environments) which can aid in interpreting the 

surrounding area on both a high-level and low-level perspective (Royer et al., 2005). 

Examples of detectable low-level information are color and texture, while high-level 

information includes spatial relationship between objects. Some of the most recent 

SLAM models have implemented stereo cameras (Se, Lowe & Little, 2002) (Dailey & 

Parnichkun, 2005) (Konolige et al., 2006) (Elinas & Little, 2007) (Santini & Rucci, 

2007) as well as monocular cameras (Davison, 2003) (Mouragnon et al., 2006) 

(Smith, Reid & Davison, 2006) (Jensfelt et al., 2006) (Royer et al., 2007).   

 

 There are also reasons why cameras still aren‟t considered to be vastly 

superior compared to other sensor types. Due to vast amount of information available 

in any single image, the amount of computing power required to handle and process 

them is also much higher compared to other sensors. Another issue related to vision 

sensors is their sensitivity to light. Similar to human sight, the darker the surrounding, 

the harder it is to obtain any form of information - a completely dark room would 

render a vision-equipped robot helpless. While it is possible to overcome such 

situations with additional equipment such as night-vision or infra-red sensors, it 

comes with a higher cost in terms of price, space and computational power. In 

addition, (Dailey & Parnichkun, 2005) states that multiple cameras are required in 

order to obtain triangulation from various perspectives and/or require a priori 

knowledge of the environment. However, research into monocular SLAM has already 

provided results with great potential, as earlier stated. 
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3.3 Cameras as a Sensor Input 

 

In order to implement a semantic approach to conducting SLAM, information 

that is related to both spatial and non-spatial aspects of the environment will be 

required. This not only affords different levels of abstraction, as described earlier, but 

also disqualifies sensors that are not capable of providing the required amounts of 

data necessary in the first place. It would be impossible to order a mobile robot 

equipped with a laser rangefinder to “go to the red room” when it is incapable of 

understanding the term “red”. Therefore, cameras will be required as the sensor of 

choice to gather the amount of environmental data needed for a “semantic SLAM”. 

 

Incidentally, there are other benefits in selecting cameras as the sensor input of 

choice. Most of them are a result of technological advancements that render cameras 

as a more attractive choice for SLAM when compared to 20 years ago. Such features 

include: cheaper cost, smaller size, the capacity for greater processing power and 

increased quality (i.e. such as the transition from capturing black and white video to 

color and the availability of higher resolutions). In addition, several attempts have 

been made to improve estimation of camera poses (Fitzgibbon & Zisserman, 1998) 

(Triggs et al., 2000), allowing for greater accuracy when performing localization. 

 

3.4 Overview of the Current Implementation 

 

An overview of the implementation based on the model previously described 

in Section 3.1 is shown in Figure 3.3. While specific details of the implementation 
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regarding this model will be explained in the next chapter, some technical statements 

will be provided here as well, in order to provide a logical and cohesive justification 

for some of the methods used within the model. 

 

The overall objective of this implementation is to determine the degree of 

similarity between images of a traversed environment by comparing their semantic 

context. For this to be done, each image must first be segmented into individual, 

equally-sized patches. Each 640 * 480 pixel-sized image is to be divided into patches 

of size 80 * 96, thereby resulting in 40 patches per image. The number and size of the 

patches is not chosen arbitrarily as the bestblk function from the Image Processing 

Toolbox of MATLAB dictates that the aforementioned patch size is considered to be 

optimum for image processing.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 The various stages of the current implementation 
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Following that, the Tamura Texture features (Tamura, Mori & Yamawaki, 

1978) – which consists of coarseness, contrast and directionality – for each patch are 

extracted in order to form a signature that is unique to each patch. This is performed 

in a similar manner to that in (Lakdashti, Moin & Badie, 2008).  

 

The selection of these features to be tracked is made due to the reason that 

much research has already been made in implementing CBIR techniques through 

various color feature vectors (Long, Zhang & Feng, 2003). Also, (Chiu, Lin & Yang, 

2003) has already applied Tamura Texture features towards the CBIR domain and 

(Shi & Tomasi, 1994) (Elinas, Sim & Little, 2006) suggest that good results can be 

achieved through tracking texture features. Therefore we attempt to determine if 

satisfactory results can also be achieved within the context of semantic SLAM. 

 

While other Tamura Texture features exist (namely, line-likeness, regularity 

and roughness), these will not be considered for inclusion within a patch signature, as 

Tamura, Mori & Yamawaki (1978) state that more effort is required to describe the 

texture elements that constitute these three elements, and that coarseness, contrast and 

directionality much more significant in global descriptions of textures. However, 

(Kulkarni & Verma, 2003) and (Li, Shi & Luo, 2007) have indicated the potential of 

implementing such features within the context of CBIR. The process of how patch 

signatures are constructed will be further explained with greater detail within the next 

chapter. 

 

The patch signatures will then be classified into several clusters through the 

use of an Adaptive Resonance Theory (ART) neural network that is first developed by 
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(Carpenter, Grossberg & Rosen, 1991) and described in further detail by (Huang, 

Georgiopoulos & Heileman, 1995). Through this method, several different patch 

signatures within an image that deliver the same semantic context should be clustered 

into the same group. This concept can be seen in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

As an example, consider the image in Fig. 3.4(a), which has 5 potential 

semantic areas of interest that can be treated as classes. These areas are divided within 

the regions as shown in Fig. 3.4(b) where C1 to C5 are the counter, ceiling, door, 

wall/railing, and floor, respectively. Therefore, the reconstituted counterpart to this 

image would be as seen in Fig. 3.4(c) where several patches constitute a single 

cluster. 

 

The ART neural network was chosen to be implemented over other 

fuzzy/neural network classifier as this particular neural network is a self-organizing 

Figure 3.4 The concept of clusters, where an image in (a) possesses 5 
areas with a semantic context in (b), resulting in each patch to be 

assigned to a related cluster in (c). 
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network. This is an important factor to consider as the variance of the patch signatures 

can demand an increasing growth in the number of classes, which factors out the 

implementation and usage of classifiers that operate with a static, limited amount of 

classes. 

 

In order to obtain the semantic context of each image, the semantic 

information pertaining to their related group of image clusters is then extracted. Each 

image cluster is able to yield: (1) their relative position within the image, (2) the 

number of relationships they have with other clusters, and (3) the directional type of 

said relationships. These forms of semantic information take on a general scope rather 

than record precise, absolute measurements. For example, we record a particular 

cluster as considered to be within the upper-left portion of an image, rather than at 

specific x-y coordinates. This is because during comparison between the semantic 

information of multiple images, small changes within an absolute scale will result in a 

large amount of dissimilarity, as opposed to a more general scale. Consider also the 

following scenario shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

Figure 3.5 Situations where relationship links between clusters are considered 
to be dissimilar due to a small change in measurement ( (a) and (b) ), and 

where the relationships are still similar due to a more generalized scope ( (c) 
and (d) ). 
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Assuming that a camera has traversed a certain portion of the environment and 

captures two separate images at the same angle, thus resulting in both possessing the 

same semantic context, but with slightly dissimilar relationships between image 

clusters, when measured with an absolute scale (Figure 3.5a and 3.5b) where the 

distance and angle of each relationship is recorded. However, because images are to 

be categorized according to their semantic context and not measurements of 

relationships, this is considered to be undesirable as the relationship measurements 

can continue to increase in magnitude while the camera continues to traverse and 

capture images within an environment that always possesses the same semantic 

context. Therefore, this will result in a decreasing similarity score when such a trend 

is not warranted. 

 

In order to circumvent this situation, we measure relationships on a 

topological level – similar in concept to that of (Schwering, 2007), which implements 

a more formalized method of specifying spatial relationships – where distance 

measurements are completely omitted and angles are generalized into descriptors 

based on the 8 main cardinal directions (Figure 3.5c and 3.5d). Through this method 

of generalization, relationships are still correctly maintained even while the 

topological locations of clusters experience minor changes through a sequence of 

captured images.  

 

Once the semantic descriptors of every image cluster is extracted, they are 

then passed as input parameters into a pre-defined Fuzzy Inference System (FIS) 

which evaluates the differences between all three composite values that are related to 
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two separate images, thus resulting in a score denoting the degree of similarity 

between the two images. 

 

The entire process that was previously described is iterated continuously as 

images of the immediate environment are captured and submitted as input. This can 

be seen in Figure 3.6 where sequentially captured images are compared with an initial 

reference image. This process of comparing semantic descriptors of images will result 

in a series of similarity scores that should demonstrate a downward trend as the 

camera traverses further away from the initial starting point as time goes by. Once a 

similarity score is registered below a certain threshold, the previous image that caused 

this phenomenon will then be selected as the new reference image for analysis and 

comparison against further images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Determining the reference image during comparison of image 
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3.5 Chapter Summary 

 

The first portion of this chapter introduced a 4-stage concept on conducting 

the operation of semantic SLAM. These stages are focused on the tasks of feature 

extraction, classification and storage, semantic analysis, and location resolving, with 

each stage consisting of several composite operations. This is followed with an 

overview of the high-level sensors most suitable for implementation towards semantic 

SLAM, with an emphasis on cameras as the sensor input of choice.  

 

An implementation of the 4-stage semantic SLAM concept is then described, 

in which the Tamura Texture features of coarseness, contrast and directionality 

constitute as a feature vector that are intended to serve as a method of classification 

(through an Adaptive Resonance Theory (ART) algorithm) for each of the 40 patches 

that are part of an image frame. Semantic information (i.e. size, location and 

relationships) that is determined from groups of such classified patches act as a 

unique identifier for their related image frame. 2 sets of such data (each representing a 

different image frame) are then submitted as input into a Fuzzy Inference System 

(FIS) in order to calculate the degree of similarity between them and generate an 

appropriate score value. 
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Chapter 4 

 

Implementation 

 

During the course of this research effort, a prototype system was designed in 

order to implement the semantic form of SLAM that was previously discussed in 

earlier chapters. The purpose of this chapter is to explain the methods of this 

implementation.  The programming language used to develop the prototype Guided 

User Interface (GUI) that runs the implementation is MATLAB (version R2007b) 

running on the Windows XP operating system. Images were captured through the use 

of a 2-megapixel Logitech QuickCam Pro for Notebooks. 

 

4.1 Overall Structure of Program Code 

 

The flow of data within the prototype system is shown in Figure 4.1, which 

denotes the sequence of events that are expected to occur between the various entities 

involved. Note that the file named “PreRecordedGUI.m” mainly serves as a GUI 

interface and wrapper for the PreRecorded() function, where most of the actual 

operations and processes related to the system are being handled. 

 

The following sub-sections will provide a detailed explanation regarding each 

process within the system. While the complete code is available in the CD included 
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with this thesis, certain portions of code are highlighted or summarized in order to 

facilitate an easier understanding of the implementation at hand. 

 

 

 

It should be noted that this implementation assumes that images are captured 

beforehand and regarded as a sequential form of input into the system. 
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User 

PreRecordedGUI.m 

PreRecorded 
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Figure 4.1 The flow of data through the prototype system 
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4.1.1 The PreRecorded Function 

 

As importing captured images from files is trivial, an explanation is 

considered to be unnecessary. Therefore, we begin our explanation of the prototype 

system with the PreRecorded() function, with the code for the entire model available 

within the supplied CD. 

 

First, a fuzzy inference system is created by the CreateFIS m-file with several 

default settings (that can be modified later) with a weight value of 1. This is followed 

by extracting patches of size 80 * 96 from each of the images. The extraction of each 

patch is done in order to obtain the Tamura Texture feature set consisting of 

coarseness, contrast, and directionality by passing the patch to the Tamura m-file. 

These features, or patch signatures, are then concatenated into a matrix variable 

containing all patch signatures captured so far.  

 

Once all 40 patch signatures for a particular image are extracted, they are 

concatenated again into a cell array containing all signatures for all images previously 

captured. This is done in order to determine the number of categories that exist within 

the data contained in the cell array by passing it as input into the ART algorithm 

module. This process is important in determining groups of the same categories that 

are in each image (more details regarding this process are provided later, in sub-

Section 4.1.5). 

 



56 

 

Following this, the semantic information of an image is constructed by 

determining the topological location of each cluster as well as how one cluster is 

related to the others. A score is generated by obtaining the semantic information of 

the current image and a previously referenced image, and processing them through the 

fuzzy inference system that was created at the beginning of the function. Once a 

particular comparison results in a score below a certain threshold value, the current 

image is then considered to be the new reference image. This can be seen more clearly 

in the code segment shown in the PreRecorded() function, where the value of the 

variable previous is determined either when then currently image, i, is  the first image 

to be analyzed, or when the generated score from the CompareSemantics() function is 

below the threshold value of 5. 

 

 

4.1.2 The Fuzzy Inference System 

 

The Fuzzy Inference System (FIS) is created solely through the use of 

functions provided by the Fuzzy Logic Toolbox within MATLAB as its performance 

has been reviewed favorably by (Hall & Hathaway, 1996). In order to accommodate 

the 3 semantic features of cluster size, location (expressed as quadrants in the code) 

and relationships, 3 different input variables were created, each with 2 membership 

functions denoting the similarity and difference values (in terms of percentage) of 

each input variable. Both membership functions are trapezoidal in shape and cover a 

range of values from 0 to 100, where a higher value denotes a higher degree of 

difference for the related  feature between images and vice versa. Figure 4.2 shows 

how the 2 membership functions of each input variables are organized. 
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Naturally, an output variable also needs to be defined within the FIS for it to 

generate any sort of similarity measure. In this case, the similarity measure is also 

determined by 2 trapezoidal-shaped membership functions, but with a different 

distribution spread. This is done because the threshold score of 5 (as shown in Figure 

4.3) should serve as a boundary determinant to ensure that neither membership 

function would have a higher influence over the other. 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the range of values covered by the output variable is from 0 to 10, the 

minimum and maximum values that can possibly be generated are 1.69 and 8.31, 

respectively. This is due to the nature of the FIS to choose the centroid of a certain 

Figure 4.2 The membership functions for any particular input 
variable in the Fuzzy Inference System 

 

Figure 4.3 The membership functions for the output variable in 
the Fuzzy Inference System 
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area bounded by the membership functions (and the implemented rules as well) as the 

final value. Higher values indicate a higher level of similarity. 

 

Following the creation of the input and output variables, the rules for the 

system are created, with 3 rules determining the degree of similarity between features 

for each input variable, and another 3 rules to determine the differences. The weights 

for each of the rules are determined by the 3 MATLAB variables, sizeWeight, 

quadrantWeight, and relationshipWeight as shown in the CreateFIS() function, where 

the addrule() function adds the rules defined in the variable ruleList into the FIS. As 

described in the previous sub-section, these variables have a default value of 1 when 

the comparison of images is processed for the first time, but can be set to any value by 

the user in subsequent operations.  

 

 

Once the rules have been added to the FIS, they will have the graphical 

appearance as shown in Figure 4.4, where rules 1 to 3 contribute towards 

demonstrating a difference between the current image and its previous counterpart 

(which results in lowering the similarity score), and rules 4 to 6 contribute towards a 

similarity between them (and hence, raising the similarity score). The relationship 

between the feature values, membership functions and variables are also 

demonstrated. 
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4.1.3 Tamura Texture Features and Image Signatures 

 

At this time of writing, the MATLAB environment does not implement the 

extraction processes for the features of coarseness, contrast and directionality as 

described in (Tamura, Mori & Yamawaki, 1978). Therefore, this operation is 

implemented by passing each patch data into the Tamura.m file, which was obtained 

from an online source at 

<http://en.pudn.com/downloads123/sourcecode/graph/texture_mapping/detail522203_

en.html> and shown in the following page.  

 

 

 

 

Figure 4.4 The rules of the FIS 
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4.1.3.1 Coarseness 

 

In order to measure coarseness within any particular patch, the following steps 

are conducted. 

 

Step 1: For each pixel point (x, y) within the image patch, calculate the sum total over 

neighbourhoods where the sizes are powers of two (i.e. 1 * 1, 2 * 2, ..., 32 * 32). The 

sum total over the size 2
k
 neighbourhood at point (x, y) is 

 

Sumk, v(x, y) =  

 

for the vertical orientation, v,  and 

 

Sumk, h (x, y) =  

 

for the horizontal orientation, h, where f(i, j) is the gray-level pixel value at (x, y).  

 

Step 2: For each and every pixel point of each value of k, calculate the differences 

between the sum total corresponding to pairs of non-overlapping, equal sized 

neighbourhoods in both vertical and horizontal orientations, where: 

 

Ek, v(x, y) = (Sumk, v(x, y) - Sumk, v(x, y – 2
k
)) / 2

2k 

 

for the vertical orientation, v,  and 

(4.1) 

(4.2) 

(4.3) 
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Ek, h(x, y) = (Sumk, h(x, y) - Sumk, h(x + 2
k
, y)) / 2

2k
 

 

for the horizontal orientation, h. 

 

Step 3: For each and every pixel point, analyse the output values as a result from the 

previous step, and select the best size, k, that gives the highest value: 

 

Sbest(x, y) = 2
k
 

 

where k maximizes E in either orientation: 

 

Emax= max (E1, h, E1, v, E2, h, E2, v ..., E5, h, E5, v) 

 

Step 4: Finally, calculate the coarseness measure of the entire image patch by 

averaging all Sbest values: 

 

Fcrs =  

 

where m and n are the width and height of the image patch, respectively. 

 

 

 

 

 

 

 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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4.1.3.2 Contrast 

 

The method of measuring the value of contrast for any particular image patch 

is also explained in (Tamura, Mori & Yamawaki, 1978) where the following steps are 

implemented: 

 

Step 1: For each image patch, obtain a histogram of gray-level differences in order to, 

calculate the average gray-level value: 

Avgimage =   sum(  ) 

 

where bin(i) is the ith bin value with a histogram count of count(i), and m and n are 

the width and height of the image patch, respectively. 

 

Step 2: Calculate the fourth moment about the mean, µ4 with the following equation: 

µ4 = sum((  - Avgimage) 
4
 * )) 

 

Step 3: Measure the amount of polarization by defining the kurtosis, α4 as 

α4 = µ4 / σ
4 

 

where σ
2
 is the variance, which is calculated as 

σ
2
 = sum((  - Avgimage) 

2
 * )) 

 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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Step 4: Finally, combine σ and α4 to obtain the contrast measure with the equation 

Fcon = σ / α4
0.25 

 

4.1.3.2 Directionality 

 

(Tamura, Mori & Yamawaki, 1978) also provides the method of calculating the 

feature of directionality which we implement as explained in the following steps: 

 

Step 1: declare the following two 3 * 3 operators to aid in calculating the horizontal 

and vertical differences, ΔH and ΔV respectively, where 

 

 -1 0 1   1 1 1 

OPH = -1 0 1  OPV = 0 0 0 

 -1 0 1   -1 -1 -1 

 

Step 2: Calculate ΔH and ΔV for each gray-level pixel point f(i, j) in the image 

patch, where each 3 * 3 size neighbourhood with f(i, j) in the centre is multiplied with 

either OPH, or OPV, depending on the orientation, and then taking the sum total. These 

calculations for ΔH and ΔV can be summarized as: 

 

ΔH(x, y) = sum(  * OPH) 

 

ΔV(x, y) = sum(  * OPV) 

 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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Step 3: From ΔH and ΔV, we are able to obtain a magnitude ΔG, where 

 

ΔG = (|ΔH| + |ΔV|) / 2 

 

and the local edge direction for each pixel point, θ(i, j), where 

 

 

 

0 iff ΔH(i, j) = 0 and ΔV(i, j) = 0 

θ(i, j)= π iff ΔH(i, j) = 0 and ΔV(i, j) > 0 

tan
-1

(ΔV(i, j) / ΔH(i, j))  

 

Step 4: Obtain the histogram HD by quantizing θ over bin values that range from 0 to 

π, as shown by an example in Figure 3. Following that, we apply a threshold process 

on to HD where any bin with a count value < 0.01 will have its respective count value 

be reset to 0. This is done in order to filter out the counting of unreliable directions 

that cannot be considered as edge points. 

 

Step 5: The directionality is finally determined by calculating the sharpness of the 

peaks in HD. This is done by summing the peaks across the entire histogram, thus: 

 

Fdir = Fdir + (ϕm – ϕp * 0.0001)
2
 * HD(m) 

 

where ϕm is the value of the m
th

 bin, ϕp is the bin value of the highest count (peak) 

within the histogram, and HD(m) is the count value of the m
th

 bin. 

 

(4.18) 

(4.16) 

(4.17) 
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Once extraction of all 3 texture features is completed, they are then 

concatenated into a single variable that acts as the feature vector, as shown in Figure 

4.2 previously. Over the course of 40 extraction-concatenate operations (1 operation 

per patch), this will result in the creation of an image signature. 

 

4.1.4 The Adaptive Resonance Theory Module 

 

The Adaptive Resonance Theory (ART) module consists of several files that 

were obtained online from 

<http://www.mathworks.com/matlabcentral/fileexchange/4306-fuzzy-art-and-fuzzy-

artmap-neural-networks>. While the archive also contains files for an ARTMAP 

implementation, these were not used as an ARTMAP is regarded as a supervised 

neural network, and therefore, neither applicable nor suitable for the current research. 

Though the ART algorithm module consists of 9 m-files, only 3 of the files need to be 

directly implemented in order to run the algorithm. As our implementation of the 

ART module is similar to the example provided within the ARTExample.m file, our 

explanations regarding the individual components with the module will be based upon 

our implementation. 

 

First, all the patch signature values extracted so far (that are contained within 

the variable imageTTCellArray) are passed into the ART_Complement_Code() 

function where their complement code of any particular value, x is calculated to be 1-

x, and interleaved row-wise with the original data. For example, if an array of values 

is considered to have the following values:  
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arrayinput = [ 0.4 0.2 0.6  

 0.1 0.3 0.3  

 0.7 0.5 0.9 ] 

 

Then, the complement-coded form of the array will take the form of: 

 

arraycomplement = [ 0.4 0.2 0.6  

 0.6 0.8 0.4  

 0.1 0.3 0.3  

 0.9 0.7 0.7  

 0.7 0.5 0.9  

 0.3 0.5 0.1 ] 

 

Due to the nature of this function requiring all array values to be of 1 or less, each and 

every value contained within imageTTCellArray will have their floating points shifted 

to the left through the use of the function calibrateinput() until all values are equal to 

or less than 1 before being passed into ART_Complement_Code(). 

 

Then next step is to create an untrained ART network, based on the size of the 

variable ccInput (which contains the complement-coded values) as well as a vigilance 

value that possesses a range of values from 0 to 1. Vigilance is a factor within the 

ART algorithm that influences the scope of a particular category to “recruit” any one 

[coarseness, contrast, directionality] tuple. In general, over any particular date set, a 

higher vigilance value would result in more classes or categories, while a lower 

vigilance would create fewer categories. While the original default value for the 
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vigilance is set to 0.75, this still did not result in an optimal number of generated 

categories. Therefore, this value has been substituted with 0.885, although this can be 

changed by the user as well, in order to observe any change in results. 

 

Once the network has been created and stored within the variable net, this 

network is then trained to determine the number of categories that exist within the 

data set contained in ccInput by calling the function named ART_Learn(). This 

function returns a trained network (in the form of variable newNet) and the categories 

numbers that have been created during the training process (in the variable cat{i}). 

 

Each patch signature in the current (i.e. most recently captured) image – which 

is stored within the variable imageTT – is then categorized by newNet through 

implementating the function ART_Categorize(). This function returns a 8 * 5 sized 

array into newCat, which contains the category values of each of the 40 patches 

within imageTT. The source code of the PreRecorded() function shows the entire 

process described previously, from creation of the network, to categorizing an 

existing batch of patch signatures. 

 

4.1.5 Clustering of Detected Categories 

 

Once the category values for each patch of any particular image are 

determined, they are then segregated into clusters of similar values, as previously 

demonstrated in Figure 3.2.  In this specific implementation, each patch index is 

related to a corresponding index location within the variable checked, which contains 
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either the values 1 or 0, denoting whether that specific patch index has already been 

assigned to a particular cluster. The following steps are performed for each and every 

patch index: 

 

Step 1: If the element at index i has been checked, go to Step 4. If it has not, go to 

Step 2. 

Step 2: Let checked(i) = new cluster number. 

Step 3: Add the newly checked index value to a history list variable, breadcrumbs. 

Step 4: Find all neighbouring index elements that have not yet been checked. If at 

least one neighbor hasn‟t been checked, set i = any unchecked neighbour‟s 

index, and go to Step 1. If all neighbours have been checked, set i = last 

visited index from breadcrumbs, delete that index in breadcrumbs, and go to 

Step 1. 

 

This process continues until there are no more index values available in 

breadcrumbs, thus ensuring that every neighbor is of the same cluster number as the 

first original index involved in the process detailed above. In this implementation, we 

consider an index‟s neighbours to be only those that are immediately adjacent on the 

“vertical” or “horizontal” axis. Those that are on the “diagonal” axes are not 

considered to be neighbours, as seen in Figure 4.5, where patches which are classified 

as Category 1 are considered to be 2 separate and distinct clusters. 

 

 

 

 

Figure 4.5 Translation of categories to clusters 
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Following the creation of clusters, the centroid for each cluster is determined. 

We determine a cluster‟s centroid through taking the average of its entire member 

patch‟s x-y coordinates which can be summarized as: 

 

Xcenter =  

  

Ycenter =  

where Xcenter and Ycenter are the x and y coordinates for the cluster‟s centroid, 

respectively. This method of representing the location of clusters is adequate in 

almost all cases, except for rare cases where a cluster is ordered in an “irregular” 

fashion where the centroid is not within an acceptable bounding distance from its 

related cluster, such as that seen in Figure 4.6. However, as stated before, the 

circumstances that causes a cluster to be shaped as such are rare and should not 

impede normal operations of the research implementation. 

 

 

 

 

 

 

 

 

 

Figure 4.6 The calculated location of a 
centroid, as opposed to its actual 

location 
 

(4.19) 

(4.20) 
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Each and every non-trivial cluster and its centroid location are stored in the 

variables imageCenter{i} and clusters{i} where i is the number of the related image. 

These variables are necessary in order for the next stage of the implementation to 

function properly. 

 

4.1.6 Creation of Semantic Information 

 

The purpose of generating clusters from categories is to allow semantic 

information to be inferred from them through the implementation of the 

CreateSemantics() function. For each and every cluster related to any particular 

image, the size, location and topographical relationship to all other clusters are 

recorded. An exception to this rule is applied to clusters which have a size of 1 image 

patch, as they are considered to be trivial and will not contribute towards a 

meaningful or significant semantic description of an image scene. 

 

4.1.6.1 Location 

 

Determining the location of a particular cluster is dependent on determining 

the quadrant in which its centroid is located in. Each and every image is divided into 9 

separate and distinct quadrant, which are identified by their coordinates over the x-y 

axes, which ranges from [1, 1] to [3, 3]. Figure 4.7 below shows the distribution 

layout of all 9 quadrants over an image of 8 * 5 patches, while Figure 4.8 shows an 

example of how the location of a cluster is determined. 
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4.1.6.2 Topographical Relationships 

 

Once the quadrant locations of each cluster has been calculated, a record of 

how each cluster is related to all other clusters is maintained, where high-level 

descriptors demonstrate the relationship to any particular cluster. An example of how 

a particular cluster records its relationships with other clusters is shown in Figure 4.9. 

 

 

Figure 4.7 The size and identities of all 9 quadrants spread 
across each image 

Figure 4.8 This cluster is considered to be in quadrant [3, 
1] even though some portions are in other quadrants. 
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relation left bottom&left top right 

relatedTo 2 3 6 8 

 

 

 

 

Whenever a relationship is recorded, its related descriptor describes the 

relationship that the current cluster possesses compared to another cluster. As an 

example, the owner of the record shown in Figure 4.9 is considered to be on the left 

from cluster no. 2. A visual example of how this particular owner is related to all 

other clusters is shown in Figure 4.10. 

 

 

 

 

 

 

 

 

 

Determining which specific high-level descriptor tag to be attached to any 

particular relationship is dependent on the spatial relationship between the centroid of 

both clusters, as demonstrated in Figure 4.11, where the candidate descriptor tags for 

cluster is either bottom, bottom&left, or left, depending on which region the second 

cluster being compared to is located in. The same method is also applied to 

determining the other 9 relationships/descriptors as well. 

Figure 4.9 The topographical relationships in which a particular cluster 
possesses 

 

Figure 4.10 A visual example of how a particular cluster (shown in 
grey) is related to the other clusters as shown in Figure 4.9 
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4.1.7 Comparison of Semantic Information 

 

Once the semantic information of an image has been completely extracted, it 

is then compared to its counterpart from the previous image. The differences in size, 

location and relationship between the two images are each represented as a value 

between 0 and 100. The greater the value is, the greater the differences for any 

particular semantic factor. 

 

These three values are then fed as input into the Fuzzy Inference System (FIS), 

where the fuzzy rules then generate the similarity score of the current image. In the 

case of the first image, the similarity score generated will always be of the highest 

value (8.31) as there is no previous image to compare against. 

 

Determining the differences in size is considered to be a trivial operation and 

is done by adhering to the equation stated below: 

Figure 4.11 Three possible descriptor tags (out of 12 in total) that 
can be attached to a particular cluster pairing, and the regions 

which defines them. 
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Sizediff = | min(Sizep, Sizec) / max(Sizep, Sizec) * 100 | 

 

where p and c denote the previous and current image respectively. 

 

4.1.7.1 Comparing Quadrant Locations 

 

Following this, the process of calculating the differences in quadrant locations 

is performed, which consists of the following steps: 

 

Step 1:  Set QuadrantsL to be max(Quadrantsp, Quadrantsc) and QuadrantsS to be 

min(Quadrantsp, Quadrantsc), where Quadrantsp/c are arrays containing the centroid 

locations of the previous and current image clusters, respectively. 

 

Step 2:   Calculate the distances between each and every possible centroid pairing: 

 

Distances = squareform(pdist(concatenate(QuadrantsS, QuadrantsL))) 

 

where the function pdist calculates the Euclidean distance between cluster pairings as 

a vector, D(C1, C2), according to the following formula:  

 

 

 

(4.21) 

(4.22) 
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The squareform function is then applied to the calculated distances in order to convert 

the vector, D(C1, C2), into a 2D matrix of values so that element i, j in the matrix, 

where i < j, corresponds to the Euclidean distance values between centroid i and j 

within the original data set of concatenate(QuadrantsS, QuadrantsL). 

 

For example, if the arrays of QuadrantsS and QuadrantsL have the following values, 

where: 

 

QuadrantsS = [ 1 2   QuadrantsL = [ 2 2  

 1 3 ]   3 3  

      1 3 ] 

 

Applying the pdist() function to concatenate(QuadrantsS, QuadrantsL), will therefore 

yield a vector with the following values, where : 

 

pdist(concatenate(QuadrantsS, QuadrantsL))  = [1.0, 1.0, 2.2361, 1.0, 

1.4142, 2.0, 0, 1.4142, 

1.4142, 2.0] 

 

We then apply the squareform() function to this vector in order to obtain a more 

readable format in the form of: 

 

 

 

 

(4.23) 
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DistanceSF = [ 0 1.0000 1.0000 2.2361 1.0000  

  1.0000 0 1.4142 2.0000 0  

  1.0000 1.4142 0 1.4142 1.4142  

  2.2361 2.0000 1.4142 0 2.0000  

  1.0000 0 1.4142 2.0000 0 ] 

 

Step 3: Obtain only the distance measure values from DistanceSF where each cluster 

from QuadrantsS is compared against QuadrantsL. The values compared between 

QuadrantsS and QuadrantsL can be represented within DistanceSF as shown in Figure 

4.12 located on the next page. 

 

The indicated values in Figure 4.12 are then obtained through the following equation, 

where: 

 

Distances = DistanceSF(1: size(QuadrantS), size(QuadrantS) + 1: width 

(DistanceSF)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 The indicated distance measure 
values to be extracted. All other values are 

discarded. 
 

(4.24) 

(4.25) 
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Step 4: For each row j within Distances, claim the lowest value in column k, where k 

has not been claimed by a previous row. This is done to ensure that every centroid 

location in QuadrantsS is compared to exactly one (and only one) other counterpart in 

QuadrantL with the lowest possible comparison values. As each column k is claimed, 

add k to array Claimed. This is to ensure consistency across compared centroids when 

comparing relationships later on in the next section. Also, each distance calculated is 

stored within the array DistanceArray. 

 

Step 5: Calculate the differences in quadrant location for the current image by taking 

the mean of all differences over the maximum possible distance value (2.8284) and 

represent it as a percentage, which is carried out by the following formula: 

 

QuadrantDiff = mean(DistanceArray) / 2.8284 * 100; 

 

4.1.7.1 Comparing Relationships 

 

The process of comparing centroid relationships is performed with the 

following steps in a manner similar to that in the previous section: 

 

Step 1:  Set SemanticsL to be max(SemanticsL, SemanticsS) and RelationshipsS to be 

min(SemanticsL, SemanticsS), where Semanticsp/c are vectors containing the semantic 

information of the previous and current image clusters, respectively. 

 

(4.26) 
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Step 2:  For each value j in  Claimed, calculate the relationship differences between 

each k
th

 relationship value in SemanticsS, j and SemanticsL, Claimed[j]. In order for this to 

occur, the high-level descriptor tags are converted to angles on a numeric scale 

according to the 8 cardinal directions as seen in Figure 4.13. 

 

 

 

 

 

 

 

 

 

Differences between each relationship are calculated according to the formula on the 

next page, where: 

 

AngleDiff = | (Angle1 – Angle2 + 180 % 360) – 180 | 

 

This will result in AngleDiff possessing a value within the range of 0 to 180. Each 

calculated value of AngleDiff is then stored within the array RelationshipArray. 

 

Step 3: Calculate the differences in relationships for the current image by taking the 

mean of all differences over the maximum possible angle difference (180) and 

represent it as a percentage, which is obtained by using the following formula: 

 

Figure 4.13 Translating high-level descriptor tags into angles (calculated in degrees) 

(4.27) 
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RelationshipDiff = mean(RelationshipArray) / 180 * 100; 

 

4.1.7.2 Evaluating Differences Through The FIS 

 

Once the values of SizeDiff, QuadrantDiff and RelationshipDiff have been 

calculated, these three variables are then evaluated with the FIS (previously discussed 

in Section 4.1.2) through MATLAB‟s evalfis() function, in which the similarity score 

is obtained though the implementation of the aforementioned function as: 

 

similarity = evalfis([SizeDiff, QuadrantDiff, RelationshipDiff], FIS) 

 

As stated previously in Section 4.1.2, the similarity score for any particular 

image ranges from 1.69 to 8.31 as a result of the relationship between the difference 

values and the membership functions and variables of the FIS. 

 

While the main content of experimental results are demonstrated and 

explained in the following chapter, we now provide an analysis of how the differences 

values interact with the FIS in order to produce the final outcome of the similarity 

score. 

 

Similar to Figure 4.4, the figure below displays the rules which govern how 

the difference values placed within the membership functions affect the final result.  

 

 

(4.28) 

(4.29) 
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In the specific case of Figure 4.14, the values of SizeDiff, QuadrantDiff and 

RelationshipDiff generate a similarity score of 8.31. This is despite the fact that the 

value of QuadrantDiff has a value of 10, as opposed to the other two difference values 

of 0. The reason for this phenomenon is due to the membership function defining the 

similarity between quadrants (in rule 5), where any value than is less than or equal to 

10 is still considered to have no difference. This also applies to all other membership 

functions as well, so an image with a value of 10 for all three difference values will 

still result in a similarity score of 8.31. 

 

Conversely, all three difference scores will only need to breach the 90% value 

threshold in order to achieve the lowest similarity score of 1.69, and do not 

necessarily have to each possess a perfect score of 100% for this to occur. 

 

 

Figure 4.14 The difference values that result in the highest possible similarity score 
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4.2 Chapter Summary 

 

This chapter focuses upon the details regarding the technical implementation 

of the proposed semantic SLAM model. An overview of the relationships between the 

MATLAB file modules that constitute the SLAM model is shown, along with the 

flow of data that traverses through the model; from the initial video sequence that is 

submitted as input, to the generated similarity score. 

 

A general description of the operations related to the files modules is then 

provided. This is then followed by a description of the Fuzzy Inference System (FIS), 

as well as the creation of its membership functions, rules, and input/output variables. 

Following this, the focus of discussion is then aimed towards the Tamura Texture 

features in which the methods of extracting the features of coarseness, contrast and 

directionality from each and every patch of an image frame are explained. 

 

The process of classifying image patches through the Adaptive Resonance 

Theory (ART) algorithm is then discussed, detailing the procedure of converting 

patch signatures into complement-coded values that are accepted as input by a newly 

created (and untrained) ART network. The clustering of classified image patches is 

also explained, as it serves as a pre-cursor towards obtaining the semantic information 

pertaining towards any particular image frame. 

 

The extraction of semantic data from the aforementioned clusters is then 

explained. In the current model, the extracted data consists of a cluster‟s location and 



82 

 

size, as well as its topographical relationship with other existing clusters. The degree 

of similarity between two image frames is determined by comparing their semantic 

data through the FIS, which generates the final similarity score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 

 

Chapter 5 

 

Patch Categorization and Image Reconstruction 

 

The main purpose of this chapter is to analyze a selection of 20 patches that 

represent any particular category (due to the extremely large amount of patches 

involved) and determine if the categorization process results in the patches for each 

category to contain a particular semantic inference or content. This is done by 

calculating the mean Tamura Texture feature values for each category, and 

determining the distance of each patch signature to this mean vector. The smaller the 

distance, the more indicative that a particular patch is semantically representative of 

the category that it is in. Any anomalous patches will be further analyzed to provide 

an explanation regarding the basis in which it was selected to be in that particular 

category.  

 

To this end, we first introduce the video streams (shot at a resolution of 6480 * 

480 in 16-bit color) involved in the experiments that were conducted in the current 

research effort. Frames from key points of each video stream will be shown, along 

with the time stamp in which the frame was captured.  

 

All experiments were conducted with a vigilance factor of 0.885, with an 

equal weight distribution of 1.0 for the input variables of size, quadrant location, and 

relationship differences. 
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While the MATLAB environment implements the SLAM model (which was 

discussed previously in Chapter 4), a third-party video indexing software was utilized 

to extract the frames from each video stream, at an average of 5 frames per second.  

 

 5.1 Patch Categorization 

 

The first video stream consists of a 64 second traversal divided into 322 

individual frames. The traversal begins from a corridor environment, through a room 

at the 23
rd

 second and back into the previous corridor at the 55
th
 second. Several 

frames of the entire traversal are shown in Figure 5.1, along with the time stamp 

denoting the moment which is being represented. Key frames from other video 

streams are also shown in Appendix A and consist of one other indoor environment 

set (Appendix A.1.), and two outdoor environment sets (Appendix A.2. and A.3.). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1b 
0m 10s - Traversal through the 

corridor 

Figure 5.1a 
0m 0.4s – Beginning of the video 

stream 
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Figure 5.1d 
0m 23s - Entering the room 

Figure 5.1c 
0m 20s - The end of the corridor just 

before entering the room (to the 

left) 

Figure 5.1f 
0m 30s – Traversal through the room 

Figure 5.1g 
0m 40s – Traversal through the room 

Figure 5.1e 
0m 26.00s – General layout of the 

room 

Figure 5.1h 
0m 51s – Facing the end of the room 
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Categorization of the patches contained within the video stream has resulted in 

the generation of 20 separate categories. The results, which are displayed in Appendix 

B.1, shows a maximum of 20 patches for each category, ranging from patches that 

have the least distance to their category‟s mean patch signature (top left) to those with 

the largest distance value (bottom right).  Categorized patches for the other 

environment set are also shown in full in Appendix B. Several of the categories from 

Appendix B.1 are shown in Figure 5.2. and will serve to aid with analyzing the 

performance of the categorization process. 

 

 

 

 

 

 

 

Figure 5.1 Selected frames (out of 322) from a video stream traversing through a 
corridor, a room and then back 

Figure 5.1i 
0m 55s – Re-entering the corridor 

Figure 5.1j 
0m 57s – Turning to face the corridor 

Corridor Set 1 - Category 1 
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Corridor Set 1 - Category 6 

Corridor Set 1 - Category 9 

Corridor Set 1 - Category 16 
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Corridor Set 1 - Category 14 

Corridor Set 1 - Category 15 

Corridor Set 1 - Category 17 
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A visual inspection of each of the categories shown in Figure 5.2 will 

demonstrate that while certain categories contain patches with a diverse range of 

semantic context (examples of these are Categories 1 and 6), there are also categories 

containing patches with a highly consistent semantic context (such as those from 

Categories 16 and 20). Another point of interest is where the context of some 

categories is not restricted to generic indoor features such as walls, floor or ceiling, 

but specific household items (i.e. categories 14 and 15 consistently have patches that 

have computers within them). 

 

In order to determine if the “randomness” of categories with no specific 

semantic context is caused by the patch signatures, their values and distance from the 

category‟s mean value will be listed in Figure 5.3, where details for Category 9 are 

Figure 5.2 Selected categories (out of a total of 20), containing patches from best-fit 
(top-left) to worst-fit(bottom-right) 

 

Corridor Set 1 - Category 20 
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shown. As a comparison, the details from a more consistent category are shown as 

well. In this case, Category 16 was chosen for this purpose. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 5.3, the features of coarseness and contrast for Category 16 actually 

have a higher standard deviation compared to Category 9. In fact, only the 

directionality for Category 16 has a more tightly bound standard deviation value 

compared to Category 9. This raises the possibility that spread of values for one 

feature is capable of determining the semantic consistency of a particular group of 

image patches. 

 

 

 

 

Figure 5.3 The patch signature values for categories 9 and 16 
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5.2 Image Reconstruction 

 

While the categorization of patches provides an indication if semantic context 

is being properly segregated by the proposed model, reconstruction of each image 

frame from the video stream can also be performed to determine if the semantic 

context for different portions of each frame are correctly interpreted as well. This 

operation is not integral to the functionality of the proposed model, but would provide 

some insight as to how the model interprets each image from its own point of view. 

 

As the category number of each and every patch for any particular image 

frame is already determined, reconstruction can be performed by selecting the “best-

fit” patch from the related category, and replacing the original patch which generated 

the related category number. This can be seen in Figure 5.4, which contains a 

comparison between selected reconstructed images and their original counterparts 

from Figure 5.1. Comparisons between all images for every set are also shown in 

Appendix C. 

 

Comparisons show that some images do not show a correlation between the 

original and reconstructed images in a semantic context, such as in Comparisons B, E, 

and G. However, instances such as those for Comparisons C and F indicate that 

reconstruction of images with proper semantic context is possible. In addition, the 

reconstructed images in Comparisons A, D, H and J demonstrate a clear indication of 

boundary detection between areas with different semantic context, even though the 

actual context isn‟t fully accurate.   
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Another issue upon visual analysis of the comparisons is the issue of 

consistency. Comparisons A and B do not differ significantly in terms of semantic and 

visual representation, yet their reconstructed counterparts indicate differing sets of 

categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison A 
0m 0.4s – Beginning of the video 

stream 

Comparison B 
0m 10s - Traversal through the 

corridor 

Comparison C 
0m 20s - The end of the corridor just 

before entering the room (to the 

left) 
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Comparison D 
0m 23s - Entering the room 

Comparison E 
0m 26.00s – General layout of the 

room 

Comparison F 
0m 30s – Traversal through the room 

Comparison G 
0m 40s – Traversal through the room 
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Figure 5.4 Comparisons between original and reconstructed key frames 

Comparison H 
0m 51s – Facing the end of the room 

Comparison J 
0m 57s – Turning to face the corridor 

Comparison I 
0m 55s – Re-entering the corridor 
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5.3 Chapter Summary 

 

The focus of this chapter is to determine if the categorization of image patches 

would result in a consistent semantic context, if the patches were to be viewed 

according to the categories they are classified as. From the results shown in this 

chapter and Appendix B, the potential for conducting such a categorization process 

with the required amount of consistency is evident, but not at a satisfactory level yet 

as categories still exist with differing semantic contexts. 

 

 

The categorization of image patches serves as a basis for image reconstruction, 

which presents a visual representation of how the proposed model interprets each 

image frame. As the image reconstruction process is highly dependent on patch 

categorization, it is expected that improved performance on the latter would result in 

similar improvements in the former. However, as of this moment, accurate image 

reconstruction from a semantic aspect is noticeable, but requires further refinement 

for greater reliability. 
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Chapter 6 

 

Definition of Semantics 

 

While the previous chapter allows us to inspect the visual interpretation of the 

proposed model towards entire image frames, not every categorized patch will 

contribute towards the semantic description of any particular frame. As previously 

described in Chapter 4.1.6, clusters with a size of 1 are considered to be trivial and 

will not contribute towards forming the semantic descriptors of size, location and 

relationships that is associated with each and every cluster. 

 

The purpose of the current chapter is to analyze this operation to determine if 

the generated descriptors are sufficient to provide adequate semantic context towards 

the processed image frames. In order to provide a certain measure of consistency and 

to aid in comprehension of the overall process, the results shown within this chapter 

will be based upon the set of images shown in the previous chapter. 

 

6.1 Cluster Filtering 

 

Figure 6.1 demonstrates the process where clusters are implicitly generated by 

patch categorization, and the subsequent operation of discarding trivial clusters. 
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Semantic consistency between the original image frame (Figure 6.1a) and the 

set of generated clusters (Figure 6.1d) is crucial, as the clusters are directly involved 

in determining the information contained within the semantic descriptors which serve 

as the semantic counterpart to each image frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 will display a comparison between the key frames shown in Figure 

5.1 and their associated layout of clusters for the first corridor video stream, while 

Appendix D contains the comparisons for the other video streams. In order to provide 

greater ease during comparison, any cluster that possesses a visually explicit semantic 

context will have its identification number annotated on the original key frame. It 

should also be noted that the scope of cluster numbers are limited to their associated 

Figure 6.1 The filtering process of non-trivial clusters where (a) is the original image 
frame, (b) is the set of categorized patches, (c) are the generated clusters, and (d) is 

where trivial clusters of size 1 are discarded 

(a) 

(c) (d) 

(b) 
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images. Therefore, the semantic context for any particular cluster number can differ 

across separate image frames. 

 

The results shown in Figure 6.2 provide an indication of the generated 

clusters‟ feasibility in representing the semantic context of any particular key frame. 

While the number of visually explicit clusters serve as an indication in regards to the 

current model‟s effectiveness, the amount of coverage each cluster possesses in 

relation to its semantic counterpart is equally crucial. 

 

From Figure 6.2, Comparisons A, D, G, H, and J contain clusters with the 

most ideal representation of semantic context, as it is trivial to determine the image 

portion being represented by a particular cluster. In addition, the relative size and 

location of each cluster as compared to its associated key frame gives an adequate 

representation of the entire image as a whole. 

 

Comparisons C, E, and I show the least amount of explicit correlation between 

the distribution of clusters and semantic context of their respective images. In the case 

of comparisons C and I, it is likely that the vertical directionality – which is unique to 

these images – is the cause for the lack of specificity in the layout of clusters. 
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Comparison C 
0m 20s - The end of the corridor just 

before entering the room (to the 

left) 

Comparison A 
0m 0.4s – Beginning of the video 

stream 

11 

19 
21 

24 

14 

12 

Comparison B 
0m 10s - Traversal through the 

corridor 

23 
21 26 

Comparison D 
0m 23s - Entering the room 

10 

12 

20 

17 
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Comparison F 
0m 30s – Traversal through the room 

10 

12 

11 

Comparison G 
0m 40s – Traversal through the room 

17 

20 

21 

14 

Comparison H 
0m 51s – Facing the end of the room 

11 

16 

12 
13 

10 

Comparison E 
0m 26.00s – General layout of the room 
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6.2 Semantic Descriptors 

 

Following the process of discarding clusters of size 1, the remaining clusters 

are used to generate the semantic descriptors that are intended to serve as a unique 

identifier for each frame within the video stream. To serve as an example, the image 

in Comparison A within Figure 6.2 would generate the following descriptors: 

 

 

Figure 6.2 Comparisons between original key frames and generated clusters 

Comparison I 
0m 55s – Re-entering the corridor 

22 

17 

23 

14 

16 

13 

Comparison J 
0m 57s – Turning to face the corridor 



102 

 

Figure 6.3 An example of a set of semantic descriptors associated with an image frame 

 

Clusters 11 12 13 14 17 19 21 24 

Size 4 9 2 3 2 3 5 3 

Quadrant 1 2 3 3 5 7 8 9 

Relationships 11  L L L T & L T T & L T & L 

 12 R  T  & L T  & L T T & R T T & L 

 13 R B & R  L R T & R T & R T & L 

 14 R B & R R  R T & R T & R T 

 17 B & R B L L  T & R T T & L 

 19 B B & L B & L B & L B & L  L L 

 21 B & R B B & L B & L B R  L 

 24 B & R B & R B & R B B & R R R  

L = Left R = Right T = Top B = Bottom 

 

 

The generation of semantic descriptors as shown in Figure 6.3 provides a 

high-level description of the various areas of distinct semantic context for a particular 

image. While it is possible for several image frames to possess a similar relationship 

table, the risk of ambiguity is offset by the quadrant location recorded for each 

particular cluster, providing further detail towards the extent of the relationship 

between clusters. 

 

6.3 Chapter Summary 

 

Following the process of image reconstruction through patch categorization, 

the purpose of this chapter is to determine if the creation of non-trivial patch clusters 
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(i.e. size > 1) will result in semantic consistency with their related image frames. The 

method in which this is performed is similar to the previous chapter, in which visual 

comparisons on clusters are made against the local semantic context of individual 

frames to determine if any explicit correlation between the two is present. 

 

From the results shown in this chapter and in Appendix D, indoor 

environments have a more visually explicit relationship towards their image frames as 

compared to outdoor environments. However, much improvement can be made 

towards making the observation of this relationship much more consistent throughout 

all images, regardless of the surrounding environment. 
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Chapter 7 

 

The Semantic Location Resolver 

 

Once the process of generating semantic descriptors for each captured image 

frame is completed, they are then compared to their counterparts associated with a 

referenced image frame previously described in Section 4.1.7. The objective of this 

chapter is to determine if the Fuzzy Inference System (FIS) within the proposed 

model is capable at deducing a change in semantic context as the environment within 

a video stream transitions from one area to another. 

 

In order to determine the consistency of the proposed model, the results of 4 

separate video streams (2 indoor and 2 outdoor environments) will be analyzed, while 

any notable observations will be discussed upon. Key frames from the first indoor 

environment can be found in chapter 5.1, while the others are listed in Appendix A.  

 

7.1 First Corridor Video Stream 

 

The 3 input variables of the FIS that determine the similarity of size, location 

and relationships of clusters have an initial value of 1, while the threshold value for 

the similarity score has been set to a value of 5, and a vigilance value of 0.885. Once 

processed by the proposed model, the first corridor video stream – with a length of 64 

seconds divided into 322 image frames – generates the similarity scores as shown in 
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the graph as Figure 7.1. In order to assist in interpreting the results, annotations will 

be made, showing the frame in which a particular score is recorded. 

 

The first observation to be made is that none of the image frames recorded a 

score lower than the threshold score value of 5. The global minimum occurs at event 

B (which is visually analogous to Comparison C in Figure 6.2), and is semantically 

relevant to the change in environmental context from a corridor to a room setting. 

However, the reference image was not updated to reflect this change as the similarity 

score generated at this point (5.127) did not pass below the threshold value. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Because of this, all image frame following event B are still compared to image 

1, and do not serve as an accurate or semantically relevant comparison. Following 

A – Video stream submitted as input. Reference image set to image 1. 
B – Camera faces end of first corridor. Similarity score value of 5.127. 

Figure 7.1  The similarity scores for each of the 322 frames from the first corridor set 

A 

B 
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this, the experiment was conducted once again with the threshold score increased to a 

value of 5.2 to determine if improvements can be made towards the generated results, 

which are shown in Figure 7.2 below. 

 

This second iteration of the experiment yields some interesting results. 

Examination of the images which have yielded scores below the threshold value show 

that for this particular video stream, changes from one semantic context to another 

within the local environment are able to be detected by the proposed model. From this 

particular set of results, 3 notable observations have been identified: 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

A 

B 

C 

D E F 

A – Video stream submitted as input. Reference image set to image 1. 
B – Camera faces end of first corridor. Similarity score value of 5.127. 
C – Camera faces end of first corridor. Similarity score value of 4.842.  
D – Camera faces room. Score value of 5.181.  
E – Camera faces wall within room. Score value of 5.181.  
F – Camera within first corridor again. Score value of 5.181.  

Reference images updated to current image at each annotated event. 

 Figure 7.2 Results for the first corridor set, with a modified threshold score value of 5.2. 
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Observation 1: Between (and including) events B and D, their generated similarity 

score values were lower than the threshold value at 3 different occasions. While these 

events occur within a time span short enough to be considered trivial (14 frames or 

2.4 seconds), an ideal operation would have a sufficiently low similarity score only at 

event D. In order to aid determining the cause for this phenomenon, Figure 7.3 

displays the image and clusters associated with events B to D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Image frames and significant clusters associated with events B to D. 

Event C 

Event B 

Event D 
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The generation of a low score value for event B is easily explained, as the semantic 

areas of interest of the related image has a uniform structure, as opposed to the 

generally symmetrical nature of the reference image within the corridor. 

 

As the images associated with event B and C are very similar, a more detailed 

inspection in regards to their semantic clusters is required to derive an acceptable 

explanation for the low similarity score generated by event C.  

 

Upon inspection of the significant semantic clusters for events B and C, it becomes 

clear as to the reason event C scored lower than the threshold value. The two clusters 

are very dissimilar in terms of size, location and relationships, and therefore, cause an 

extremely low similarity value to occur. This observation serves as reinforcement to a 

statement previously made in chapter 6, where the process of representing semantic 

context though clusters needs to be further refined in order to prevent occurrences like 

this particular one from arising. 

 

The similarity score for event D has a similar explanation to that given for event B, in 

which a change in semantic context would result in a change in the overall structure 

and distribution of the related clusters (as this is the intended method in which the 

proposed model operates upon). However, in the case of event D, it would also be 

preferable if the image could be better represented by clusters with a more visually 

identifiable layout. 

 

Observation 2: Ideally, the image associated with event E should not have scored 

lower than the threshold value. Once again, this is similar to event C, where two or 
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more fairly similar (from a visual and semantic aspect) images possess different 

cluster distributions, as shown in Figure 7.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the dissimilarity between the clusters in Figure 7.4 is not as pronounced as that 

between event B and C, the presence of two additional clusters (11 and 14) in addition 

to other differences in event E is sufficient to lower the similarity score below the 

threshold value. While better cluster representation should be emphasized again, the 

roles of the 3 similarity factors (size, location and relationships) should be further 

investigated due to the close similarity between the clusters of event E and its 

preceding image. 

 

Figure 7.4 The cluster distribution and score values for event E and the image frame 
immediately preceding it. 

Event E (time = 0m 50.2s, score = 5.181) 

Before Event E (time = 0m 50.0s, score = 5.991) 



110 

 

Observation 3: Event F is an ideal example of the proposed model at work, where the 

detection of a change in semantic context is a singular event within an observable 

time frame (approx. 5.2 secs since event E), and at the correct location (when the 

camera is transitioning from the room to the corridor). Figure 7.5 shows the moment 

in time where this event occurs. 

 

 

 

 

 

 

 

 

7.2 Second Corridor Video Stream 

 

The second video stream (shown in Appendix A.1) is a shorter, but more 

complex indoor environment, traversing 3 corridors and 2 different room 

environments, and lasting for 58 seconds divided into 291 frames. Using the same 

parameter values as the previous experiment (with a threshold value of 5.2), Figure 

7.6 on the next page contains the resulting similarity scores that have been generated. 

 

 

 

 

Figure 7.5 The image frame for event F 
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The results from Figure 7.6 are not as encouraging compared to the previous 

corridor set. Out of the 6 events noted, only events D and E registered low scores at 

the proper moment in the video stream. Event C is an observation that has been made 

previously on the first corridor set, while events A, B and F should not have occurred 

under ideal circumstances. 

 

Events A and B occur under an interesting premise: where the semantic 

context of both images are identical (corridor), but the differences in semantic content 

are somewhat dissimilar. Figure 7.7 provides a visual example of this statement.  

A 

B C D E 

F 

A – Camera traverses first corridor. Score value of 4.6. 
B – Camera traverses first corridor. Score value of 5.074 
C – Camera reaches end of first corridor. Score value of 5.114. 
D – Camera turns after end of third corridor. Score value of 4.922. 
E – Camera turns after end of third corridor. Score value of 5.111. 
F – 6 low score values when the camera turns left and right in the lounge area. 

Figure 7.6 Results for the second corridor set. 
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While all three image frames in Figure 7.7 are of the first corridor set, the 

image from event A contains a blank wall on the leftmost portion, whereas the 

opposite is true of image 1 and event B. Therefore, event A is incorrectly classified as 

the beginning of a different environment. 

Event A 

Event B 

Image 1 

Figure 7.7 Image frames and significant clusters associated with image 1 to event B. 
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The case of event C is similar to that of event B for the first corridor set, where 

a door is encountered at the end of a corridor and thus, triggering a low score below 

the threshold value. However, in this case, the corridor further extends to the right 

rather than transition into a room with a different semantic context, as in the first 

corridor set, and therefore event C should have not occurred under ideal conditions. 

Figure 7.8 contains the image frames of event C as well as the preceding and 

subsequent environmental surroundings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Event C (time = 0m 18.6s) 

Time = 0m 16s 
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The time frame in which events D and E occur (shown in Figure 7.9) is also 

similar to events B to D from the first corridor set, where multiple instances of low 

scoring values are calculated in a short period of time. In this case, the time difference 

between events and E is 0.6 seconds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Image frames and clusters of event C and its preceding and subsequent time 
moments 

 

Time = 0m 20.267s 

Event D 

Event E 

Figure 7.9 Image frames and clusters associated with events D and E. 
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Event F is composed of 6 separate instances where – over a time period of 2.2 

seconds – the calculated similarity score is below the threshold value. The image 

frames and clusters for these instances are shown in Figure 7.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Time = 0m 55.2s, Score = 4.6 

Time = 0m 55.6s, Score = 5 

Time = 0m 55.8s, Score = 5 
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Two possible explanations for the frequent occurrences of low scores present are: 

unfavorable lighting conditions in the lounge area could serve as one possible reason 

as this does not occur in other portions of the video stream, which are well-lit. 

Another possible explanation is due to the constant rotation of the camera within the 

lounge area, which could also be the cause of Event D as well. However, in order to 

confirm either of these explanations as a definite cause, more research is required. 

Figure 7.10 The 6 low-scoring instances in Event F 

Time = 0m 56.8s, Score = 5 

Time = 0m 57.2s, Score = 5 

Time = 0m 57.4s, Score = 5 
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7.3 First Outdoor Video Stream 

 

Experiments have also been conducted to determine the viability and potential 

of the proposed model operating in outdoor environments, which possesses a less 

defined and structured semantic context. The first outdoor video stream is located 

within a park and consists of travelling along only one semantic context (that of a 

pathway). It has a time length of 22.2 seconds divided into 154 individual frames. 

Key frames from this video stream can be found in Appendix A.2 while the generated 

similarity scores (with the same settings as previous experiments) can be seen in 

Figure 7.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11 Results for the first outdoor set. 
 

A B 

A – Camera traverses along path. Score value of 5.198. 
B – Camera traverses along path. Score value of 5.054. 
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Ideally, the generated scores would not have any value below the threshold 

value of 5.2. However, from Figure 7.11, two separate instances of low-scoring value 

occur at Events A and B, which can be inspected visually in Figure 7.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is possible for Event A to have been avoided, as its similarity score is 

extremely close to the threshold (with a difference of 0.002), and better semantic 

Figure 7.12 Image frames and clusters of image 1 and events A and B 

Event B 

Event A 

Image 1 
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representation though clusters would likely ensure a higher score value. This is true in 

the case of Event B as well, though the formation of its clusters is more diverse (8 

clusters) than those of Event A (2 clusters). 

 

7.4 Second Outdoor Video Stream 

 

The second outdoor video stream consists of the camera traversing along a 

pathway for approximately 11.6 seconds (58 frames), then moving on to grass for the 

remaining 10.6 seconds (53 frames) for a total of 22.2 seconds (111 frames). 

Similarity scores for this video stream are shown in Figure 7.13. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13 indicates that the proposed model does not register any change in 

semantic context during the entire video stream. However, during the moment of 

image 58 (as indicated), the similarity score obtained a value of 7.503 when compared 

Figure 7.13 Results for the second outdoor set. 

Transition from pathway to grass occurs here. 
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to image 1 as the reference image. A visual inspection of both these images and their 

related clusters is shown in Figure 7.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14 demonstrates a potential issue regarding the proposed model, 

where the dissimilarity between the distributions of both image clusters does not 

justify the high value of the generated similarity score. Therefore, the fuzzy rule set 

currently implemented should be further refined in order to overcome such an issue 

where a low score should be triggered. 

 

 

Figure 7.14 Image frames and clusters of image 1 and 58 
 

Image 58 

Image 1 
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7.5 Chapter Summary 

 

In summation, the proposed model does hold some promise when being 

implemented within indoor environments, where the semantic content is highly 

structured and strictly defined. However, the model does not perform as well when 

experiments were conducted within outdoor environments. Due to the results obtained 

from this chapter, two issues will have to be resolved before the model can be fully 

implemented with satisfactory results: 

 

(1) Better representation of the semantic content within an image frame is needed. 

Visual inspection of clusters shown in this chapter indicate that improvements in this 

aspect are necessary, are certain frames have been observed to have been improperly 

represented due to incorrect/inconsistent distribution of clusters. 

 

(2) To determine the extent to which the fuzzy rules influence the overall scoring 

system. This is to ensure that explicitly different cluster distributions are not assigned 

a high similarity score (as shown in the second outdoor video stream). If necessary, 

investigate other methods of representing relationships between clusters (i.e. 

semantic networks). 

 

In order to make further contributions towards the general knowledge and 

application of semantic forms of SLAM, resolving these issues should be considered 

as future work that are proposed to be carried out subsequent to the submission of this 

thesis. 
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Chapter 8 

 

Conclusion 

 

A summary of each of the chapters will now be provided, describing their 

intent and contribution made towards this body of work. Chapter 1 introduces and 

describes the concept of SLAM. The main approaches of conducting SLAM were 

discussed and the idea of a semantic form of SLAM was put forth. A research 

question and research objectives were established to provide a framework into 

determining the potential and feasibility of conducting real-time semantic SLAM 

through CBIR. 

 

Chapter 2 provides details upon specific real-time implementations of 

semantic SLAM that are related towards the proposed model. Image retrieval methods 

are also discussed in this chapter. Chapter 3 outlines and discusses the various stages 

of the proposed semantic SLAM model, where images from a video stream are to be 

represented by clusters of patches. The nature of these clusters is determined by the 

semantic content of the images, and serves as a unique identifier for their associated 

image frame. These identifiers are then compared against each other to determine if 

their respective images are considered to be in an area with the same semantic 

context. 

 

Technical details on the currently implemented model are discussed in Chapter 

4. An Adaptive Resonance Theory (ART) algorithm was selected as the classifier of 
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choice to categorize patches, while a Fuzzy Inference System (FIS) was chosen in 

order to calculate the similarity between image frames. Within the FIS, 3 input 

variables (associated with the size, location and relationships of clusters) with 2 

membership functions per variable are used to determine the value of similarity. 

 

Chapters 5 to 7 discuss the various experiments that were undertaken to 

determine the performance of the proposed model at different stages of the semantic 

SLAM pipeline. Due to the visually-focused nature of the current research effort, key 

frames from certain moments within the video streams are shown and compared 

against the categorization and clustering process.  

 

8.1 Main Contributions 

 

 The research effort described within this thesis possesses several contributions 

towards the field of semantic SLAM, which include: 

 

(1) A 4-stage model designed to conduct a semantic for of SLAM was introduced, 

along with a specific implementation involving the usage of an ART algorithm and a 

fuzzy logic ruleset. 

 

(2) Demonstrating the feasibility of implementing three Tamura Texture features 

within the proposed model. The experimental results shown in Chapters 5 to 7 are 

derived from the involvement of the Tamura Texture features at every stage of the 

proposed model. 
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(3) Determining the capability of the proposed model to accurately categorize image 

patches into various categories that have a semantic context that is visually explicit 

when inspected with the human eye. 

 

(4) Demonstrating the capability of the proposed model in detecting a transition 

between areas that possess different semantic context. 

 

8.2 Summary of Performance 

 

The performance of the proposed model is intended to answer the research 

question posed in Chapter 1, which is: “Can we apply CBIR techniques to the domain 

of SLAM to generate a robust SLAM model?”  

 

From the results obtained from the experiments, it can be observed that the 

proposed model has the potential of conducting the process of semantic SLAM within 

an indoor environment. In order for this to occur, the following actions are required in 

order to amend the liabilities that have been observed within the system: 

 

(1) Investigation of a more suitable method of representing the semantic content of a 

particular image. Experiments have shown that the implementation of Tamura 

Texture features to represent a particular patch within an image is capable of 

outlining the boundaries between local areas of semantic context. However, a 
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significant number of cases appear in which the categorization of patches do not 

accurately correspond to their semantic context, especially in outdoor environments. 

 

(2) Determine an ideal rule set within the FIS to ensure that the scoring system is 

consistent during comparison of images. Currently, the distribution of similarity 

scores is erratic, even though the threshold score is generally crossed at the right time 

moment; the comparison between several continuous image frames can yield scores 

with significantly different scores even though the semantic context generally remains 

the same.  

 

As the image comparison process partially depends on how patches are categorized, 

the act of solving the first issue can also possibly result in solving the second as well. 

 

8.3 Future Work 

 

In order to resolve the issues that were discussed previously, several courses 

of action are required to take place that are to be considered future work that is to 

commence after the submission of this thesis: 

 

(1) Determine an appropriate method of patch representation. 3 texture features are 

clearly insufficient in order to adequately separate the semantic content of an image, 

and therefore, the inclusion of other features to act as a patch signature needs to be 

explored. 
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(2) Investigate the degree of influence in which each of the three cluster features (size, 

location and relationships) affect the similarity score. All the experiments previously 

discussed have operated under the condition where all three cluster features possess 

equal weights. Determining an “ideal” combination that results in similarity scores 

that correlate with the change in semantic context will require a significant amount of 

time, due to the large amount of possible weight value combinations. 
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