Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 267))

Abstract

This chapter deals with the multiple model approach based chaotic systems reconstruction. The approach is based on the design of unknown inputs multiple observers using Linear Matrix Inequalities (\( \mathcal{L}\mathcal{M}\mathcal{I} \)) formulation. The objective is to estimate state variables of a multiple model subject to unknown inputs affecting both states and outputs of the system. Uncertainties affecting state matrices of the system are also considered for both continuous-time and discrete-time multiple models. In order to improve the performances of the observer, poles placement in an \( \mathcal{L}\mathcal{M}\mathcal{I} \) region is also studied. Numerical examples are given to illustrate the effectiveness the given results. Application dealing with chaotic synchronization and message decoding are also given by considering chaotic multiple model subject to hidden message. The proposed approach can be also used in a chaotic cryptosystem procedure where the plaintext (message) is encrypted using chaotic signals at the drive system side. The resulting ciphertext is embedded to the output and/or state of the drive system and is sent via public channel to the response system. The plaintext is retrieved via the synthesis approach, i.e. the designed unknown input multiple observer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhenak, A., Chadli, M., Ragot, J., Maquin, D.: Unknown input multiple observer based approach: application to secure communication. In: 1st IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, June 28–30 (2006)

    Google Scholar 

  2. Alvares, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic secure communication system. Chaos, Solitons & Fractals 21(4), 783–787 (2004)

    Article  Google Scholar 

  3. Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized State-Space Observers for Chaotic Synchronization and Secure Communication. IEEE Trans Circ. Syst. Fund. Theor. Appl. 49(3), 345–349 (2002)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S., Ghaoui, E., Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems and control theory. SIAM, Philadelphia (1994)

    Google Scholar 

  5. Chadli, M., Maquin, D., Ragot, J.: An LMI formulation for output feedback stabilisation in multiple model approach. In: IEEE 41th Conference on Decision Control, USA, December 10–13 (2002)

    Google Scholar 

  6. Chadli, M., Akhenak, A., Ragot, J., Maquin, D.: On the Design of Observer for Unknown Iinputs Fuzzy Models. Int. J. Contr. Autom. Syst. 2(1), 113–125 (2008)

    Article  Google Scholar 

  7. Chadli, M., Akhenak, A., Ragot, J., Maquin, D.: State and Unknown Input Estimation for Discrete Time Multiple Model. J. Franklin Inst. (2009), doi:10.1016/j.jfranklin.2009.02.011

    Google Scholar 

  8. Chen, M., Zhou, D., Shang, Y.: A new observer-based synchronization scheme for private communication. Chaos, Solitons & Fractals 24, 1025–1030 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chilali, M., Gahinet, P.: H8 Design with pole placement constraints: an \( \mathcal{L}\mathcal{M}\mathcal{I} \) approch. IEEE Transactions on Automatic Control 41(3), 358–367 (1996)

    Article  MathSciNet  Google Scholar 

  10. Darouach, M., Zasadzinski, M., Xu, S.: Full-order observers for linear systems with unknown inputs. IEEE Trans. Automatic Control 39, 606–609 (1994)

    Article  MathSciNet  Google Scholar 

  11. Edwards, C., Spurgeon, S., Patton, J.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)

    Article  MathSciNet  Google Scholar 

  12. Floquet, T., Barbot, J.: A sliding mode approach of unknown input observers for linear systems. Decis. Contr., 1724–1729 (2004)

    Google Scholar 

  13. Guan, Y., Saif, M.: A novel approach to the design of unknown input observers. IEEE Trans. Automat. Contr. 36(5), 632–635 (1991)

    Article  Google Scholar 

  14. Ha, Q., Trinh, H.: State and input simultaneous estimation for a class of nonlinear systems. Automatica 40(10), 1779–1785 (2004)

    Article  MathSciNet  Google Scholar 

  15. Johansson, M., Rantzer, A., Arzén, K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)

    Article  Google Scholar 

  16. Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. on Fuzzy Sets 8(5), 523–534 (2000)

    Article  Google Scholar 

  17. Koenig, D.: Unknown input proportional multiple-integral observer design for descriptor systems: application to state and fault estimation. IEEE Transactions on Automatic Control 5(2), 213–217 (2005)

    MathSciNet  Google Scholar 

  18. Li, C., Liao, X., Wong, K.: Lag synchronization of hyperchaos with application to secure communications. Chaos, Solitons & Fractals 23, 183–193 (2005)

    Article  MathSciNet  Google Scholar 

  19. Lin, S., Wang, P.: Unknown input observers for singular systems designed by eigenstructure assignment. J. Franklin Inst. 340(1), 43–61 (2003)

    Article  MathSciNet  Google Scholar 

  20. Murray-Smith, R., Johansen, T.: Multiple model approaches to modelling and control. Taylor & Francis, Abington (1997)

    Google Scholar 

  21. Rao, C., Mitra, S.: Generalized Inverse of Matrices and its Applications. Wiley, Chichester (1971)

    Google Scholar 

  22. Syrmos, V.: Computational observer design techniques for linear systems with unknown inputs using the concept of transmission zeros. IEEE Transactions on Automatic Control 38(5), 790–794 (1993)

    Article  MathSciNet  Google Scholar 

  23. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Google Scholar 

  24. Tanaka, K., Wang, H.: Fuzzy Control Systems Design and Analysis: A linear Matrix Inequality Approach. John Wiley & Sons, Inc., Chichester (2001)

    Google Scholar 

  25. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)

    Article  MathSciNet  Google Scholar 

  26. Xiaodiong, L., Qingling, Z.: New approach to H ∞ controller designs based on observers for T-S fuzzy systems via \( \mathcal{L}\mathcal{M}\mathcal{I} \) . Automatica 39, 1571–1582 (2003)

    Article  Google Scholar 

  27. Yang, F., Wilde, R.: Observers for linear systems with unknown inputs. IEEE Trans. Automatic Control 33, 677–681 (1988)

    Article  MathSciNet  Google Scholar 

  28. Zhou, K., Doyle, J.: Essentials Of Robust Control. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chadli, M. (2010). Chaotic Systems Reconstruction. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds) Evolutionary Algorithms and Chaotic Systems. Studies in Computational Intelligence, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10707-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10707-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10706-1

  • Online ISBN: 978-3-642-10707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics