Skip to main content

Modeling and Impedance Control of a Chewing Robot with a 6RSS Parallel Mechanism

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5928))

Included in the following conference series:

  • 3452 Accesses

Abstract

Chewing robots are designed to mimic human mastication process . Dynamic force and position control is needed for the robot to produce the chewing force and the trajectory typical for the foods being chewed. The controller design is challenging due to the complexity of the dynamic model of the robot which is normally in a parallel structure. In this paper, a simplified joint space based impedance control scheme is proposed for a 6RSS chewing robot. The special features of the kinematic, force and dynamic models of the robot are explored for the controller design. The effectiveness of the proposed approach is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilinson, C., Dijksterhuis, G.B., Minekus, M.: From food structure to texture. Trends in Food Science & Technology 11, 442–450 (2000)

    Article  Google Scholar 

  2. Cardello, A.V.: Sensory-Instrument Research. Cereal Foods Works 39 (1994)

    Google Scholar 

  3. Takanobu, H., Yajima, T., Nakazawa, M.: Quantification of Masticatory Efficiency with a Mastication Robot. In: Proceedings of the 1998 IEEE Internal Conference on Robotics & Automation (1998)

    Google Scholar 

  4. Takanobu, H., Soyama, R., Takanishi, A., Ohtsuki, K., Ozawa, D., Ohnishi, M.: Remote Treatment with Mouth Opening and Closing Training Robot. IEEE Intelligent Robots and Systems 1, 553–558 (2000)

    Google Scholar 

  5. Pap, J.S.: A Chewing Robot Based on Parallel Mechanism- Analyse and Design, Master of Engineering Thesis, Massey University, New Zealand (2006)

    Google Scholar 

  6. Xu, W.L., Torrance, J.D., Chen, B.Q., Potgieter, J., Bronlund, J.E.: Kinematics and Experiments of a Life-Sized Masticatory Robot for Characterizing Food Texture. IEEE Transactions on Industrial Electronics 55, 2121–2132 (2008)

    Article  Google Scholar 

  7. McClamroch, N.H., Wang, D.W.: Feedback stabilization and tracking of constrained robots. IEEE Trans. on Auto. Contr. 33(5), 419–426 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mills, J.K., Goldenberg, A.A.: Force and Position Control of Manipulators During Constrained Motion Tasks. IEEE Trans. on Robotics and Auto 5(1), 30–46 (1989)

    Article  Google Scholar 

  9. Kankaanranta, R.K., Koivo, H.N.: Dynamics and Simulation of Compliant Motion of a Manipulator. IEEE J. of Robotics and Auto 4(2), 163–173 (1988)

    Article  Google Scholar 

  10. Ge, S.S., Huang, L., Lee, T.H.: Model-based and neural-network-based adaptive control of two robotic arms manipulating an object with relative motion. Int. J. of Systems Sci. 32(1), 9–23 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huang, L., Ge, S.S., Lee, T.H.: Position/force control of uncertain constrained flexible joint robots. Mechatronics (16), 111–120 (2006)

    Google Scholar 

  12. Liu, G., Li, Z.: A unified geometric approach to modeling and control of constrained mechanical systems. IEEE Trans. on robotics and Auto 18(4), 574–587 (2002)

    Article  Google Scholar 

  13. Yoshikaw, T.: Dynamic hybrid position/force control of robot manipulators - description of hand constraints and calculation of joint driving force. IEEE Journal of Robotics and Auto RA-3(5), 386–392 (1987)

    Article  Google Scholar 

  14. Hsu, F.-Y., Fu, L.-C.: Intelligent Robot Deburring Using Adaptive Fuzzy Hybrid Position/Force Control. IEEE Trans. on Robotics and Automation 16(4), 325–335 (2000)

    Article  Google Scholar 

  15. Kiguchi, K., Fukuda, T.: Position/Force Control of Robot Manipulators for Geometrically Unknown Objects Using Fuzzy Neural Networks. IEEE Trans. on Industrial Electronics 47(3), 641–649 (2000)

    Article  Google Scholar 

  16. Hogan, N.: Impedance control, an approach to manipulation: Part I–III. Journal of Dynamic Systems, Measurement, and Control 107, 1–24 (1985)

    Article  MATH  Google Scholar 

  17. Seraji, H., Colbaugh, R.: Force tracking in impedance control. The Int. J of Robotics Research 16(1), 97–117 (1997)

    Article  Google Scholar 

  18. Torrance, J.D., Pap, J.-S., Xu, W.L., Bronlund, J.E., Foster, K.D.: Motion Control of a Chewing Robot of 6RSS Parallel. In: The 3rd International Conference on Autonomous Robots and Agents, New Zealand (December 2006)

    Google Scholar 

  19. Raghavan, M.: The stewart platform of general geometry has 40 configurations. ASME J. MEch. Des. 115, 277–282

    Google Scholar 

  20. Sciavicco, L., Siciliano, B.: Modeling and control of robot manipulators. McGraw-Hill, New York (1996)

    Google Scholar 

  21. Tsai, L.-W.: Robot Analysis. John Wiley & Sons, Inc., Chichester (1999)

    Google Scholar 

  22. Hollerbach, J.M.: A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. SMC-10(11), 730–736 (1980)

    Article  MathSciNet  Google Scholar 

  23. Luh, J.Y.S., Walker, M.W., Paul, R.P.: On-line computational schemen for mechanical manipualtors. ASME J. Dyn. Syst. Meas. Control 120, 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  24. Lee, C.S.G., Lee, B.H., Nigam, R.: Development of the generalized d’Alembert equations of moption of mechnanical manipulators. In: Proc. 22nd Conference on Decision and Control, San Antonio, TX, pp. 1205–1210 (1983)

    Google Scholar 

  25. Canudas de Wit, C., Siciliano, B., Bastin, G. (eds.): Theory of Robot Control. Springer, Heidelberg (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, L., Xu, W.L., Torrance, J., Bronlund, J.E. (2009). Modeling and Impedance Control of a Chewing Robot with a 6RSS Parallel Mechanism. In: Xie, M., Xiong, Y., Xiong, C., Liu, H., Hu, Z. (eds) Intelligent Robotics and Applications. ICIRA 2009. Lecture Notes in Computer Science(), vol 5928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10817-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10817-4_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10816-7

  • Online ISBN: 978-3-642-10817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics