Skip to main content

PUF-Based Authentication Protocols – Revisited

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5932))

Abstract

Physical Unclonable Functions (\({\emph{PUF}}\)) are physical objects that are unique and unclonable. \({\emph{PUF}}\)s were used in the past to construct authentication protocols secure against physical attackers. However, in this paper we show that known constructions are not fully secure if attackers have raw access to the \({\emph{PUF}}\) for a short period of time. We therefore propose a new, stronger, and more realistic attacker model. Subsequently, we suggest two constructions of authentication protocols, which are secure against physical attackers in the new model and which only need symmetric primitives.

This work was supported by CASED (www.cased.de).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pappu, R.: Physical One-Way Functions. PhD thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  2. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297(5589), 2026–2030 (2002)

    Article  Google Scholar 

  3. Gassend, B.: Physical random functions. Master’s thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  4. Hammouri, G., Sunar, B.: PUF-HB: A tamper-resilient HB based authentication protocol. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 346–365. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Tuyls, P., et al.: Information-theoretic security analysis of physical uncloneable functions. In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 141–155. Springer, Heidelberg (2005)

    Google Scholar 

  6. Tuyls, P., et al.: Anti-Counterfeiting. In: Security, Privacy and Trust in Modern Data Management, pp. 293–312. Springer, Heidelberg (2007)

    Google Scholar 

  7. Škorić, B., Tuyls, P.: Strong Authentication with Physical Unclonable Functions. In: Security, Privacy and Trust in Modern Data Management, pp. 133–148. Springer, Heidelberg (2007)

    Google Scholar 

  8. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  10. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey. Internet Mathematics 1(4), 485–509 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Merkle, R.C.: Protocols for public key cryptosystems. IEEE Symposium on Security and Privacy 122 (1980)

    Google Scholar 

  12. Guajardo, J., Škorić, B., Tuyls, P., Kumar, S.S., Bel, T., Blom, A.H., Schrijen, G.J.: Anti-counterfeiting, key distribution, and key storage in an ambient world via physical unclonable functions. Information Systems Frontiers 11(1), 19–41 (2009)

    Article  Google Scholar 

  13. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

    Google Scholar 

  14. Škorić, B., Tuyls, P.: Robust key extraction from physical unclonable functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422. Springer, Heidelberg (2005)

    Google Scholar 

  15. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  16. Micali, S., Reyzin, L.: Min-round resettable zero knowledge in the public key model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 373–393. Springer, Heidelberg (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Busch, H., Katzenbeisser, S., Baecher, P. (2009). PUF-Based Authentication Protocols – Revisited. In: Youm, H.Y., Yung, M. (eds) Information Security Applications. WISA 2009. Lecture Notes in Computer Science, vol 5932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10838-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10838-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10837-2

  • Online ISBN: 978-3-642-10838-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics