Skip to main content

Conditions for the Approximate Correction of Algebras

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5906))

Included in the following conference series:

Abstract

We study the approximate correctability of general algebras of observables, which represent hybrid quantum-classical information. This includes approximate quantum error correcting codes and subsystems codes. We show that the main result of [1] yields a natural generalization of the Knill-Laflamme conditions in the form of a dimension independent estimate of the optimal reconstruction error for a given encoding, measured using the trace-norm distance to a noiseless channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kretschmann, D., Schlingemann, D., Werner, R.F.: The information-disturbance tradeoff and the continuity of Stinespring’s representation. IEEE Transactions on Information Theory 54(4), 1708–1717 (2008)

    Article  MathSciNet  Google Scholar 

  2. Leung, D.W., Nielsen, M.A., Chuang, I.L., Yamamoto, Y.: Approximate quantum error correction can lead to better codes. Phys. Rev. A 56(4), 2567–2573 (1997)

    Article  Google Scholar 

  3. Crépeau, C., Gottesman, D., Smith, A.: Approximate quantum error-correcting codes and secret sharing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 285–301. Springer, Heidelberg (2005)

    Google Scholar 

  4. Barnum, H., Knill, E.: Reversing quantum dynamics with near-optimal quantum and classical fidelity. J. Math. Phys. 43, 2097 (2002)

    Google Scholar 

  5. Schumacher, B., Westmoreland, M.D.: Approximate quantum error correction. Quantum Information Processing 1(1-2), 5–12 (2002)

    Article  MathSciNet  Google Scholar 

  6. Mandayam, P., Poulin, D.: Approximate quantum error correction. In: First International Conference on Quantum Error Correction (2007)

    Google Scholar 

  7. Kretschmann, D., Kribs, D.W., Spekkens, R.W.: Complementarity of private and correctable subsystems in quantum cryptography and error correction. Physical Review A 78, 032330 (2008)

    Article  Google Scholar 

  8. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997)

    Article  MathSciNet  Google Scholar 

  9. Kribs, D., Laflamme, R., Poulin, D.: Unified and generalized approach to quantum error correction. Physical Review Letters 94(18), 180501 (2005)

    Article  Google Scholar 

  10. Beny, C., Kempf, A., Kribs, D.W.: Generalization of quantum error correction via the Heisenberg picture. Phys. Rev. Lett. 98(10), 100502 (2007)

    Article  Google Scholar 

  11. Kuperberg, G.: The capacity of hybrid quantum memory. IEEE Transactions on Information Theory 49(6), 1465–1473 (2002)

    Article  MathSciNet  Google Scholar 

  12. Blume-Kohout, R., Ng, H.K., Poulin, D., Viola, L.: The structure of preserved information in quantum processes (2007), arXiv:0705.4282

    Google Scholar 

  13. Johnston, N., Kribs, D.W., Paulsen, V.I.: Computing stabilized norms for quantum operations via the theory of completely bounded maps (2007), arXiv:0711.3636

    Google Scholar 

  14. Beny, C.: Unsharp pointer observables and the structure of decoherence (2008), arXiv:0802.0685

    Google Scholar 

  15. Beny, C.: Information flow at the quantum-classical boundary. PhD in Applied Mathematics, Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (2008)

    Google Scholar 

  16. Kribs, D.W., Laflamme, R., Poulin, D., Lesosky, M.: Operator quantum error correction. Quantum Information and Computation 6, 382–399 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Watrous, J.: Semidefinite programs for completely bounded norms (2009), arXiv:0901.4709

    Google Scholar 

  18. Bény, C., Oreshkov, O.: General conditions for approximate quantum error correction and near-optimal recovery channels (2009), arXiv:0907.5391

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bény, C. (2009). Conditions for the Approximate Correction of Algebras. In: Childs, A., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2009. Lecture Notes in Computer Science, vol 5906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10698-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10698-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10697-2

  • Online ISBN: 978-3-642-10698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics