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Abstract. In the matroid buyback problem, an algorithm observes a sequence of bids and must decide
whether to accept each bid at the moment it arrives, subject to a matroid constraint on the set of
accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled
at a cost which is a fixed fraction of the bid value. We present a new randomized algorithm for this
problem, and we prove matching upper and lower bounds to establish that the competitive ratio of this
algorithm, against an oblivious adversary, is the best possible. We also observe that when the adversary
is adaptive, no randomized algorithm can improve the competitive ratio of the optimal deterministic
algorithm. Thus, our work completely resolves the question of what competitive ratios can be achieved
by randomized algorithms for the matroid buyback problem.

1 Introduction

Imagine a seller allocating a limited inventory (e.g. impressions of a banner ad on a specified website
at a specified time in the future) to a sequence of potential buyers who arrive sequentially, submit
bids at their arrival time, and expect allocation decisions to be made immediately after submitting
their bid. An informed seller who knows the entire bid sequence can achieve much higher profits
than an uninformed seller who discovers the bids online, because of the possibility that a very large
bid is received after the uninformed seller has already allocated the inventory. A number of recent
papers [1, 2] have proposed a model that offsets this possibility by allowing the uninformed seller
to cancel earlier allocation decisions, subject to a penalty which is a fixed fraction of the canceled
bid value. This option of canceling an allocation and paying a penalty is referred to as buyback, and
we refer to online allocation problems with a buyback option as buyback problems.

Buyback problems have both theoretical and practical appeal. In fact, Babaioff et al. [1] report
that this model of selling was described to them by the ad marketing group at a major Internet
software company. Constantin et al. [2] cite numerous other applications including allocation of TV,
radio, and newsprint advertisements; they also observe that advance booking with cancellations is a
common practice in the airline industry, where limited inventory is oversold and then, if necessary,
passengers are “bumped” from flights and compensated with a penalty payment, often in the form
of credit for future flights.

Different buyback problems are distinguished from each other by the constraints that express
which sets of bids can be simultaneously accepted. In the simplest case, the only constraint is a
fixed upper bound on the total number of accepted bids. Alternatively, there may be a bipartite
graph whose two vertex sets are called bids and slots, and a set of bids may be simultaneously
accepted if and only if each bid in the set can be matched to a different slot using edges of the
bipartite graph. Both of these examples are special cases of the matroid buyback problem, in which
there is a matroid structure on the bids, and a set of bids may be simultaneously accepted if and
only if they constitute an independent set in this matroid. Other types of constraints (e.g. knapsack
constraints) have also been studied in the context of buyback problems [1], but the matroid buyback
problem has received the most study. This is partly because of its desirable theoretical properties
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— the offline version of the problem is computationally tractable, and the online version admits an
online algorithm whose payoff is identical to that of the omniscient seller when the buyback penalty
is zero — and partly because of its well-motivated special cases, such as the problem of matching
bids to slots described above.

As is customary in the analysis of online algorithms, we evaluate algorithms according to their
competitive ratio: the worst-case upper bound on the ratio between the algorithm’s (expected)
payoff and that of an informed seller who knows the entire bid sequence and always allocates to
an optimal feasible subset without paying any penalties. The problem of deterministic matroid
buyback algorithms has been completely solved: a simple algorithm was proposed and analyzed by
Constantin et al. [3, 2] and, independently, Babaioff et al. [4], and it was recently shown [1] that the
competitive ratio of this algorithm is optimal for deterministic matroid buyback algorithms, even
for the case of rank-one matroids (i.e., selling a single indivisible good). However, this competitive
ratio can be strictly improved by using a randomized algorithm against an oblivious adversary.
Babaioff et al. [1] showed that this result holds when the buyback penalty factor is sufficiently
small, and they left open the question of determining the optimal competitive ratio of randomized
algorithms — or even whether randomized algorithms can improve on the competitive ratio of the
optimal deterministic algorithm when the buyback factor is large.

Our work resolves this open question by supplying a randomized algorithm whose competitive
ratio (against an oblivious adversary) is optimal for all values of the buyback penalty factor. We
present the algorithm and the upper bound on its competitive ratio in Section 3 and the matching
lower bound in Section 4. Our algorithm is also much simpler than the randomized algorithm
of [1], avoiding the use of stationary renewal processes. It may be viewed as an online randomized
reduction that transforms an arbitrary instance of the matroid buyback problem into a specially
structured instance on which deterministic algorithms are guaranteed to perform well. Our matching
lower bound relies on defining and analyzing a suitable continuous-time analogue of the single-item
buyback problem.

Adaptive adversaries. In this paper we analyze randomized algorithms with an oblivious adversary.
If the adversary is adaptive1, then no randomized algorithm can achieve a better competitive ratio
than that achieved by the optimal deterministic algorithm. This fact is a direct consequence of a
more general theorem asserting the same equivalence for the class of request answer games (Theorem
2.1 of [5] or Theorem 7.3 of [6]), a class of online problems that includes the buyback problem.2

Strategic considerations. In keeping with [4, 1], we treat the buyback problem as a pure online
optimization with non-strategic bidders. For an examination of strategic aspects of the buyback
problem, we refer the reader to [2].

Related work. The buyback model was first investigated by Constantin et al. [3, 2] and Babaioff et
al. [4, 1]. The optimal deterministic algorithm for the matroid buyback problem was presented in [4,
3, 2] and a proof of its optimality appeared in [4, 1]. Constantin et al. also investigated strategic
aspects of the matroid buyback problem in [3, 2]; this research was featured in a recent survey of
theory research at Google in ACM SIGACT News [7]. Babaioff et al. presented algorithms for the

1 A distinction between adaptive offline and adaptive online adversaries is made in [5, 6]. When we refer to an
adaptive adversary in this paper, we mean an adaptive offline adversary.

2 The definition of request answer games in [6] requires that the game must have a minimization objective, whereas
ours has a maximization objective. However, the proof of Theorem 7.3 in [6] goes through, with only trivial
modifications, for request answer games with a maximization objective.
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knapsack buyback problem [4, 1] and designed a randomized algorithm for the matroid buyback
problem that strictly improves the competitive ratio of the optimal deterministic algorithm when
the adversary is oblivious and the buyback penalty factor is sufficiently small [1].

Prior to the aforementioned work on the buyback problem, several earlier papers considered
models in which allocations, or other commitments, could be cancelled at a cost. Biyalogorsky
et al. [8] studied such “opportunistic cancellations” in the setting of a seller allocating N units
of a good in a two-period model, demonstrating that opportunistic cancellations could improve
allocative efficiency as well as the seller’s revenue. Sandholm and Lesser [9] analyzed a more general
model of “leveled commitment contracts” and proved that leveled commitment never decreases
the expected payoff to either contract party. However, to the best of our knowledge, the buyback
problem studied in this paper and its direct precursors [4, 1, 3, 2] is the first to analyze commitments
with cancellation costs in the framework of worst-case competitive analysis rather than average-case
Bayesian analysis.

2 Preliminaries

First we define the problem in the setting of single item and then generalize the definition in the
case of matroids.

2.1 Single Item Case

The seller has a single item to allocate. The bids v1, v2, . . . , vn come in a sequence and when bid
vi arrives the seller must either commit or reject the bid immediately. When the seller commits,
the previous commitment must be revoked by paying a penalty of f · vj , where vj is the bid being
revoked and f ≥ 0 is a fixed number called the buyback factor. This implies that at the end of
processing the bid sequence, the seller’s payoff is equal to the final committed bid minus f times
the sum of all revoked bids. The customer with the final accepted bid gets the item.

2.2 General model for matroids

Consider a matroid3 (U ,I) where U is the ground set and I is the set of independent subsets of U .
We describe the problem abstractly and then relate it to the single item case. We will assume that
the ground set U is identified with the set {1, . . . , n}. There is a bid value vi ≥ 0 associated to each
element i ∈ U . The information available to the algorithm at time k (1 ≤ k ≤ n) consists of the
first k elements of the bid sequence — i.e. the subsequence v1, v2, . . . , vk — and the restriction of
the matroid structure to the first k elements. (In other words, for every subset S ⊆ {1, 2, . . . , k},
the algorithm knows at time k whether S ∈ I.)

At any step the algorithm can choose a subset Sk ⊆ Sk−1 ∪ {k}. This set Sk must be an
independent set, i.e Sk ∈ I. Hence the final set held by the algorithm is R = Sn. The algorithm must
perform a buyback for every element of B =

(

∪n
i=1S

i
)

\Sn. For any set S ⊆ U let val(S) =
∑

i∈S vi.
Finally we define the payoff of the algorithm as val(R)− f · val(B). This definition generalizes the
single item case, which corresponds to the case in which I consists of all one-element subsets of U .

3 See [10] for the definition of a matroid.
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3 Randomized algorithm against oblivious adversary

In this section we give a randomized algorithm with competitive ratio −W
(

−1
e(1+f)

)

against an

oblivious adversary. Here W is Lambert’s W function4, defined as the inverse of the function
z 7→ zez. The design of our randomized algorithm is based on two insights:

1. Although the standard greedy online algorithm for picking a maximum-weight basis of a matroid
can perform arbitrarily poorly on a worst-case instance of the buyback problem, it performs
well when the ratios between values of different matroid elements are powers of some scalar
r > 1 + f . (We call such instances “r-structured.”)

2. There is a randomized reduction from arbitrary instances of the buyback problem to instances
that are r-structured.

3.1 The greedy algorithm and r-structured instances

Definition 1. Let r > 1 be a constant. An instance of the matroid buyback problem is r-structured
if for every pair of elements i, j, the ratio vi/vj is equal to rl for some l ∈ Z.

Algorithm 1 Greedy Matroid Algorithm (GMA)

1: Initialize S = ∅.
2: for all elements i, in order of arrival, do
3: if S ∪ {i} ∈ I then

4: Sell to i.
5: else

6: Let j be an element of smallest value such that S ∪ {i} \ {j} ∈ I.
7: if vj < vi then
8: Sell to i and buy back j.
9: end if

10: end if

11: end for

Lemma 1. For r > 1 + f , when the greedy matroid algorithm is executed on an r-structured
instance of the matroid buyback problem, its competitive ratio is at most r−1

r−1−f .

Proof. As is well known, at termination the set S selected by GMA is a maximum-weight basis of
the matroid. To give an upper bound on the total buyback payment, we define a set B(i) for each
i ∈ U recursively as follows: if GMA never sold to i, or sold to i in step 4, then B(i) = ∅. If GMA

sold to i in step 8 while buying back j, then B(i) = {j} ∪B(j). By induction on the cardinality of
B(i), we find that the set {vx/vi |x ∈ B(i)} consists of distinct negative powers of r, so

∑

x∈B(i)

vx ≤ vi ·
∞
∑

i=1

r−i =
vi

r − 1
.

4 Lambert’s W function is multivalued for our domain. We restrict to the case where W
“

−1
e(1+f)

”

≤ −1.
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By induction on the number of iterations of the main loop, the set
⋃

i∈S B(i) consists of all the
elements ever bought back by GMA; consequently, the total buyback payment is bounded by

f ·
∑

i∈S

∑

x∈B(i)

vx ≤
f

r − 1

∑

i∈S

vi.

Thus, the algorithm’s net payoff is at least 1− f
r−1 times the value of the maximum weight basis.

3.2 The random filtering reduction

Consider two instances v,w of the matroid buyback problem, consisting of the same matroid (U ,I),
with its elements presented in the same order, but with different values: element i has values vi, wi

in instances v,w, respectively. Assume furthermore that vi ≥ wi for all i, and that both values vi, wi

are revealed to the algorithm at the time element i arrives. Given a (deterministic or randomized)
algorithm ALG which achieves expected payoff P on instance w, we present here an algorithm
Filter(ALG) which achieves expected payoff P on instance v.

Algorithm 2 Random Filtering Algorithm Filter(ALG)

1: Initialize S = ∅.
2: for all elements i, in order of arrival, do
3: Observe vi, wi.
4: Randomly sample xi = 1 with probability wi/vi, else xi = 0.
5: Present element i with value wi to ALG.
6: if ALG sells to i and xi = 1 then

7: Sell to i.
8: end if

9: if ALG buys back an element j and xj = 1 then

10: Buy back j.
11: end if

12: end for

Lemma 2. The expected payoff of Filter(ALG) on instance v equals the expected payoff of ALG on

instance w.

Proof. For each element i ∈ U , let σi = 1 if ALG sells to i, and let βi = 1 if ALG buys back i.
Similarly, let σ′

i = 1 if Filter(ALG) sells to i, and let β′
i = 1 if Filter(ALG) buys back i. Observe that

σ′
i = σixi and β′

i = βixi for all i ∈ U , and that the random variable xi is independent of (σi, βi).
Thus,

E

[

∑

i∈U

σ′
ivi − (1 + f)β′

ivi

]

= E

[

∑

i∈U

σixivi − (1 + f)βixivi

]

=
∑

i∈U

E[σi − (1 + f)βi]E[xivi]

=
∑

i∈U

E[σi − (1 + f)βi]wi

= E

[

∑

i∈U

σiwi − (1 + f)βiwi

]

.
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The left side is the expected payoff of Filter(ALG) on instance v while the right side is the expected
payoff of ALG on instance w.

3.3 A randomized algorithm with optimal competitive ratio

In this section we put the pieces together, to obtain a randomized algorithm with competitive ratio

−W
(

−1
e(1+f)

)

against oblivious adversary5.

Algorithm 3 Randomized Algorithm RandAlg(r)
1: Given: a parameter r > 1 + f .
2: Sample u ∈ [0, 1] uniformly at random.
3: for all elements i do
4: Let zi = u+ ⌊lnr(vi)− u⌋.
5: Let wi = rzi .
6: end for

7: Run Filter(GMA) on instances v,w.

Lemma 3. For all i ∈ U , we have vi ≥ wi and E[wi] =
r−1

r ln(r)vi.

Proof. The random variable lnr(vi) − zi is equal to the fractional part of the number lnr(vi) − u,
which is uniformly distributed in [0, 1] since u is uniformly distributed in [0, 1]. It follows that wi/vi
has the same distribution as r−u, which proves that vi ≥ wi and also that

E

[

wi

vi

]

=

∫ 1

0
r−u du = −

1

ln(r)
· r−u

∣

∣

∣

∣

1

0

=
r − 1

r ln(r)
.

Theorem 1. The competitive ratio of RandAlg against an oblivious adversary is
r ln(r)
r−1−f .

Proof. Let S∗ ⊆ U denote the maximum-weight basis of (U ,I) with respect to the weights v. Since
the mapping from vi to wi is monotonic (i.e., vi ≥ vj implies wi ≥ wj), we know that S∗ is also
a maximum-weight basis of (U ,I) with respect to the weights w6. Let v(S∗) =

∑

i∈S∗ vi and let
w(S∗) =

∑

i∈S∗ wi.

The input instancew is r-structured, so the payoff of GMA on instancew is at least r−1−f
r−1 w(S∗).

The modified weights wi satisfy two properties that allow application of algorithm Filter(ALG): the
value of wi can be computed online when vi is revealed at the arrival time of element i, and it
satisfies wi ≤ vi. By Lemma 2, the expected payoff of Filter(GMA) on instance v, conditional on the

values {wi : i ∈ U}, is at least
(

r−1−f
r−1

)

· w(S∗). Finally, by Lemma 3 and linearity of expectation,

E [w(S∗)] ≥
(

r−1
r ln(r)

)

· v(S∗). The theorem follows by combining these bounds.

The function f(r) = r ln(r)
r−1−f on the interval r ∈ (1+f,∞) is minimized when − r

1+f = W
(

−1
e(1+f)

)

and f(r) = −W
(

−1
e(1+f)

)

. This completes our analysis of the randomized algorithm RandAlg(r).

5 Note that the algorithm is written in an offline manner just for convenience and can be implemented as an online
algorithm

6 There may be other maximum-weight basis of w which were not maximum-weight basis of v.
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4 Lower Bound

We prove the lower bound on the competitive ratio of randomized algorithms for online algorithms
with buyback against an oblivious adversary. The proof is by first reducing to a continuous version
of the problem and then applying Yao’s Principle [11]. As noted in the introduction, the lower
bound in the case of an adaptive adversary matches the lower bound for deterministic algorithms.
Both of these lower bounds are for the single item case and hence are also applicable for the general
matroid case.

4.1 Reduction to continuous version

Consider the following continuous version of the problem for the single item case. Time starts at
t = 1 and stops at some time t = x. The value of x is not known to the algorithm. The algorithm
at any instant in time can make a mark. The final payoff of the algorithm is equal to the time at
which it made its final mark minus f times the sum of times of marks before the final mark. There
is a clear relationship between this problem and the single item buyback problem. In particular,
we can transform any algorithm for the single item buyback problem with competitive ratio c
to an algorithm for the continuous case with competitive ratio c × (1 + ǫ) for arbitrarily small
ǫ > 0. This transformation works by running the single item buyback algorithm on the input
sequence 1, 1 + δ, (1 + δ)2, (1 + δ)3, . . . for sufficiently small δ > 0, and making marks at the times
t corresponding to the values accepted in the execution of the single item buyback algorithm.

4.2 Lower bound against oblivious adversaries

Theorem 2. Any randomized algorithm for the continuous version of the single item buyback prob-

lem has competitive ratio at least −W
(

−1
e(1+f)

)

.

The proof is an application of Yao’s Principle [11]. We give a one-parameter family of input
distributions (parametrized by a number y > 1) for the continuous version and prove that any
deterministic algorithm for the continuous version of the problem must have a competitive ratio

which tends to −W
(

−1
e(1+f)

)

as y → ∞. It is easy to note that an input to the continuous version

is completely specified by the time x at which the input stops, and hence the input distribution is
just a distribution on x. For a given y > 1, let the probability density for the stopping times be
defined as follows.

f(x) = 1/x2 if x < y

f(x) = 0 if x > y (1)

Note that the above definition is not a valid probability density function, so we place a point mass
at x = y of probability 1

y . Hence our distribution is a mixture of discrete and continuous probability.

For notational convenience let d(F (x)) = f(x) where F is the cumulative distribution function. Also
let G(x) = 1− F (x). Any deterministic algorithm is defined by a set T = {u1, u2, . . . , uk} of times
at which it makes a mark(Given that it does not stop before that time).

Lemma 4. There exists an optimal deterministic algorithm for the distribution described by T =
{1, w,w2, . . . , wk−1} for some w,k.
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Proof. Let T = {u1, u2, . . . , uk}. We prove that ui = u
(i−1)/i
i+1 for i ∈ [k − 1] by induction and it

is easy to see that the claim follows from this. For lack of space we just prove the inductive case.
Please refer to the appendix for the base case. Let u0 = 0 and uk+1 = ∞.

It is easy to see that the algorithm’s expected payoff, P , is
k
∑

i=1

∫ ui+1

ui
(ui − f ·

i−1
∑

j=1
uj) d(F (y)). We

simplify this expression as follows.

P =
k
∑

i=1

∫ ui+1

ui
(ui − f ·

i−1
∑

j=1
uj) d(F (y))

=
k
∑

i=1

∫

∞

ui
(ui − (1 + f) · ui−1) d(F (y))

=
k
∑

i=1
(ui − (1 + f) · ui−1) ·G(ui) (2)

Now we rewrite this equation to express the right side as a function of ui, using ρi to denote the
sum of all terms on the right side except for the i, i+ 1 terms. Crucially, ρi is independent of ui.

P = (ui − (1 + f) · ui−1) ·G(ui) + (ui+1 − (1 + f) · ui) ·G(ui+1) + ρi

= (ui − (1 + f) · ui−1) ·
1
ui

+ (ui+1 − (1 + f) · ui) ·
1

ui+1
+ ρi (3)

If we differentiate P with respect to ui, equate to 0, and solve, then we obtain the equation

u2i = ui−1 · ui+1. By induction we know that ui−1 = u
(i−2)/(i−1)
i . Substituting and solving we get

the necessary equation.

Lemma 5. For any algorithm described by T = {1, w,w2, . . . , wk−1}, the competitive ratio is

bounded below by a number which tends to −W
(

−1
e(1+f)

)

as y tends to ∞.

Proof. It is easy to see that the expected payoff, V , of a prophet who knows the stopping time x
is given by the following equation.

V =

∫ y

1

1

x2
· x dx+

1

y
· y = 1 + ln(y) (4)

Now we compute the payoff for any algorithm described by T = {1, w,w2, . . . , wk−1}.

P = 1 ·G(1) +
k−1
∑

i=1
(wi − (1 + f)wi−1) ·G(wi)

= 1 · 1 +
k−1
∑

i=1
(wi − (1 + f)wi−1) · 1

wi

= 1 + (k − 1) · w−1−f
w (5)

Hence if c is the competitive ratio we have that.

1

c
=

P

V
= 1+(k−1)·(w−1−f)/w

1+ln(y)

< 1
ln(y) +

(k−1)·(w−1−f)/w
(k−1)·ln(w)

≤ 1
ln(y) +max

u
(u−1−f
u·ln(u) )

≤ 1
ln(y) −

1

W
“

−1
e(1+f)

” (6)
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A Base case

We prove here the base case in the inductive hypothesis of proof of lemma 4. Consider the payoff
of the algorithm.

P =
k

∑

i=1

(ui − (1 + f)× ui−1)×G(ui) (7)

Similar to the inductive case we rewrite the equation as a function of u1, using ρ1 to denote the
sum of all terms on the right side except for the 1st, 2nd terms.

P = u1 ×G(u1) + (u2 − (1 + f)× u1)×G(u2) + ρ1

= u1 ×
1
u1

+ (u2 − (1 + f)× u1)×
1
u2

+ ρ1

= −(1 + f)× u1
u2

+ 1 + 1 + ρ1

It is easy to see that P is a decreasing function of u1. Hence u1 = 1 = u
1−1
1

2 .
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