Skip to main content

Design of the Upper Limb Rehabilitation Support Device Using a Pneumatic Cylinder

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5928))

Abstract

This paper describes a device to support rehabilitation of a patient’s upper limb motion. For safety, light weight, and flexibility, it uses a pneumatic cylinder, for which the optimum arrangement is presented. The rehabilitation support device has two rehabilitation modes corresponding to different rehabilitation contents. A compliance control system and a position control system are applied for those modes. We evaluate the effectiveness of the rehabilitation support mode through some experimentation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Government of Japan, Cabinet office: Annual report on the Aging Society (2006)

    Google Scholar 

  2. Saga, N., Saito, N., Chonan, S.: Development of a Support Arm System Using Artificial Muscle Actuator and Gas spring. In: 2nd Frontires in Biomedical Devices Conference, Irvine (2007)

    Google Scholar 

  3. Saga, N., Saikawa, T., Okano, H.: Flexor Mechanism of Robot Arm Using Pneumatic Muscle Actuators. In: IEEE International Conference on Mechatronics & Automation, Canada, pp. 1261–1266 (2005)

    Google Scholar 

  4. Kiguchi, K., Tanaka, T., Watanabe, K., Fukuda, T.: Design and Control of an Exoskeleton System for Human Upper-Limb Motion Assist. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Japan, pp. 926–931 (2003)

    Google Scholar 

  5. Bien, Z., Kim, D.-J., Chung, M.-J., Kwon, D.-S., Chang, P.H.: Development of a Wheelchair-based Rehabilitation Robotic System (KARESII) with Various Human-Robot Interaction Interfaces for the Disabled. In: Advanced Intelligent Mechatronics, Japan, pp. 902–907 (2003)

    Google Scholar 

  6. Noritsugu, T., Ando, F., Yamanaka, T.: Rehabilitation Robot Using Rubber Artificial Muscle (1st Report Realization of Exercise Motion with Impedance control). Journal of RSJ 13(1), 141–148 (1995)

    Google Scholar 

  7. Yamamoto, K., Hyodo, K., Ishii, M., Matsuno, T.: Development of Power Assisting Suit for Assisting Nurse Labor. JSME International Journal Series B 45(3), 703–711 (2002)

    Article  Google Scholar 

  8. Kiguchi, K., Esaki, R., Tsuruta, T., Watanabe, K., Fukuda, T.: An Exoskeleton System for Elbow Joint Motion Rehabilitation. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Japan, pp. 1228–1233 (2003)

    Google Scholar 

  9. Hakogi, H., Ohaba, M., Kuramochi, N., Yano, H.: Torque Control of a Rehabilitation Teaching Robot Using Magnetro-Rheological Fluid Clutches. JSME International Journal Series B 48(3), 501–507 (2005)

    Article  Google Scholar 

  10. Takaiwa, M., Noritsugu, T.: Development of Wrist Rehabilitation Equipment Using Pneumatic Parallel manipulator. In: IEEE International Conference on Robotics and Automation, Spain, pp. 2302–2307 (2005)

    Google Scholar 

  11. Koyanagi, K., Furusho, J., Ryu, U., Inoue, A.: Rehabilitation Sytem with 3-D Machine for Upper Limb. In: IEEE International Conference on Advanced Intelligent mechatronics, Japan, pp. 1222–1227 (2003)

    Google Scholar 

  12. Kushida, D., Nakamura, M.: Development of Meal Assistance Orthosis and Its Controller for Challenged Persons. IEEJ Trans. EIS 124(6), 1296–1304 (2004)

    Article  Google Scholar 

  13. Tsumugiwa, T., Fuchikami, Y., Kamiyoshi, A., Yokogawa, R., Yoshida, K.: Stability Analysis for Impedance Control of Robot in Human-Robot Cooperative Task System. Journal of Advanced Mechanical Design, Systems, and Manufacturing 1(2), 133–121 (2007)

    Google Scholar 

  14. Richardson, R., Brown, M., Bhakta, B., Levesley, M.: Impedance control for a pneumatic robot-based around pole-placement, joint space controllers. ELSEVIER Control Engineering Practice 13, 291–303 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirihara, K., Saga, N., Saito, N. (2009). Design of the Upper Limb Rehabilitation Support Device Using a Pneumatic Cylinder. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds) Intelligent Robotics and Applications. ICIRA 2009. Lecture Notes in Computer Science(), vol 5928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10817-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10817-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10816-7

  • Online ISBN: 978-3-642-10817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics