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Abstract. We present a theorem that shows that all useful protocols
for magic state distillation output states with a fidelity that is upper-
bounded by those generated by a much smaller class of protocols. This
reduced class consists of the protocols where multiple copies of a state
are projected onto a stabilizer codespace and the logical qubit is then
decoded.

1 Introduction

To prevent noise and decoherence from destroying quantum information, the
information can be stored in delocalised degrees of freedom of a larger system.
This may be an encoding in a stabilizer code, where information is stored in a
subspace of states that are eigenstates of particular tensor products of Pauli op-
erators, known as the stabilizer of the code [1, 2]. More exotic physical systems,
composed of particles obeying anyonic statistics, can store quantum informa-
tion in topological degrees of freedom [3, 4]. However, to perform computational
tasks it is necessary to manipulate the quantum information without produc-
ing correlated and uncorrectable errors, which is a more difficult task once the
information is delocalized.

A logical operation that is performed transversally does not couple subsys-
tems within the same encoding block [5]. It cannot produce correlated errors,
and hence is well suited for a fault tolerant computation scheme. For example,
an encoded Hadamard applied to the 7-qubit Steane code [1] is simply 7 single
qubit Hadamards, HL = H⊗7, and so is transversal.

It has, however, been recently shown that no stabilizer code can protect
against a generic noise model and provide a universal set of transversal gates
[6]. Furthermore, the only experimentally observed anyons also fall short of pro-
viding a universal set of topologically protected gates [7–9]. In stabilizer codes
the most common group of transversal gates is the Clifford group, the group of
unitaries that map the set of tensor products of Pauli operators to itself. The
Clifford group is also inherently protected in some topological schemes for quan-
tum computation. Above fault tolerance error thresholds, high fidelity Clifford
group unitaries can be achieved. It is therefore well motivated to abstract away
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from fault tolerant operations on encoded qubits, and consider ideal Clifford
group operations acting on unencoded qubits.

Quantum devices which only prepare stabilizer states and perform unitaries
in the Clifford group can be efficiently simulated by a classical computer, and
so cannot offer any computational advantage [10, 11]. Despite this, such devices
can be promoted to a fully universal quantum computer by using a resource of
pure single-qubit non-stabilizer states, such as the so-called magic states [12].
Since preparation of these resource states is not typically fault tolerant, Bravyi
and Kitaev introduced “magic state distillation”, a class of protocols which,
given perfect Clifford operations, allow one to distill from many copies of certain
mixed states, a state which is closer in fidelity to a pure non-stabilizer state.
Repeated iteration of the protocol generates, in the limit of many iterations,
one of a number of pure non-stabilizer states, known as the “magic states”.
Given a supply of such states, Clifford group unitaries are sufficient for universal
quantum computation [12].

A number of protocols for magic state distillation have been proposed [12–15],
but all follow the same format. They prescribe projecting several copies of the
initial state onto a stabilizer codespace and then decoding from the codespace to
a single qubit state. The prominence of stabilizer codes in magic state distillation,
and a dearth of other species of protocol, is rather surprising, since the protocols
have several key differences from quantum error correction schemes. For example,
the initial state is an uncorrelated tensor product, not a code-state subject to
local noise, and unlike in quantum error correction, error syndromes detected
via the stabilizer measurements cannot be corrected. Here we resolve this puzzle
by proving that for every effective magic state protocol there exists a stabilizer
code protocol that achieves the same or better fidelity.

In the following sections we first define some key concepts and present exam-
ples. In section 5 we present the main theorem of this paper, and in the following
sections and appendix we present a proof.

2 Clifford Reductions

We pose the problem of magic state distillation within the framework of what
we call n-to-1 Clifford reductions:

Definition 1. An n-to-1 qubit Clifford reduction takes an n-qubit resource
state ρnR and outputs a single qubit ρ′ using ideal Clifford unitaries, preparation
of stabilizer states, classical feedforward, classical randomness, Pauli measure-
ments and postselection.

Most current protocols for magic state distillation take a resource state composed
of n copies of a non-stabilizer state, so ρnR = ρ⊗n1R . However, our definition
encompasses any n-qubit mixed state. This definition covers all possible protocols
that can be executed by a device capable of performing Clifford group operations
to a quantum system whilst being controlled by a classical computer. We call a
Clifford reduction a successful round of magic state distillation, when the output



qubit has an improved fidelity w.r.t some pure non-stabilizer state. Here we
are only really concerned with distillation on the level of an individual round.
However, it is worth noting that generally distillation protocols require many
rounds of concatenation, with many copies of the output qubit forming the
resource for distillation in the next Clifford reduction.

Formally, n-to-1 qubit Clifford reductions are described by quantum opera-
tions of the following form:

ρ′ =
trnR−1,A

(∑
iKi (ρnR ⊗ |0〉〈0|⊗m)K†i

)
tr
(∑

iKi (ρnR ⊗ |0〉〈0|⊗m)K†i
) , (1)

where the first n qubits are a resource in a non-stabilizer state ρnR and the nextm
qubits are ancilla in the stabilizer state |0〉〈0|. The partial trace is subscripted by
nR− 1,A, to indicate that we trace over the ancillary Hilbert space, collectively
labeled A, and every qubit in the resource Hilbert space, labeled nR, except for
a single qubit labeled qubit 1. Each of the Ki are Clifford group Kraus operators
and have the form:

Ki = kiPi,NCi,N ...Pi,xCi,x...Pi,1Ci,1 , (2)

where Ci,x are Clifford group unitaries and Pi,x are Pauli projectors. In terms of
the protocol, Pauli projectors occur when we measure a Pauli operator si,x and
postselect on outcome “+1”, or equivalently measure −si,x and postselect on
outcome “-1”, such that Pi,x = (11 + si,x)/2. Finally, ki is a real number smaller
than or equal to unity. As with all quantum operations, we require

∑
iK
†
iKi ≤ 11.

The Kraus operator index i labels each branch of the protocol, with proliferation
of branches occurring whenever a protocol specifies: (i) that we apply a different
operation depending on the value of a random classical variable; (ii) we make a
Pauli measurement but postselect on more than one outcome, possibly feeding
forwarding that outcome to determine later operations, or (iii) we introduce an
ancillary stabilizer state that is mixed. We can assume the ancilla are in the
state |0〉〈0|⊗m without loss of generality, as a Kraus operator can always rotate
this state into a different pure stabilizer state.

3 The Steane Code Protocol

Before continuing with our general examination of protocols for magic state dis-
tillation, we will give a concrete example. The single-qubit pure stabilizer states
are eigenstates of X, Y or Z and mixed stabilizer states are any probabilistic
ensembles of these pure states. In the Bloch sphere, this convex set with 6 ver-
tices forms the stabilizer octahedron shown in figure 1. The only non-stabilizer
states known to be distillable from mixed states are eigenstates of Clifford group
unitaries, such as the Hadamard H and the T operation4. The corresponding

4 The T rotation performs, TXT † = Y , TY T † = Z.



eigenstates are denoted |H〉 = H|H〉 and |T 〉 = T |T 〉, and depolarized mixtures
for these eigenstates are:

ρ(f, σH) = (11 + (2f − 1)(X + Z)/
√

2)/2 , (3)

ρ(f, σT ) = (11 + (2f − 1)(X + Y + Z)/
√

3)/2 ,

with fidelity f = 1, 0 for ideal magic states and 0 < f < 1 when noisy. Other
distillable magic states emerge from symmetries the stabilizer octahedron. Given
the ability to prepare noisy copies of ρ(f, σH), we can attempt a protocol pro-
posed by Reichardt [13]:

1. Prepare a resource state ρnR = ρ(f, σT )⊗7;
2. Measure the 6 stabilizer generators of the Steane code;
3. If any of the measurements give −1 then restart;
4. Otherwise, the protocol has succeeded. Decode the encoded state from the

Steane codespace to a single qubit state.

Provided the fidelity, with respect to |T 〉, of the initial noisy copies exceeds
some threshold, the output qubit has an improved fidelity. Concatenation allows
improvement towards fidelities arbitrarily close to unity. For completeness, we
list the stabilizer generators of the Steane code:

X1X2X3X4115116117, X1X2113114X5X6117, X1112X3114X5116X7 , (4)
Z1Z2Z3Z4115116117, Z1Z2113114Z5Z6117, Z1112Z3114Z5116Z7 .

Note that the sign of all these operators is positive. Also note that the protocol
post-selects only states resulting from positive measurement outcomes, and that
states from other outcomes are discarded. As we will see later, in magic state
distillation protocols there is always one choice of measurement outcome that
leads to a fidelity unsurpassed by any other outcome.

4 Stabilizer Reductions

In addition to Reichardt’s protocol their are numerous other protocols for magic
state distillation, but they follow the same pattern of projecting onto the codespace
of a stabilizer code, and decoding the logical qubit onto a single qubit. Codes
that have been used in this context include the Steane code [13], the 5-qubit
code [12], the 23 qubit Golay code [13], a 15-qubit quantum Reed-Muller code
[12], and the simple 2 qubit parity checking code [15]. Furthermore, numerous
other protocols derived from stabilizer codes have been numerically tested [12,
15]. Note that, Knill’s scheme for postselected quantum computing [16] contains
a protocol reminiscent of magic state distillation, but which at first appears to
be unrelated to any stabilizer code. However, Reichardt [13] has shown that
Knill’s proposal is actually closely related to the aforemetioned quantum Reed-
Muller code [12]. All of these protocols are what we call n-to-1 qubit stabilizer
reductions:
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Fig. 1. The octahedron of mixed stabilizer states within the Bloch sphere with (a)
the axis of the Hadamard rotation shown (b) the axis of the T rotation shown. The
Hadamard axis bisects an edge of the stabilizer octahedron, and the T axis bisects the
center of a face of the stabilizer octahedron. About their axes the Hadamard rotation
is a 180 degree rotation, and the T rotation is a 120 degree rotation. Notice that the
stabilizer octahedron has six vertices corresponding to the six pure stabilizer states.

Definition 2. An n-to-1 qubit stabilizer reduction performs the following:
(i) take an n-qubit resource ρnR; (ii) measure the (n−1) generating operators of
an n-qubit stabilizer code Sn−1 with one logical qubit; (iii) postselect on the all
“+1” measurement syndrome; (iv) decode the logical qubit of the stabilizer code
code onto a single output qubit, ρ′.

When we obtain the desired measurement outcome, the resource state is
projected into the codespace of the stabilizer code supporting one logical qubit.
All states inside the codespace are stabilized, s|ψ〉 = |ψ〉, by all operators s that
are elements to the stabilizer of the code Sn−1. An encoded basis within this
codespace is defined by a logical Pauli operator XL that is not an element of the
stabilizer code but does commute with all elements of the stabilizer. The encoded
basis states are then |+L〉 and |−L〉, where XL|±L〉 = ±|±L〉 and s|±L〉 = |±L〉.
The projection operator onto the codespace can be expressed in terms of the
encoded basis states:

PSn−1 = |+L〉〈+L|+ |−L〉〈−L| . (5)

Another integral component of our definition of stabilizer reductions is decoding.
We consider a decoding to be any Clifford unitary that maps |+L〉 → |+〉|φ〉 and
|−L〉 → |−〉|φ〉, where |φ〉 is a stabilizer state for all qubits except qubit 1. Note
that there is are many suitable decoding Clifford unitaries, partly because there
are many suitable |φ〉, but also because we are not interested in how the unitary
maps states other than the encoded states |±L〉.



Having defined the bulding blocks of a stabilizer reduction, it follows that
after a successful stabilizer reduction the output qubit will be:

ρ′ =
trnR−1

(
CdecodePSn−1ρnRPSn−1C

†
decode

)
tr
(
CdecodePSn−1ρnRPSn−1C

†
decode

) , (6)

This is also a Clifford reduction with a single Kraus operator:

K = CdecodePSn−1 , (7)
= |+, φ〉〈+L|+ |−, φ〉〈−L| ,

Whilst all stabilizer reductions are Clifford reductions, the converse is not true.

5 Theorem Outline

Since the class of Clifford reductions encompasses the class of stabilizer reduc-
tions, one might be tempted to hypothesize that in some scenarios it is desirable
to employ a Clifford reduction not based on stabilizer codes. However, there is
no existing evidence for this, as all existing protocols are essentially stabilizer
reductions. We say “essentially” because a word of caution is necessary. Many
existing proposals make use of the idea of twirling [12], a randomizing process,
which thus requires more than one Kraus operator for its description. However,
while twirling is useful as an analytic tool for simplifying proofs, it is not neces-
sary in a physical implementation. For every stabilizer reduction that is preceded
by twirling, there exists a derandomized stabilizer reduction where one applies
the optimal choice of Clifford unitaries. This will be amongst the results we prove
in deriving our main theorem, which we now state:

Theorem 1. For all n-to-1 qubit Clifford reductions, all n-qubit resources ρnR

and all single qubit pure states |Ψ〉, with an output qubit ρ′ of fidelity 〈Ψ |ρ′|Ψ〉,
at least one of the following is true:

(i) there exists a stabilizer state with an equal, or greater, fidelity, so 〈Ψ |ρ′|Ψ〉 ≤
|〈Ψ |φ〉|2, where |φ〉 is any single qubit pure stabilizer state; or

(ii) there exists an n-to-1 stabilizer code reduction that also consumes ρnR and
outputs a qubit ρ′′ with equal, or greater, fidelity, such that 〈Ψ |ρ′|Ψ〉 ≤
〈Ψ |ρ′′|Ψ〉.

Our theorem contains two clauses, later to referred as clause (i) and (ii), and
either one or both clauses may hold true in any individual case. However, only
clause (ii) is interesting in the context of magic state distillation, as when clause
(i) holds we could have achieved the same functionality without consuming the
resource state ρnR at all.



6 Clifford Kraus Operators

Before proceeding, we derive a canonical form for Clifford group Kraus opera-
tors that we will employ throughout this paper. By definition, Clifford group
operators conjugate Pauli operators to Pauli operators, such that Cσ′C† = σ
and hence σC = Cσ′. Since Pauli projectors are composed of a Pauli operator
and the identity — recall P = (11 + σ)/2 — then we also find that PC = CP ′.
All Clifford Kraus operators are composed of some sequence of Clifford unitaries
and Pauli projectors, but by repeated conjugation all Clifford unitaries can be
brought to the end of the operator, such that:

K = kCN ....C2C1P
′
N ...P

′
2P
′
1 , (8)

where we drop the subscript of Ki for brevity. Next, we prove that sequential
non-commuting Pauli projectors, P ′iP

′
i+1, can be simplified to a single Pauli

projector. Each of these Pauli projectors has an associated stabilizer s′i and
s′i+1, which must anticommute when the projectors do not commute. Therefore:

P ′iP
′
i+1 = (11 + s′i)(11 + s′i+1)/4 , (9)

= (11 + s′i + s′i+1 + s′is
′
i+1))/4 ,

= (s′i + s′i+1)(11 + s′i+1))/4 ,

= C ′P ′i+1/
√

2 ,

where C ′ = (s′i+s
′
i+1)/

√
2 is a Clifford unitary that maps the projected subspace

of P ′i+1 to that of P ′i . This shows that sequential anti-commuting projectors
can always be replaced by a single projector followed by a Clifford unitary.
Continuing the process of conjugating through Clifford unitaries and removing
non-commuting projectors, all K can be reordered to begin with commuting
stabilizer projections followed by Clifford unitaries:

K = k′CP , (10)

with P being:

P = P ′′l ...P
′′
2 P
′′
1 ; P ′′a P

′′
b − P ′′b P ′′a = 0 ; (11)

a collection of stabilizer projectors associated with a codespace of some stabilizer
code, Sl, with l generators (s1, s2, ...sl) where sj = 2Pj − 11.

7 Branch Expansion/Reduction

Here we eliminate the need for considering many branches, and hence many
Ki, by showing how one branch always provides an upperbound on the output
fidelity. However, before eliminating excess branches, we must unpack some hid-
den branches from (1). This unpacking uses the property that a joint Hilbert
space H⊗H′, partially traced over Hilbert space H′ satisfies:

trH′ [ρ] =
∑
j

trH′ [(11H ⊗ |φj〉〈φj |)ρ(11H ⊗ |φj〉〈φj |), (12)



where the set {|φj〉} form any orthonormal basis over Hilbert space H′. This
equation expresses the property that if one depolarises the state of an ancillary
sub-system before tracing it out, it does not change the reduced state of the
remaining sub-system. Applying this formula to (1) gives:

ρ′ ∝ trnR−1,A

∑
i,j

(111 ⊗ |j〉〈j|)Ki

(
ρnR ⊗ |0〉〈0|⊗m

)
K†i (111 ⊗ |j〉〈j|)

 , (13)

where the bit-string j = (j2, j3, ....jn+m) has n + m − 1 elements and specifies
a computational basis state |j〉 = |j2, j3, ..jn+m〉, and since the partial trace
excludes only the first qubit, this is the only qubit not included in |j〉. The
summation is performed over all i and all bit-strings j. Note that, for brevity we
drop the denominator and hence use a proportionality sign. We can now simplify
the expression:

ρ′ ∝ trnR−1,A

∑
i,j

Ki,j (ρnR ⊗ 11A)K†i,j

 , (14)

where the new Kraus operators have incorporated the projectors:

Ki,j = (111 ⊗ |j〉〈j|nR−1,A)Ki(11nR ⊗ |0〉〈0|⊗mA ) . (15)

We say this unpacks hidden branches because we are now summing over two
indices i, j. On first inspection, our introduction of these extra branches might
seem mysterious, so we need some intuition to ground our mathematics. We
observe that the new Kraus operator Ki,j always outputs a separable state, as
qubits 2 through to n+m are all projected into a computational basis state, and
so are disentangled from the output qubit, labeled 1. In contrast, the original
Kraus operator Ki allowed for qubit one to be entangled with the other qubits,
and so after after applying the partial trace we may incur further mixing of
the output qubit. In exposing these hidden branches, what we have gained is
certainly of the state of all qubits except the output qubit.

Having laid bare all branches, we now perform branch reduction, which relies
on the convexity of fidelity measures. In general, for any mixture ρ′ =

∑
i piρ

′
i,

the fidelity w.r.t |Ψ〉 is convex, and so:

〈Ψ |ρ′|Ψ〉 ≤ 〈Ψ |ρ′Max|Ψ〉 = Maxρ′i〈Ψ |ρ
′
i|Ψ〉 . (16)

Hence, for any Clifford reduction and any |Ψ〉, the fidelity is upper-bounded by
the fidelity produced by one of the branches, so that

〈Ψ |ρ′|Ψ〉 ≤ 〈Ψ |
trnR−1,A

[
KMax (ρnR ⊗ 11A)K†Max

]
tr
[
KMax (ρnR ⊗ 11A)K†Max

] |Ψ〉 , (17)

where KMax = Kĩ,̃j is the Kraus operator with i and j that maximize fidelity.
The validity of this expression can be conveyed by a simple metaphor about a



foolish handyman and a smart handyman. The foolish handyman has a toolbox
containing a number of screwdrivers of varying quality, and whenever he wishes
to use a screwdriver he reaches in and selects one at random, hoping it is the
best. The smart handyman has the same selection of screwdrivers, and also
selects from his toolbox at random, however he only keeps his best screwdriver
in his toolbox and leaves the rest at home. Here we do the same with our best
Kraus operator.

8 Exposing the Decoding

Here we rearrange the optimal Kraus operator into a more intuitive form, which
shows when the operator is either a trivial projection onto a stabilizer state or
a more useful stabilizer reduction. From (15), we have:

KMax = (111 ⊗ |̃j〉〈̃j|nR−1,A)Kĩ(11nR ⊗ |0〉〈0|⊗mA ) . (18)

Examining the last projector applied, (111⊗|̃j〉〈̃j|nR−1,A), this projects all but one
qubit into a computational basis state. Consequentially, the whole operator must
project onto either a two-dimensional, logical, subspace or a definite stabilizer
state. In the former case, since all qubits but qubit 1 are left in a computational
basis state, any logical qubit must have been decoded onto qubit 1. This is the
rough intuition for what we shall now show formally. We first expand out Kĩ in
the decomposition of (10):

KMax = (111 ⊗ |̃j〉〈̃j|nR−1,A)kĩCĩPĩ(11nR ⊗ |0〉〈0|⊗mA ) . (19)

This operator begins with two consecutive projections, first (11nR⊗|0〉〈0|⊗mA ) then
Pĩ. These projectors always reduce to a single projector (see Sect. 6), possibly
followed by some Clifford unitary:

KMax ∝ (111 ⊗ |̃j〉〈̃j|nR−1,A)C ′
ĩ
(PnR ⊗ |0〉〈0|⊗mA ) . (20)

where the first projector applied, |0〉〈0|⊗mA , must always remain the first applied,
though it is supplemented by a possible extra projector, PnR, acting on the
resource Hilbert space. Next, we expand out the identity operation, such that:

111 = |+〉〈+|1 + |−〉〈−|1 , (21)

We make this substitution to track how our potential logical qubit is influenced
by the rest of the operator. It follows that:

KMax ∝ (|+, j̃〉〈+, j̃|+ |−, j̃〉〈−, j̃|)C ′
ĩ
(PnR ⊗ |0〉〈0|⊗mA ) . (22)

Next, we absorb the Clifford unitary into these stabilizer states, so that:

KMax ∝ (|+, j̃〉〈+L|+ |−, j̃〉〈−L|)PnR ⊗ |0〉〈0|⊗mA , (23)

where |±L〉 = (C ′
ĩ
)†|±, j̃〉 are orthogonal stabilizer states. All that remains is to

determine the effect of the projector PnR ⊗ |0〉〈0|⊗mA on these stabilizer states,
and one can verify (details in App. A) that this projection gives either:



(a) KMax ∝ |φ1, j̃〉〈±′L|) where |φ1〉 is a single qubit stabilizer state on qubit 1; or

(b) KMax ∝ |+, j̃〉〈+′L|+ |−, j̃〉〈−′L|) where |±′L〉 are orthogonal stabilizer states.

These different forms correspond to clause (i) and (ii) of our theorem. For form
(a), the maximized Kraus operator KMax projects qubit one onto a stabilizer
state |φ1〉, and this state gives an upper bound on the fidelity of the Clifford
reduction. Hence clause (i) of the theorem is always true when KMax has form
(a). Although form (b) is a stabilizer reduction, it still acts on the ancillary
Hilbert space. In the next section, we show that the ancillary component can be
eliminated, and so form (b) will entail the truth of clause (ii) of our theorem.

9 Ancillae Add Nothing

Here we show that when KMax has form (b), we can find an equivalent Kraus
operator that acts on only the resource qubits but outputs the same mixture.
To see this, we first note that because (PnR ⊗ |0〉〈0|⊗mA )|±′L〉 = |±′L〉, we can
conclude that |±′L〉 = |±′′L〉nR|0〉⊗mA . Furthermore, we also know that |±, j̃〉 is a
separable state such that |±, j̃〉 = |±, j̃nR〉nR |̃jA〉A. Therefore, the Kraus operator
has a simple tensor product structure w.r.t the ancillary/resource partitioning:

KMax ∝ K ⊗ |̃jA〉〈0|⊗m ; (24)

where we introduce the calligraphic K to describe the Kraus operator that only
acts on the resource Hilbert space:

K = |+, j̃nR〉〈+′′L|+ |−, j̃nR〉〈−′′L| . (25)

Substituting (24) into (17), we see that the ancillary terms can be traced out:

〈Ψ |ρ′|Ψ〉 ≤ 〈Ψ |
trnR−1,A

[
(K ⊗ |jA〉〈0|⊗m) (ρnR ⊗ 11A) (K ⊗ |jA〉〈0|⊗m)†

]
tr [(K ⊗ |jA〉〈0|⊗m) (ρnR ⊗ 11A) (K ⊗ |jA〉〈0|⊗m)†]

|Ψ〉 ,(26)

〈Ψ |ρ′|Ψ〉 ≤ 〈Ψ |
trnR−1

[
KρnRK†

]
tr [KρnRK†]

|Ψ〉 .

This expressions proves clause (ii) of our theorem, as K can always be accom-
plished by an n-to-1 qubit stabilizer reduction.

10 Conclusions & Acknowledgments

We have proven a theorem that shows that any protocol that uses Clifford group
operations to reduce a non-stabilizer resource to a single qubit has a fidelity
upperbounded by the fidelity of either a trivial protocol or a protocol derived
from a stabilizer code, which we call a stabilizer reduction. Our theorem reveals
why all known protocols for magic state distillation can be described by stabilizer



reductions. Furthermore, this theorem will form an essential component in a
following paper [17] where the authors prove that for a particular family of
resource states, all possible stabilizer reductions, and hence all possible Clifford
reductions, do not have distillation thresholds that are tight against the set of
stabilizer states.

The proof presented here has been cast in a general framework that com-
pares two different classes of protocols, but it seems likely that there are nu-
merous possible extensions. It should be fairly easy to extend the proof to cover
qud it generalizations of the Clifford group and stabilizer states. More specula-
tive is the question of whether a similar theorem holds for continuous variable
quantum devices, where gaussian states and gaussian operations are frequently
analogous [18] to stabilizer states and Clifford group operations. Finally, it might
also be worthwhile exploring whether entanglement distillation obeys a similar
theorem when the ideal Clifford group operations are also restricted to be local
with respect to some partitioning.

The authors would like to thank Shashank Virmani, Matthew Hoban, To-
bias Osborne, Ben Reichardt and Steve Flammia for interesting discussions. We
acknowledge support from the Royal Commission for the Exhibition of 1851,
the QIP IRC, QNET and the National Research Foundation and Ministry of
Education, Singapore.

A Appendix: Deriving the Two Forms (a) and (b)

Here we show that the Kraus operator of (23) must of either form (a) or (b).
By definition Pauli projectors take stabilizer state to stabilizer states with the
addition of some constant, so:

KMax ∝ c+|+, j̃〉〈+′L|+ c−|−, j̃〉〈−′L| , (27)

where |±′L〉 = (PnR⊗|0〉〈0|⊗mA )|±L〉/
√
c± are stabilizer states but are not neces-

sarily orthogonal. The variables c± can be assumed to be real by absorbing any
phase into the definitions of |±′L〉. Since relative phase may prove important,
we remark that the phase absorbed will always be a multiple of i, and we will
account for its effect later. If one term vanishes, either because c+ = 0 or c− = 0,
then:

(a1) : KMax ∝ |±, j̃〉〈±′L|; , (28)

which we refer to as form (a1) as this Kraus operator projects onto a stabilizer
state, but in general projections onto a stabilizer state may occur in a different
basis. When neither term vanishes, the coeffecients must be equal, so c+ = c−.
To deduce this equality, we first consider the first Pauli measurement, Pi =
(11 + si)/2, on the stabilizer states |±′L〉. Because the stabilizing operators of
|+′L〉 and |−′L〉 differ only in phase, either both states are eigenstates of si or
neither state is an eigenstate of si. For eigenstates of a projector, the projector
either has no effect, or maps the state to zero. Hence, when c+ 6= 0 or c− 6= 0,



the projectors acting on eigenstates must have no effect. As for projectors where
|+′L〉 and |−′L〉 are not eigenstates of si, the measurement outcomes are equally
random, so tr[Pi|±L〉〈±L|] = 1/2. The same argument holds for subsequent Pauli
measurements, and so we have that c+ = c− = (1/2)m where m is the number
of component Pauli projections with a non-trivial effect. Now, if |+′L〉 and |−′L〉
retain their orthogonality, then form (b) follows immediately:

(b) : KMax ∝ |+, j̃〉〈+′L|+ |−, j̃〉〈−′L| . (29)

If we wish to remove any phase absorbed into the definition of |±′L〉, this is
simple as the phase is always a factor of i, and this can be removed by adding a
subsequent Clifford unitary 11⊗ (|+〉〈+|+ iN |−〉〈−|)1.

The last remaining possibility is when neither term vanishes but |+′L〉 and
|−′L〉 lose their orthogonality. Since the initial states had commuting stabilizing
operators, and the projection can not change this, if the vectors |±′L〉 are not
orthogonal they must correspond to the same state up to a relative phase iN ,
and so |−′L〉 = iN |+′L〉. Hence, in this case

(a2) : KMax ∝ |+, j̃〉〈+′L|+ iN |−, j̃〉〈+′L| , (30)
∝ |φ1, j̃〉〈+′L| .

where 〈φ1| = (〈+|+ iN 〈−|)/
√

2 is a stabilizer state on the equator of the Bloch
sphere. Hence, form (a1 ) and form (a2 ) account for all possible single qubit
projections, and hence jointly comprise form (a). This completes our proof that
we always have either form (a) or (b).
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