
ar
X

iv
:0

90
7.

43
11

v1
 [

cs
.G

T
]

24
 J

ul
 2

00
9

Parametric Packing of Selfish Items and the Subset Sum Algorithm

Leah Epstein∗ Elena Kleiman† Julián Mestre‡

Abstract

The subset sum algorithm is a natural heuristic for the classical Bin Packing problem: In each iter-
ation, the algorithm finds among the unpacked items, a maximum size set of items that fits into a new
bin. More than 35 years after its first mention in the literature, establishing the worst-case performance
of this heuristic remains, surprisingly, an open problem.

Due to their simplicity and intuitive appeal, greedy algorithms are the heuristics of choice of many
practitioners. Therefore, better understanding simple greedy heuristics is, in general, an interesting topic
in its own right. Very recently, Epstein and Kleiman(Proc. ESA 2008, pages 368-380)provided another
incentive to study the subset sum algorithm by showing that the Strong Price of Anarchy of the game
theoretic version of the bin-packing problem ispreciselythe approximation ratio of this heuristic.

In this paper we establish the exact approximation ratio of the subset sum algorithm, thus settling
a long standing open problem. We generalize this result to the parametric variant of the bin packing
problem where item sizes lie on the interval(0, α] for someα ≤ 1, yielding tight bounds for the Strong
Price of Anarchy for allα ≤ 1. Finally, we study the pure Price of Anarchy of the parametric Bin
Packing game for which we show nearly tight upper and lower bounds for allα ≤ 1.

1 Introduction

Motivation and framework. The emergence of the Internet and its rapidly gained status as the predomi-
nant communication platform has brought up to the surface new algorithmic challenges that arise from the
interaction of the multiple self-interested entities thatmanage and use the network. Due to the nature of
the Internet, these interactions are characterized by the (sometimes complete) lack of coordination between
those entities. Algorithm and network designers are interested in analyzing the outcomes of these inter-
actions. An interesting and topical question is how much performance is lost due to the selfishness and
unwillingness of network participants to cooperate. A formal framework for studying interactions between
multiple rational participants is provided by the discipline of Game Theory. This is achieved by model-
ing the network problems as strategic games, and considering the quality of the Nash equilibria of these
games. In this paper we considerpureNash equilibria and strong equilibria. These equilibria are the result
of the pure strategies of the participants of the game, wherethey choose to play an action in a deterministic,
non-aleatory manner.

The algorithmic problems that are usually studied from a game theoretic point of view are abstractions
of real world problems, typically dealing with basic issuesin networks. In this paper, we consider game
theoretic variants of the well-known Bin Packing problem and its parametric version; see [5, 4, 6] for surveys
on these problems.

In the classic Bin Packing problem, we are given a set of itemsI = {1, 2, . . . , n}. The ith item in I
has sizesi ∈ (0, 1]. The objective is to pack the items into unit capacity bins soas to minimize the number
of bins used. In the parametric case, the sizes of items are bounded from above by a given value. More

∗Department of Mathematics, University of Haifa, 31905 Haifa, Israel.lea@math.haifa.ac.il.
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel.elena.kleiman@gmail.com.
‡Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany.jmestre@mpi-inf.mpg.de. Research supported by

an Alexander von Humboldt Fellowship.

1

http://arxiv.org/abs/0907.4311v1

precisely, given a parameterα ≤ 1 we consider inputs in which the item sizes are taken from the interval
(0, α]. Settingα to 1 gives us the standard Bin Packing problem.

As discussed in [8], bin packing is met in a great variety of networking problems, such as the problem
of packing a given set of packets into a minimum number of timeslots for fairness provisioning and the
problem of packing data for Internet phone calls into ATM packets, filling fixed-size frames to maximize
the amount of data that they carry. This fact motivates the study of Bin Packing from a game theoretic
perspective. The Parametric Bin Packing problem also models the problem of efficient routing in networks
that consist of parallel links of same bounded bandwidth between two terminal nodes—similar to the ones
considered in [14, 2, 8]. As Internet Service Providers often impose a policy which restricts the amount of
data that can be downloaded/uploaded by each user, placing arestriction on the size of the items allowed to
transfer makes the model more realistic.
The model. In this paper we study the Parametric Bin Packing problem both in cooperative and non-
cooperative versions. In each case the problem is specified by a given parameterα. The Parametric Bin
Packing game is defined by a tupleBP (α) = 〈N, (Bi)i∈N , (ci)i∈N 〉. WhereN is the set of the items,
whose size is at mostα. Each item is associated with a selfish player—we sometimes consider the items
themselves to be the players. The set of strategiesBi for each playeri ∈ N is the set of all bins. Each item
can be assigned to one bin only. The outcome of the game is a particular assignmentb = (bj)j∈N ∈ ×j∈NBj

of items to bins. All the bins have unit cost. The cost function ci of playeri ∈ N is defined as follows. A
player pays∞ if it requests to be packed in an invalid way, that is, a bin which is occupied by a total size of
items which exceeds 1. Otherwise, the set of players whose items are packed into a common bin share its
unit cost proportionally to their sizes. That is, if an itemi of sizesi is packed into a bin which contains the
set of itemsB theni’s payment isci = si/

∑

k∈B sk. Notice that since
∑

k∈B sk ≤ 1 the costci is always
greater or equal thansi. The social cost function that we want to minimize is the number of used bins.

Clearly, a selfish item prefers to be packed into a bin which isas full as possible. In the non-cooperative
version, an item will perform an improving step if there is a strictly more loaded bin in which it fits. At a
Nash equilibrium, no item can unilaterally reduce its cost by moving to a different bin. We call a packing
that admits the Nash conditionsNE packing. We denote the set of the Nash equilibria of an instance of the
Parametric Bin Packing gameG ∈ BP (α) byNE(G).

In the cooperative version of the Parametric Bin Packing game, we consider all (non-empty) subgroups
of items fromN . The cost functions of the players are defined the same as in the non-cooperative case. Each
group of items is interested to be packed in a way so as to minimize the costs for all group members. Thus,
given a particular assignment, all members of a group will perform a joint improving step (not necessarily
into a same bin) if there is an assignment in which, for each member, the new bin will admit a strictly greater
load than the bin of origin. The costs of the non-members may be enlarged as a result of this improving
step. At a strong Nash equilibrium, no group of items can reduce the costs of all its members by moving
to different bins. We denote the set of the strong Nash equilibria of an instanceG of the Parametric Bin
Packing game bySNE(G). As a group can contain a single item,SNE(G) ⊆ NE(G) holds.

To measure the extent of deterioration in the quality of Nashpacking due to the effect of selfish and
uncoordinated behavior of the players (items) in the worst-case we use the Price of Anarchy (PoA) and
the Price of Stability (PoS). These are the standard measures of the quality of the equilibria reached in
uncoordinated selfish setting [14, 17]. ThePoA/PoS of an instanceG of the Parametric Bin Packing game
are defined to be the ratio between the social cost of the worst/best Nash equilibrium and the social optimum,
respectively. As packing problems are usually studied via asymptotic measures, we consider asymptoticPoA
andPoSof the Parametric Bin Packing gameBP(α), that are defined by taking a supremum over thePoA
andPoSof all instances of the Parametric Bin Packing game, for large setsN .

Recent research [1, 9] initiated a study of measures that separate the effect of the lack of coordination
between players from the effect of their selfishness. The measures considered are the Strong Price of An-
archy (SPoA) and the Strong Price of Stability (SPoS). These measures are defined similarly to thePoAand

2

thePoS, but only strong equilibria are considered.
These measures are well defined only when the setsNE(G) andSNE(G) are not empty for anyG ∈

BP (α). Even though pure Nash equilibria are no guaranteed to existfor general games, they always exist
for the Bin Packing game: The existence of pure Nash equilibria was proved in [2] and the existence of
strong Nash equilibria was proved in [8].

As we study theSPoA/SPoS measures in terms of the worst-case approximation ratio of agreedy
algorithm for bin packing, we define here theparametric worst-case ratioR∞

A (α) of algorithmA by

R∞
A (α) = lim

k→∞
sup
I∈Vα

〈

A(I)

OPT (I)

∣

∣

∣

∣

OPT (I) = k

〉

,

whereA(I) denotes the number of bins used by algorithmA to pack the setI, OPT (I) denotes the number
of bins used in the optimal packing ofI andVα is the set of all listI for which the maximum size of the
items is bounded from above byα. In this paper we use an equivalent definition, whereR∞

A (α) is defined
as the smallest number such that there exists a constantK ≥ 0 for whichA(I) ≤ R∞

A (α) · OPT (I) +K,
for every listI ∈ Vα.
Related work. The first problems that were studied from game theoretic point of view were job scheduling
[14, 7, 16] and routing [17, 18] problems. Since then, many other problems have been considered in this
setting.

The classic bin packing problem was introduced in the early 70’s [19, 13]. This problem and its variants
are often met in various real-life applications, and it has aspecial place in theoretical computer science, as
one of the first problems to which approximation algorithms were suggested and analyzed with comparison
to the optimal algorithm. Bilò [2] was the first to study the Bin Packing problem from a game theoretic
perspective. He proved that the Bin Packing game admits a pure Nash equilibrium and provided non-tight
bounds on the Price of Anarchy. He also proved that the bin packing game converges to a pure Nash equi-
librium in a finite sequence of selfish improving steps, starting from any initial configuration of the items;
however, the number of steps may be exponential. The qualityof pure equilibria was further investigated by
Epstein and Kleiman [8]. They proved that the Price of Stability of the Bin Packing game equals to 1, and
showed almost tight bounds for thePoA; namely, an upper bound of 1.6428 and a lower bound of 1.6416.
Interestingly, this implies that the Price of Anarchy is notequal to the approximation ratio of any natural
algorithm for bin packing. Yu and Zhang [20] later designed apolynomial time algorithm to compute a
packing that is a pure Nash equilibrium. Finally, theSPoAwas analyzed in [8].

A natural algorithm for the Bin Packing problem is theSubset Sumalgorithm (or SS algorithm for short).
In each iteration, the algorithm finds among the unpacked items, a maximum size set of items that fits into a
new bin. The first mention of theSubset Sumalgorithm in the literature is by Graham [10] who showed that
its worst-case approximation ratioR∞

SS is at least
∑∞

i=1
1

2i−1
≈ 1.6067. He also conjectured that this was

indeed the true approximation ratio of this algorithm. The SS algorithm can be regarded as a refinement of
the First-Fit algorithm [13], whose approximation ratio isknown to be1.7. Caprara and Pferschy [3] gave
the first non-trivial bound on the worst-case performance ofthe SS algorithm, by showing thatR∞

SS(1) is at
most 43 + ln 4

3 ≈ 1.6210. They also generalized their results to the parametric case, giving lower and upper
bounds onR∞

SS(α) for α < 1.
Surprisingly, the approximation ratio of theSubset Sumis deeply related to the Strong Price of Anarchy

of the Bin Packing game. Indeed, the two concepts are equivalent [8]: Every output of the SS algorithm
is a strong Nash equilibrium, and every strong Nash equilibrium is the output of some execution of the SS
algorithm. Epstein and Kleiman [8] used this fact to show theexistence of strong equilibria for the Bin
Packing game and to characterize theSPoA/SPoSin terms of this approximation ratio.
Our results. In this paper, we fully resolve the long standing open problem of finding the exact approx-
imation ratio of the Subset Sum algorithm, proving Graham’sconjecture to be true. This in turn implies

3

a tight bound on the Strong Price of Anarchy of the Bin-Packing game. Then we extend this result to the
parametric variant of bin packing where item sizes are all inan interval(0, α] for someα < 1. Interestingly,
the ratioR∞

SS(α) lies strictly between the upper and lower bounds of Caprara and Pferschy [3] for allα ≤ 1
2 .

Finally, we study the pure Price of Anarchy for the parametric variant and show nearly tight upper bounds
and lower bounds on it for anyα < 1. The tight bound of 1 on the Price of Stability proved in [8] for the
general unrestricted Bin Packing game trivially carries over to the parametric case.

The main analytical tool we use to derive the claimed upper bounds isweighting functions—a technique
widely used for the analysis of algorithms for various packing problems [19, 13, 15] and other greedy
heuristics [11, 12]. The idea of such weights is simple. Eachitem receives a weight according to its size and
its assignment in some fixedNEpacking. The weights are assigned in a way that the cost of thepacking (the
number of the bins used) is close to the total sum of weights. In order to complete the analysis, it is usually
necessary to bound the total weight that can be packed into a single bin of an optimal solution.

Due to lack of space some of our proofs appear in the Appendix.

2 Tight worst-case analysis of the Subset Sum algorithm

In this section we prove tight bounds for the worst-case performance ratio of theSubset Sum(SS) algorithm
for anyα. It was proved in [8] that the strong equilibria coincide with the packings produced by the SS
algorithm for Bin Packing. The equivalence for theSPoA, SPoSand the worst-case performance ratio of
theSubset Sumalgorithm which was also proved in [8] still applies for the Parametric Bin Packing game;
indeed, it holds for all possible lists of items (players), and in particular to lists where all items have size at
mostα. This allows us to characterize theSPoA/SPoSin terms ofR∞

SS(α).
First we focus on the unrestricted case, that is,α = 1. LetBI be the set of bins used by our algorithm and

OI be the optimal packing for some instanceI. We are interested in the asymptotic worst-case performance
of SS; namely, we want to identify constantsρSS andδSS such that

|BI | ≤ ρSS |OI |+ δSS . (1)

Using the weighting functions technique, we charge the “cost” of the packing to individual items and
then show for each bin inOI that the overall charge (weight) to items in the bin is not larger thanρSS .

Let B ⊆ I be a bin inBI . We use the following short-hand notations(B) =
∑

j∈B sj andmin(B) =
minj∈B sj. Let smin be the size of the smallest yet-unpacked item just before openingB. For everyi ∈ B
we will charge itemi a sharewi of the cost of opening the bin, where

wi =

{

si
s(B) if 1− smin ≤ s(B),

si otherwise.
(2)

These weights are very much related to the payments of selfishplayers (items) in the Bin Packing game.
Letw(B) denote the total weight of items in a binB. Note that if the size of items packed inB is large

enough (s(B) ≥ 1− smin) thenw(B) = 1 and thus the charged amount is enough to pay forB. Otherwise
the charged amount only pays for as(B) faction of the cost. Let̂B1, . . . , B̂r be the bins that are underpaid
listed in the order they are opened by the algorithm and letsimin be the smallest item available when̂Bi was
opened. Notice thatsimin must belong toB̂i otherwise we could safely add the item to the bin. Also note
that we cannot addsi+1

min to s(B̂i), so we get

s(B̂i) + si+1
min > 1 =⇒ si+1

min > simin.

Therefore, because of the definition of the SS heuristic, forall i < r, it must be case that swappingsimin

with si+1
min in B̂i must yield a set that cannot be packed into a single bin, so we get

s(B̂i)− simin + si+1
min > 1 =⇒ 1− s(B̂i) < si+1

min − simin.

4

The total amount that is underpaid by all theB̂i bins can be bounded as follows

r
∑

i=1

(1− s(B̂i)) ≤

r−1
∑

i=1

(si+1
min − simin) + (1− srmin) ≤ 1.

This amount will be absorbed by the additive constant termδSS in our asymptotic bound (1).
Let O be a set of items that can fit in a single bin, that iss(O) ≤ 1, and denote withs1, s2, . . . , sr the

items contained inO, listed in reverse orderof how our algorithm packs them. Our goal is to show that
∑

i∈O wi is not too big. To that end, we first establish some propertiesthat these values must have and then
set up a mathematical program to find the sizess1, . . . , sr obeying these properties and maximizingw(O).
Consider the point in time when our algorithm packssi. LetB be the bin the algorithm uses to packsi and
let Oi = {1, . . . , i}.

BecauseOi is a candidate bin for our algorithm we gets(B) ≥ s(Oi). Therefore, by (2), we have

wi ≤
si

s(Oi)
. (3)

Notice that ifs(B) < 1−min(Oi) theni’s share issi. Therefore, we always have

wi ≤
si

1−min(Oi)
. (4)

Our job now is to find sizess1, . . . , sr maximizingw(O) subject to (3) and (4). Equivalently, we are to
determine the value of the following mathematical program

maximize
r
∑

i=1

si

max
{

∑i
j=1 sj, 1−min1≤j≤i sj

} (MPr)

subject to
r
∑

i=1

si ≤ 1

si ≥ 0 ∀ i ∈ [r]

Let λr be the value of (MPr) and letλ = supr λr. The following theorem shows that the worst-case
approximation ratio of the SS algorithm is preciselyλ.

Theorem 2.1. For every instanceI, we have|BI | ≤ λ |OI |+ 1. Furthermore, for everyδ > 0, there exists
an instanceI such that|BI | ≥ (λ− δ) |OI |.

The necessary tools for proving the upper bound have been laid out above, we just need to put everything
together:

|BI | ≤
∑

B∈BI

∑

i∈B

wi + 1 =
∑

O∈OI

∑

i∈O

wi + 1 ≤
∑

O∈OI

λ|O| + 1 ≤ λ |OI |+ 1.

To be able to prove the claimed lower bound, we first need to study some properties of (MPr). The
following lemma fully characterizes the optimal solutionsof (MPr).

Lemma 2.2. The optimal solution to(MPr) is

s∗i =

{

2−i if i < r,

2−r+1 if i = r.

5

It follows that the optimal value of (MPr) is λr =
∑r−1

i=1
1

2i−1
+ 1

2r−1 . This expression increases asr
grows. Therefore, the value is always at most

λ =

∞
∑

i=1

1

2i − 1
.

To lower bound the performance of the SS algorithm we use a construction based on Graham’s original
paper: The instanceI has for eachi ∈ [r − 1], N items of size2−i + ε, and fori = r, N items of size
2−r+1 − rε, whereε = 2−2r andN is large enough so thatN/si is integral for alli. The SS algorithm first
packs the smallest items intoN/2r−1 bins, then it packs the next smallest items intoN/(2r−1 − 1) bins, the
next items intoN/(2r−2 − 1) bins, and so on. On the other hand, the optimal solution uses only N bins. If
we chooser to be such that2r − 1 ≥ δ−1 then we get

|BI | = λr |OI | ≥

(

λ−
1

2r − 1

)

|OI | ≥ (λ− δ) |OI | .

Note that this lower bound example, for the case where there arer distinct item sizes, gives exactly the upper
bound we found forMPr.

Corollary 2.3. For α ∈ (12 , 1], the approximation ratio of the SS algorithm isR∞
SS(α) =

∑∞
i=1

1
2i−1

≈
1.6067. Furthermore, the SPoA/SPoS of theBP (α) game has the same value.

Parametric case. To get a better picture of the performance of SS, we generalize Theorem 2.1 to instances
where the size of the largest item is bounded by a parameterα. Our goal is to establish the worst-case
performance of the SS algorithm for instance inVα for all α < 1.

Let t be the smallest integer such thatα ≤ 1
t . We proceed as we did before but with a slightly different

weighting function:

wi =

{

si
s(B) if max {1− smin,

t
t+1} ≤ s(B),

si otherwise.
(5)

As before there will be some bins that are underpaid. LetB̂1, . . . , B̂r be these bins and letsimin be
smallest yet-unpacked item when the algorithm openedB̂i. These bins only pay for as(B̂i) fraction of their
cost. Even though we now have a more restrictive charging rule, the total amount underpaid is still at most 1.
For all i < r, whens(B̂i) < 1− simin, the same argument used above yields

1− s(B̂i) < si+1
min − simin.

Suppose that for somei we haves(B̂i) < t
t+1 but s(B̂i) > 1 − simin. Note that this impliessimin >

1/(t+1). Since at this point every item has size in(1
t+1 ,

1
t], if there were left at leastt items left just before

B̂i was opened, we could pack a bin with total size greater thant
t+1 . Therefore,B̂i must be the last bin

packed by the algorithm. Regardless whether such a bin exists or not, we always have1−s(B̂r) ≤ 1−srmin.
Hence, the total amount underpaid is

r
∑

i=1

1− s(B̂i) ≤
r−1
∑

i=1

(si+1
min − simin) + (1− srmin) ≤ 1.

The new weighting function (5) leads to the following mathematical program

maximize
r
∑

i=1

si

max
{

∑i
j=0 sj, 1−min1≤j≤i sj, t/(t+ 1)

} (MPt
r)

6

subject to
r
∑

i=0

si ≤ 1

si ≥ 0 ∀ i ∈ [r]

si ≤ 1/t ∀ i ∈ [r − 1]

Notice thatsr is allowed to be greater than1/t. This relaxation does not affect the value of the optimal
solution, but it helps to simplify our analysis. From now on,we assume thatr ≥ t; for otherwise the
program become trivial. Defineλt

r to be the value of (MPt
r) andλt = supr λ

t
r.

Theorem 2.4. Let t ≥ 2 be an integer andα ∈ (1
t+1 ,

1
m]. For every instanceI ∈ Vα, we have|BI | ≤

λt |OI |+ 1. Furthermore, for everyδ > 0, there exist an instanceI ∈ Vα such that|BI | ≥
(

λt − δ
)

|OI |.

The proof of the upper bound is identical to that of Theorem 2.1. We only need to derive the counterpart
of Lemma 2.2 for (MPt

r). Unlike its predecessor, Lemma 2.5 does not fully characterize the structure of the
optimal solution of (MPt

r). Rather, we define an optimal solutions∗ as a function of a free parameterx.

Lemma 2.5. An optimal solution to(MPt
r) has the form

s∗i =

x if i < t,
1−x(t−1)
2i−t+1 if t ≤ i < r,

1−x(t−1)
2r−t if i = r,

for somex ∈ [1
t+1 ,

1
t].

For anyx ∈ [1
t+1 ,

1
t], we can construct a solutions∗ for (MPt

r) as described in Lemma 2.5. Letλt
r(x)

be the value of the value of this solution, that is,

λt
r(x) = x (t− 1)

t+ 1

t
+

r−t
∑

i=1

1
2i

1−(t−1)x − 1
+

1
2r−t

1−(t−1)x

.

For any fixedx, the quantityλt
r(x) increases asr → ∞. Therefore, it is enough to look at its limit value,

which we denote byλt(x):

λt(x) = lim
r→∞

λt
r(x) = x (t− 1)

t+ 1

t
+

∞
∑

i=1

1
2i

1−(t−1)x − 1
.

It only remains to identify the valuex ∈ [1
t+1 ,

1
t] maximizingλt(x).

Lemma 2.6. For everyt ≥ 2, the functionλt(x) in the domain[1
t+1 ,

1
t] attains its maximum atx = 1

t+1 .

It follows thatλt = λt
(

1
t+1

)

, that is,

λt = 1 +

∞
∑

i=1

1

(t+ 1) 2i − 1
.

Note that for a specific value ofr,

λt
r

(

1
t+1

)

= 1 +

r−t−1
∑

i=1

1

(t+ 1) 2i − 1
+

1

(t+ 1) 2r−t−1
.

7

For the lower bound on the performance of the SS algorithm, consider the instanceI that for eachi ∈ [t]
hasN items of size 1

t+1 + ε, for eachi ∈ (t, r), it hasN items of size 1
(t+1) 2i−t + ε, and fori = r, there are

N items of size 1
(t+1) 2r−1−t − rε, whereε = 1

(t+1)2 2−2r andN is large enough so thatN/si is integral for

all i. The SS algorithm first packs the smallest items into N
(t+1)2r−t−1 bins, then it packs the next smallest

items into N
(t+1)2r−1−t−1

bins, and so on until reaching the items of size1t+1 + ε which are packed intoN

bins. The optimal solution usesN bins. If we chooser to be such that(t+ 1)2r−t − 1 ≥ δ−1 then we get

|BI | = λt
r

(

1
t+1

)

|OI | ≥

(

λt −
1

(t+1)2r−t − 1

)

|OI | ≥
(

λt − δ
)

|OI | .

Corollary 2.7. For each integert ≥ 1 andα ∈ (1
t+1 ,

1
t], the SS algorithm has an approximation ratio of

R∞
SS(α) = 1 +

∑∞
i=1

1
(t+1)2i−1

. Furthermore, the SPoA/SPoS of theBP (α) game has the same value.

Figure 1(a) compares our bound with the previously known upper bounds and lower bounds of Caprara
and Pferschy [3]. Note that the true ratio lies strictly between previous bounds.

3 Analysis of the Price of Anarchy

We now provide a lower bound for the Price of Anarchy of the parametric bin packing game with bounded
size items. In addition we prove a very close upper bound for each value of 1

t+1 < α ≤ 1
t for a positive

integert ≥ 2, that is, for all0 < α ≤ 1
2 . The case12 < α < 1 (t = 1) was extensively studied in [8].

A construction of lower bound on the PoA of parametric Bin Packing. In this section we give the
construction of a lower bound onPoA(α). For each value oft ≥ 2 we present a set of items which consists of
multiple item lists. This construction is somewhat relatedto the construction we gave in [8] for12 < α ≤ 1,
though it is not a generalization of the former, which strongly relies on the fact that each item of size larger
than 1

2 can be packed alone in a bin of theNE solution, whereas in the parametric case there are no such
items. It is based upon techniques that are often used to design lower bounds on bin packing algorithms
(see e.g., [15]). We should note that our construction differs from these constructions in the notion of
order in which packed bins are created (which does not exist here) and the demand that each bin satisfies
the Nash stability property. Our lower bound is given by the following theorem, whose proof appears in
Appendix A.4.

Theorem 3.1. For each integert ≥ 2 andα ∈ (1
t+1 ,

1
t], the PoA of theBP (α) game is at least

t2+
∞
P

j=1
(t+1)−j ·2−j(j−1)/2

t(t−1)+1 .

An upper bound on the PoA of parametric Bin Packing. We now provide a close upper bound onPoA(α)
for a positive integert ≥ 2. The technique used in [8] can be considered as a refinement ofthe one we use
here, and here we are also required to use additional combinatorial propertiies of the NE packing. To bound
thePoAfrom above, we prove the following theorem.

Theorem 3.2. For each integert ≥ 2, for any instance of the parametric bin packing gameG ∈ BP (1t):

Any NE packing uses at most
(

2t3+t2+2
(2t+1)(t2−t+1)

)

· OPT (G) + 5 bins, whereOPT (G) is the number of bins
used in a coordinated optimal packing.

Proof. Let us consider a packingb of the items inNG which admitsNE conditions. We classify the bins
according to their loads into four groups-A, B,C andD. The casest = 2 andt ≥ 3 are treated separately.
For t = 2: groupA- contains bins with loads of more than56 ; GroupB- contains bins with loads in(34 ,

5
6];

8

GroupC- contains bins with loads in(1724 ,
3
4]; GroupD- contains bins with loads not greater than17

24 . For
t ≥ 3: groupA- contains bins with loads of more than2t+1

2(t+1) ; GroupB- contains bins with loads in

(t+1
t+2 ,

2t+1
2(t+1)]; GroupC- contains bins with loads in(t

2−t+1
t2

, t+1
t+2]; GroupD- contains bins with loads not

greater thant
2−t+1
t2

. This partition is well defined, astt+1 < t2−t+1
t2

, t2−t+1
t2

< t+1
t+2 and t+1

t+2 < 2t+1
2(t+1)

for any t ≥ 3. We denote the cardinality of these groups bynA, nB, nC andnD, respectively. Hence,
NE = nA + nB + nC + nD. We list the bins in each group from left to right in non-increasing order w.r.t.
their loads. Our purpose is to find an upper bound on the total number of bins in these four groups.

In the casenD < 3, using the fact thatOPT ≥
∑n

i=1 si we consider two sub-cases:

• For t = 2, this means that all bins in packingb (except for at most 2) have load of at least17
24 , thus

OPT ≥ 17
24NE, andPoA ≤ 24

17 < 22
15 .

• For t ≥ 3, this means that all bins in packingb (except for at most 2) have load of at leastt2−t+1
t2 , thus

OPT ≥ t2−t+1
t2

NE, andPoA ≤ t2

t2−t+1
< 2t3+t2+2

(2t+1)(t2−t+1)
.

In the rest of the analysis we assume thatnD ≥ 3. We start with a simple lower bound on the load of
the bins (except possibly at most two bins) in aNE packing.

Claim 3.1. For a positive integert ≥ 2, all the bins in NE packingb (except for maybe a constant number
of bins) are at least t

t+1 full.

Moreover, the fact that anyNE packing can be produced by a run of FF actually implies that the worst-
case asymptotic ratio of FF, which is known to bet+1

t for t ≥ 2, upper-bounds thePoA. But, as we show
further, the upper-bound we provide on thePoA is tighter than this trivial bound for anyt ≥ 2.

From Claim 3.1 it is evident that all the bins (except for maybe two) in groupD have loads in(23 ,
17
24] for

t = 2, or in (t
t+1 ,

t2−t+1
t2] for t ≥ 3.

Claim 3.2. For a positive integert ≥ 2, in a NE packingb, all bins that are filled by less than2t+1
2(t+1) (i.e.

bins in groupsB, C andD), except for maybe a constant number of bins, contain exactly t items with sizes
in (t−1

t2
, 1t].

Henceforth, we call the bins in groupsB, C andD that contain exactlyt items with sizes in(t−1
t2

, 1t] for
t ≥ 3, or exactly2 items of sizes in(7

24 ,
1
2] for t = 2 regular bins, and refer to each one of those items as

t-item.
To derive the upper bound on the total number of bins in theNE packing b, we use theweighting

functionstechnique.
We define for each value oft ≥ 2 a weighting functionwt on the items, in the following manner. The

weightwt(x) of an item of sizex which is packed in a bin of groupA in a packingb is: wt(x) =
2(t+1)
2t+1 x.

The weightwt(x) of an item of sizex which is packed in a regular bin of loadL < 2t+1
2(t+1) in a packingb is:

wt(x) =
2(t+1)
2t+1 x+

(1−
2(t+1)
2t+1

L)

k , wherek is the number of items in the bin ofx. The purpose of the addition

term
(1− 2(t+1)

2t+1
L)

k is to complete the weight of any bin in the packing to1. Clearly, any bin in groupA (which
is full by more than 2t+1

2(t+1)) will have a total weight of at least 1. Any of the less filled bins from groupsB,

C andD will have a weight of 1 as2(t+1)
2t+1 · L+

(1−
2(t+1)
2t+1

L)

t · t = 1, and each of thet items packed in each

one of these bins (except maybe 5 bins) will get an addition ofat most
1− 2(t+1)

2t+1
· t
t+1

t = 1
t(2t+1) .

For the 5 special bins, the first weighting function applies,and the weight of each bin is non-negative.
Now, we need to bound from above the weight observed by a bin inthe optimal packing of these items.

First, note that in a bin of the optimal packing fort ≥ 2 there can be at mostt+ 1 t-items from the regular

9

bins of groupsB, C andD. For t = 2 the size of these items is greater than7
24 , and the size of four of these

items exceeds 1. Fort ≥ 3 the size of these items is greater thant−1
t2

, and the size oft + 2 of these items,
which is at least(t+ 2) · t−1

t2
= 1 + t−2

t2
, also exceeds 1.

The weight of a bin in an optimal packing that has a loadS and containst + 1 t-items that come from
bins of groupsB, C andD in b, is at most:

2(t+ 1)

2t+ 1
· S + (t+ 1) ·

1

t(2t+ 1)
≤

2(t+ 1)

2t+ 1
+

t+ 1

t(2t+ 1)
=

2t2 + 3t+ 1

t(2t+ 1)
=

t+ 1

t
.

The weight of a bin in an optimal packing that has a loadS and contains at mostt t-items that came from
bins of groupsB, C andD in b, is at most:

2(t+ 1)

2t+ 1
· S + t ·

1

t(2t+ 1)
≤

2(t+ 1)

2t+ 1
+

t

t(2t+ 1)
=

2t2 + 3t

t(2t+ 1)
.

We claim that in any optimal packing, the fraction of the number of bins that containt+ 1 t-items from
bins of groupsB, C andD out of total number of bins is at mostt(t−1)

t2−t+1
.

To establish this, we consider all the bins in the optimal packing that contain exactlyt+ 1 t-items from
groupsB, C andD (and maybe additional items as well), let the number of such bins beNt.

If Nt = 0, we are done as then the total weight of all the items inNG is at mostW (NG) ≤
(

2t+3
2t+1

)

·

OPT (G). As nA + nB + nC + nD − 5 ≤ W (NG), we get thatNE ≤
(

2t+3
2t+1

)

· OPT (G) + 5 <
(

2t3+t2+2
(2t+1)(t2−t+1)

)

·OPT (G) + 5. Else, we prove the following claim.

Claim 3.3. Among theNt ·(t+1) t-items that are packed in(t+1)-tuples in the bins of the optimal packing,
only at most(Nt − 1) · t are packed together int-tuples in bins that belong to groupsB, C andD in theNE
packing.

Hence, at most(Nt− 1) · t t-items out ofNt · (t+1) are packed together int-tuples in bins from groups
B, C andD in theNE packingb. The remainingNt + t t-items are also packed in bins of groupsB, C and
D in b, but they share their bin with at most(t−2) othert-items from theNt bins from the optimal packing,
and at least onet-item that is not packed in one of theseNt bins. In total, there are at leastNt+t

t−1 t-items that
are not packed in one of theNt bins in discussion, and they are packed with at mostt− 1 other such items
in the optimal packing.

Thus, in the optimal packing for anyNt bins with t + 1 items of size in(t−1
t2 , 1t] there are at least

Nt+t
t(t−1) bins that have at mostt such items. LettingNt be very large in comparison tot gives us the claimed
proportions. We conclude that in average, the weight of any bin of the optimal packing is at most:

t(t− 1) · t+1
t + 2t+3

2t+1

t(t− 1) + 1
=

2t3 + t2 + 2

(2t+ 1)(t2 − t+ 1)
.

Hence, the total weight of all the items inNG is at mostW (NG) ≤
(

2t3+t2+2
(2t+1)(t2−t+1)

)

· OPT (G). As nA +

nB + nC + nD − 5 ≤ W (NG), we get thatNE ≤
(

2t3+t2+2
(2t+1)(t2−t+1)

)

· OPT (G) + 5

A more careful consideration of the contents of special binsallows to reduce the additive constant to 2.

Theorem 3.3. For each integert ≥ 2 andα ∈ (1
t+1 ,

1
t], the PoA of the parametric bin packing gameBP (α)

is at most 2t3+t2+2
(2t+1)(t2−t+1)

.

Proof. The asserted upper bound on thePoA follows directly from Theorem 3.2.

10

(a) A comparison of our analysis ofR∞
SS(α)

with Caprara and Pferschy’s (CP). The true ra-
tio lies between the previously known upper and
lower bounds.

(b) Almost matching upper and lower bounds
for the PoA of the parametric bin packing game.

RFFD (α) [13] CP lb [3] RSS (α) CP ub [3] PoA(α) RFF (α) [13]

t = 1 1.222222 1.606695 [10] 1.606695 1.621015 [1.641632, 1.642857] [8] 1.700000
t = 2 1.183333 1.364307 1.376643 1.398793 [1.464571, 1.466667] 1.500000
t = 3 1.166667 1.263293 1.273361 1.287682 [1.326180, 1.326530] 1.333333
t = 4 1.150000 1.206935 1.214594 1.223143 [1.247771, 1.247863] 1.250000
t = 5 1.138095 1.170745 1.176643 1.182321 [1.199102, 1.199134] 1.200000
t = 6 1.119048 1.145460 1.150106 1.154150 [1.166239, 1.166253] 1.166667
t = 7 1.109127 1.126763 1.130504 1.133531 [1.142629, 1.142635] 1.142857
t = 8 1.097222 1.112360 1.115433 1.117783 [1.124867, 1.124871] 1.125000
t = 9 1.089899 1.100918 1.103483 1.105360 [1.111029, 1.111031] 1.111111
t = 10 1.081818 1.091603 1.093776 1.095310 [1.099946, 1.099947] 1.100000

(c) Comparison of the worst-case ratio ofFFD, SS, FF andPoAas a function ofα whenα ≤
1
t
, for t = 1, . . . , 10.

Figure 1: Our results at a glance.

4 Concluding Remarks

In order to illustrate the results in the paper, we report in Figure 1(c) the values for the worst-case ratio of
the SS algorithm for various values ofα along with previously known upper and lower bounds of Caprara
and Pferschy [3], and the worst-case approximation ratios of FF and FFD algorithm Bin Packing. We also
include the range of possible values for the PoA for different values ofα. Figure 1(b) shows our (almost
matching) upper and lower bound on the PoA. We conjecture that the true value of thePoA equals our lower
bound from Theorem 3.1.

small

References

[1] N. Andelman, M. Feldman, and Y. Mansour. Strong price of anarchy. InSODA, pages 189–198, 2007.

[2] V. Bilò. On the packing of selfish items. InIPDPS. IEEE, 2006.

11

[3] A. Caprara and U. Pferschy. Worst-case analysis of the subset sum algorithm for bin packing.Oper.
Res. Lett., 32(2):159–166, 2004.

[4] E. G. Coffman Jr. and J. Csirik. Performance guarantees for one-dimensional bin packing. In T. F.
Gonzalez, editor,Handbook of Approximation Algorithms and Metaheuristics, chapter 32. Chapman
& Hall/Crc, 2007. 18 pages.

[5] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin packing: A
survey. In D. S. Hochbaum, editor,Approximation algorithms. PWS Publishing Company, 1997.

[6] J. Csirik and J. Y.-T. Leung. Variants of classical one-dimensional bin packing. In T. F. Gonzalez,
editor,Handbook of Approximation Algorithms and Metaheuristics, chapter 33. Chapman & Hall/Crc,
2007. 13 pages.

[7] A. Czumaj and B. Vöcking. Tight bounds for worst-case equilibria. ACM Transactions on Algorithms,
3(1), 2007.

[8] L. Epstein and E. Kleiman. Selfish bin packing. InESA, pages 368–380, 2008.

[9] A. Fiat, H. Kaplan, M. Levy, and S. Olonetsky. Strong price of anarchy for machine load balancing.
In ICALP2007, pages 583–594, 2007.

[10] R. L. Graham. Bounds on multiprocessing anomalies and related packing algorithms. InProceedings
of the 1972 Spring Joint Computer Conference, pages 205–217, 1972.

[11] N. Immorlica, M. Mahdian, and V. S. Mirrokni. Cycle cover with short cycles. InProceedings of the
22th Annual Symposium on Theoretical Aspects of Computer Science, pages 641–653, 2005.

[12] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing LP.Journal of the ACM, 50(6):795–824, 2003.

[13] D. S. Johnson, A. J. Demers, J. D. Ullman, M. R. Garey, andR. L. Graham. Worst-case performance
bounds for simple one-dimensional packing algorithms.SIAM J. Comput., 3(4):299–325, 1974.

[14] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In STACS’99, pages 404–413, 1999.

[15] C. C. Lee and D. T. Lee. A simple online bin packing algorithm. J. ACM, 32:562–572, 1985.

[16] M. Mavronicolas and P. G. Spirakis. The price of selfish routing. InSTOC2001, pages 510–519, 2001.

[17] T. Roughgarden.Selfish routing and the price of anarchy. MIT Press, 2005.

[18] T.Roughgarden and́E. Tardos. How bad is selfish routing? InFOCS, pages 93–102, 2000.

[19] J. D. Ullman. The performance of a memory allocation algorithm. Technical Report 100, Princeton
University, Princeton, NJ, 1971.

[20] G. Y. and G. Zhang. Bin packing of selfish items. InWINE, pages 446–453, 2008.

12

A Omitted proofs

A.1 Proof of Lemma 2.2

Let s be a solution to (MPr) other thans∗. The plan is to show thats is not optimal by improving its cost.
First we argue that without loss of generality

∑r
i=1 si = 1. Indeed, if that was not the case then consider

the new solution

s′i =

{

si if i < r,

1−
∑r−1

j=1 sj if i = r.

The difference between the value ofs′ and the value ofs comes from therth term in the objective of (MPr).
Sinces′r > sr, this difference is at least

s′r −
sr

1− s′r + sr
> s′r −

s′r
1− s′r + s′r

= 0.

Let i be the first index such thatsi 6= s∗i . First, we consider the casesi < s∗i . Let h > i be the smallest
index such that

∑h
j=1 sj ≥ 1−min1≤j≤h sj. (Note that suchh must exist because the condition is satisfied

by r and i < r by our assumption that
∑

i si = 1.) We construct a new solutions′ from s by slightly
increasingsi and slightly decreasingsh by the sameε amount (note thatsh must be non-zero). We would
like to argue that the overall change in value is positive. Tothat end, we examine how each term in the
objective of (MPr) changes with the update.

⊲ For k ∈ [1, i) the contribution of thekth term is not affected by the update since its value does not
depend onsi or sh.

⊲ Fork ∈ (i, h), thekth term can only increase. Indeed, for small enoughε and for alls′i ∈ [si, si + ε]

we have
∑k

j=1 s
′
j < 1−min1≤j≤h s

′
j and thus the contribution of thekth term to the value ofs′ is

s′k
1−min1≤j≤k s

′
j

≥
sk

1−min1≤j≤k sj
,

which in turn is its contribution to the value ofs.

⊲ Fork ∈ (h, r], thekth term does not change with the update because, since
∑k

j=1 s
′
j =

∑k
j=1 sj and

∑h
j=1 sj ≥ 1−min1≤j≤h sj, its contribution is always

sk

max{
∑k

j=1 sk, 1−minh<j≤k sj}
.

⊲ Regarding theith term, for anys′i ∈ [si, s
∗
i] we have

∑i
j=1 sj < 1−min1≤j≤i s

′
j = 1− s′i. Thus its

contribution to the value ofs is s′i
1−s′i

. Imagine increasings′i continuously fromsi to si + ε. The rate

of change of its contribution to the value as a function ofs′i is

∂

∂x

(

x

1− x

)

x=s′i

=
1

(1− s′i)
2
.

13

⊲ Since thehth term decreases with the update, we need to show that its rate of change, as we decrease
s′h from sh to sh−ε, does not cancel out the rate of change of theith term. Suppose

∑h
j=1 sj > 1−sh

then its rate of change is

−
∂

∂x

(

x
∑h

j=1 sj

)

x=s′h

= −
1

∑h
j=1 sj

≥ −
1

1− si
> −

1

(1− si)2
.

Let us consider what happens when
∑h

j=1 sj = 1−sh. In this casesh ≤ si since1−sh =
∑h

j=1 sj ≥
1−min1≤j≤h sj ≥ 1− si. Thus, the rate of change of thehth term is

−
∂

∂x

(

x

1− x

)

x=s′h

= −
1

(1− s′h)
2

≥ −
1

(1− si)2
.

We claim that for small enoughε, the value ofs′ must be strictly greater than the value ofs. Indeed, by
the discussion above, the overall change in value is at least

∫ si+ε

si

1

(1− s′i)
2
−

1

(1− si)2
ds′i > 0.

Now let us see what happens whensi > s∗i . In this case we build our new solutions′ by decreasing
si and increasingsr by the same infinitesimally small amountε. As before, terms before theith do not
depend onsi or sr and therefore are not affected by the update. Sincesi >

∑r
j=i+1 sj > si+1 we have

min1≤j≤k s
′
j = min1≤j≤k sj for k ∈ (i, r). Therefore, in this case, thekth term can only increase

s′k
max{

∑k
j=1 s

′
j, 1−min1≤j≤k s

′
j}

≥
sk

max{
∑k

j=1 sj , 1−min1≤j≤k sj}
.

Theith term decreases and its rate of change is

−
∂

∂x

(

x

1− 2−i+1 + x

)

x=si

= −
1− 2−i+1

(1− 2−i+1 + si)2
> −

1− 2−i+1

(1− 2−i)2
> − 1.

On the other hand, therth term increases and its rate of change is 1 due to our assumption that
∑

i si = 1.
Therefore, the overall rate of change of value is strictly positive.

A.2 Proof of Lemma 2.5

The plan is to show that given some solutions, either there existsx ∈
[

1
t+1 ,

1
t

]

such that the solutions∗

induced byx equalss, or we can construct another solutions′ that is closer tos∗ and has value at least as
large ass. This process is repeated until we converge tos∗.

First, if
∑r

j=1 sj < 1 then we can safely increasesr to until the bin is full. Note that we can always do
this because there is no upper bound onsr. From now on we assume that

∑r
j=1 sj = 1.

Suppose there existssi < 1
t+1 for somei < t and leti be the smallest such index. Leth be the smallest

index such that
∑j

j=1 sj ≥ max{1 − min1≤j≤h sj,
t

t+1}. As was done in the proof of Lemma 2.2, we
increasesi and decreasesh by the sameε amount. The same argument used before shows that the value
of s′ is greater than the value ofs. Therefore, we can assume thatsi ≥ 1

t+1 for all i < t. Under this
assumption, each item contributessi t

t+1 to the objective, since

1− min
1≤j≤i

si ≤ 1−
1

t+ 1
=

t

t+ 1
and

∑

1≤j≤i

sj ≤
t− 1

t
<

t

t+ 1
.

14

Settings′i =
P

1≤j<t sj
t−1 for eachi ∈ [t − 1] does not affect the contribution of these items and can only

increase the contribution of the remaining items since the transformation does not change the total size, but
may increase the minimum size of the firstt− 1 items. Therefore, we can assume thats1 = · · · = st−1 = x
for somex ∈ [1

t+1 ,
1
t].

At this point, we can apply the exact same argument as the one used in the proof of Lemma 2.2. For
i = t we note that ifst < s∗t then for anys′i ∈ [si, si + ε] we have1 − s′i > 1 − 1−x (t−1)

2 ≥ t
t+1 , where

the last inequality usesx ≥ 1
t+1 , and1 − s′i = 1 − 2s′i + s′i > x (t − 1) + s′i =

∑t
j=1 s

′
i. Therefore, the

contribution of thetth term is s′t
1−s′t

. Similarly, if st > s∗t then the contribution is s′t
Pt

j=1 s
′
j

. These are the

properties needed to apply the argument used before. The conclusion is that for allt ≤ i < r the value of

the program is maximized by settingsi to
1−

Pi−1
j=1 sj
2 .

A.3 Proof of Lemma 2.6

Consider the variable changey = 1
1−(t−1)x , which for t ≥ 2 maps the range[1

t+1 ,
1
t] for x into the range

[t+1
2 , t] for y:

λt(x) = g(y) = (1− 1/y)
t+ 1

t
+

∞
∑

i=1

1

y 2i − 1
.

This function and its derivative converge uniformly fory in [t+1
2 , t]. Thus, the first derivative ofg can be

obtained by term-wise differentiation

g′(y) =
t+ 1

t y2
−

∞
∑

i=1

2i

(y 2i − 1)2
=

1

y2

(

t+ 1

t
−

∞
∑

i=1

2i

(2i − 1/y)2

)

.

Notice that each term of the infinite sum, and thus the sum itself, is a decreasing function ofy for y ≥ 1.
It follows that either the sign ofg′ is the same throughout the interval[t+1

2 , t] or it changes from negative
to positive. In either case, the maximum must be attained at one of the ends of the interval. Hence, the
maximum ofλt(x) in the domain[1

t+1 ,
1
t] is attained either at1t+1 or at 1t .

We claim thatλt(1
t+1) > λt(1t) for all t ≥ 2. Indeed, taking the difference of these two values we get

λt

(

1

t+ 1

)

− λt

(

1

t

)

=
1

t2
−

∞
∑

i=1

1

2i t2 + (2i − 2) t− 1 + 2−i

If the denominator of each term of the infinite sum were largerthan2it2 then it would immediately fol-
low that the right hand side is always positive. Unfortunately, this is not true for the first term. Nevertheless,
it is true for the remaining terms, and the first and second terms together are less than34t2 . Therefore,

λt

(

1

t+ 1

)

− λt

(

1

t

)

>
1

t2
−

∞
∑

i=1

1

2i t2
= 0

A.4 Proof of Theorem 3.1

Let s > 2 be an integer. We define a construction withs+1 phases of indices0 ≤ j ≤ s, where the items of
phasej have sizes which are close to 1

(t+1)·2j
, but can be slightly smaller or slightly larger than this value.

We letOPT = t(t − 1) · n + n, and assume thatn is a large enough integer, such thatn > 2s
3
, n >> t.

We use a sequence of small values,δj such thatδj = 1
(4n)3s−2j . Note that this impliesδj+1 = (4n)2δj for

15

0 ≤ j ≤ s − 1. For eacht ≥ 2, t ∈ N we use two sequences of positive integersrtj ≤ n anddtj ≤ n,
for 2 ≤ j ≤ s, and in addition,rt0 = n, dt0 = 0 andrt1 = n

t+1 , dt1 = t
t+1n (and thusrt1 + dt1 = n). We

definertj+1 =
rtj−1

(t+1)·2j−1 anddtj+1 = rtj − rtj+1 =
((t+1)·2j−1−1)rtj+1

(t+1)·2j−1 = ((t + 1) · 2j−1 − 1)rtj+1 + 1, for
1 ≤ j ≤ s− 1.

Observation A.1. For each1 ≤ j ≤ s, n
(t+1)j ·2j(j−1)/2 − 1 ≤ rtj ≤

n
(t+1)j ·2j(j−1)/2 .

Proof. For j = 1 it holds by definition. We next prove the property forrtj+1 using the definition of the

sequencertj. We havertj+1 =
rtj−1

(t+1)·2j−1 for j ≥ 1. From this definition, we get (by induction) that

rtj+1 = rt1

j
∏

i=1

1

(t+ 1) · 2i−1
−

j−1
∑

i=1

1

(t+ 1) · 2i

=
rt1

(t+ 1)j
·

1

2j(j−1)/2
−

1

t+ 1
(1−

1

2j−1
)

<
n

(t+ 1)j · 2j(j−1)/2
,

as rt1 < n, and for t ≥ 2 1
t+1 (1 − 1

2j−1) > 0. On the other hand, 1
(t+1)j−1 ·2j(j−1)/2 ≤ 1 holds, since

(t+ 1)j−1 · 2j(j−1)/2 ≥ 1 for j ≥ 1. Sortj+1 ≥
n

(t+1)j ·2j(j−1)/2 − 1.

The input set of items fort ≥ 2 consists of multiple phases. Phase 0 consists of the following sets of
items;nt items of sizeσ01 = 1

t+1 + ∆nt2(t − 1) + ∆, t(t − 1)n items of sizeσ02 = 1
t+1 −∆nt(t− 1),

and pairs of items of sizesσi
03 =

1
t+1 +∆nt(t− 1) + i∆ andσi

04 =
1

t+1 − i∆ for 1 ≤ i ≤ t(t− 1)n, such

that∆ = 2δ0
nt(t−1)+1 . Note thatσi

03 + σi
04 = 2

t+1 +∆nt(t− 1). There are also(t − 2) · t(t− 1)n items of

sizeσ05 = 1
t+1 . For1 ≤ j ≤ s, phasej consists of the following2dtj + rtj items. There arertj items of size

σj =
1

(t+1)·2j
+2(dtj +1)δj , and for1 ≤ i ≤ dtj , there are two items of sizesπi

j =
1

(t+1)·2j
+(2i− 1)δj and

θij =
1

(t+1)·2j
− 2iδj . Note thatπi

j + θij =
1

(t+1)·2j−1 − δj . A bin of level j in the optimal packing contains
only items of phases1, . . . , j. A bin of levels+1 contains items of all phases. The optimal packing contains
t(t− 1)n bins of level 0,dtj bins of levelj, for 1 ≤ j ≤ s, and the remaining bins are of levels + 1. Note

that
s
∑

j=1
dtj =

t
t+1n +

s
∑

j=2
dtj =

t
t+1n+ rt1 − rts =

t
t+1n+ 1

t+1n − rts = n − rts. Thus, the number of level

s+ 1 bins is (at most)rts, and we haven bins of levels1 ≤ j ≤ s+ 1 allocated, in addition to thet(t− 1)n
bins of level 0. In total, the packing contains of at mostt(t− 1)n+ n = (t(t− 1) + 1)n bins. The optimal
packing of the set of items specified above is defined as follows. A level 0 bin containst− 2 items of size
σ05, one item of sizeσ02 and, in addition, one pair of items of sizesσi

03 andσi
04 for a given value ofi such

that1 ≤ i ≤ t(t−1)n. For1 ≤ j ≤ s, a levelj bin containst items of sizeσ01 and one item of each sizeσk
for 1 ≤ k ≤ j− 1, and, also, one pair of items of sizesπi

j andθij for a given value ofi such that1 ≤ i ≤ dtj .
A bin of level s+ 1 containst items of sizeσ01 and one item of each sizeσk for 1 ≤ k ≤ s.

Claim A.1. This set of items can be packed inton+ t(t− 1)n bins, i.e.,OPT ≤ (1 + t(t− 1))n

Proof. First, we show that every item was assigned into some bin. Consider thent items of sizeσ01. Each
t-tuple of these items is assigned into a bin of level1 ≤ j ≤ s together. Consider items of sizeπi

j and
θij. Such items exist for1 ≤ i ≤ dtj , therefore, every such pair is assigned into a bin (of level1 ≤ j ≤ s)
together. Next, consider items of sizeσj for some1 ≤ j ≤ s. The number of such items isrtj . The number

of bins which received such items is
s
∑

k=j+1

dtk + rts = rtj. As to the items of sizeσ02. There aret(t − 1)n

16

such items, each item is assigned into one of thet(t− 1)n bins of level 0. The itemsσi
03 andσi

04 that exist
for 1 ≤ i ≤ t(t − 1)n. Every such pair is assigned into one of thet(t − 1)n level 0 bins together. And,
finally consider the(t − 2) · t(t − 1)n items of sizeσ05. Each(t− 2) tuple of these items is assigned into
one of thet(t− 1)n level 0 bins.

We further show that the sum of sizes of items in each bin does not exceed 1. Consider a bin of level 0.
The sum of items it contains is:(t− 2)σ05 + σ02 + σi

03 + σi
04 = (t− 2) · 1

t+1 +
1

t+1 −∆nt(t− 1) + 2
t+1 +

∆nt(t− 1) = 1. Now, consider a bin of levelj for some1 ≤ j ≤ s. The sum of items packed in it is:

t · σ01+

j−1
∑

k=1

σk +
1

(t+ 1) · 2j−1
− δj

= t · (
1

t+ 1
+∆nt2(t− 1) + ∆) +

j−1
∑

k=1

(
1

(t+ 1) · 2k
+ 2(dtk + 1)δk) +

1

(t+ 1) · 2j−1
− δj

=
t

t+ 1
+ t · (∆nt2(t− 1) + ∆) +

1

(t+ 1) · 2j−1
− δj +

1

t+ 1

j−1
∑

k=1

(
1

2k
+ 2(dtk + 1)δk)

=
t

t+ 1
+

1

(t+ 1) · 2j−1
+

1− (12)
j−1

t+ 1
+ t2 · 2δ0 − δj +

j−1
∑

k=1

2(dtk + 1)δk

= 1 + t2 · 2δ0 +

j−1
∑

k=1

2(dtk + 1)δk − δj .

It is left to show thatt2 · 2δ0 +
j−1
∑

k=1

2(dtk +1)δk − δj ≤ 0 holds. Asdk +1 ≤ n andδj is a strictly increasing

sequence, we have2(dk + 1)δk ≤ 2nδj−1, and sincej − 1 ≤ s < n,
j−1
∑

k=1

2(dk + 1)δk < 4n2δj−1. Also, as

t < n, t2 · 2δ0 < 2n2δj−1. Usingδj = 16n2δj−1 we get that the sumt2 · 2δ0 +
j−1
∑

k=1

2(dtk + 1)δk is smaller

thanδj .
It is left to consider a bin of levels+ 1. The sum of items in it is:

t · σ01 +

s
∑

k=1

σk = t · (
1

t+ 1
+∆nt2(t− 1) + ∆) +

s
∑

k=1

(
1

(t+ 1) · 2k
+ 2(dtk + 1)δk)

=
t

t+ 1
+ t · (∆nt2(t− 1) + ∆) +

1− (12)
s

(t+ 1)
+

s
∑

k=1

2(dk + 1)δk

= 1−
(12)

s

(t+ 1)
+ t · 2δ0 +

s
∑

k=1

2(dtk + 1)δk.

We have2(dtk + 1)δk ≤ 2nδs = 1
22s−1ns−1 . Since1 < s < n, t < n andt · 2δ0 < 2n2δs, we get that the

17

quantity above is at most

1−
(12)

s

(t+ 1)
+

n

22s−1ns−1
+ 2n2δs = 1−

1

2s(t+ 1)
+

1

22s−1ns−2
+ 2n2δs

= 1−
1

2s(t+ 1)
+

1

22s−1ns−2
+

2n2

(4n)s

= 1−
1

2s(t+ 1)
+

1

22s−1ns−2
+

1

22s−1ns−2

= 1−
1

2s(t+ 1)
+

1

22(s−1)ns−2
< 1.

Before introducing theNE packing for this set of items, we slightly modify the input byremoving a
small number of items. Clearly,OPT ≤ (1 + t(t − 1))n would still hold for the modified input. The

modification applied to the input is a removal of itemsπ1
j andθ

dtj
j for all 1 ≤ j ≤ s, the two itemsσ1

03

andσt(t−1)n
04 and(t − 2) of theσ05 items from the input. We now define an alternative packing, which is a

NE. There are three types of bins in this packing. The bins of thefirst type are bins with items of phasej,
1 ≤ j ≤ s + 1. We constructrtj such bins. A bin of phasej consists of(t + 1) · 2j − 1 items, as follows.
One item of sizeσj = 1

(t+1)·2j
+ 2(dtj + 1)δj , and(t + 1) · 2j−1 − 1 pairs of items of phasej. A pair of

items of phasej is defined to be the items of sizesπi+1
j andθij, for some1 ≤ i ≤ dtj − 1. The sum of sizes

of this pair of items is 1
(t+1)·2j

+ (2i+ 1)δj +
1

(t+1)·2j
− 2iδj =

2
(t+1)·2j

+ δj =
1

(t+1)·2j−1 + δj .

Usingdtj = ((t + 1) · 2j−1 − 1)rtj + 1 we get that all phasej items, for1 ≤ j ≤ s are packed. The
sum of items in every such bin is1 − 1

(t+1)·2j−1 + ((t + 1) · 2j−1 − 1)δj + 1
(t+1)·2j

+ 2(dtj + 1)δj =

1− 1
(t+1)·2j

+ δj((t+ 1) · 2j−1 + 1 + 2dtj).

Thent bins of the second type in theNE packing contain(t− 1) items of sizeσ02 = 1
t+1 −∆nt(t− 1)

and one item of sizeσ01 = 1
t+1 +∆nt2(t− 1) + ∆, from the 0 phase bins. The load of each such bin is

(t− 1)

(

1

t+ 1
−∆nt(t− 1)

)

+
1

t+ 1
+∆nt2(t− 1) + ∆

=
t

t+ 1
−∆nt(t− 1)2 +∆nt2(t− 1) + ∆

=
t

t+ 1
+∆nt(t− 1)(t− (t− 1)) + ∆

=
t

t+ 1
+∆nt(t− 1) + ∆

=
t

t+ 1
+∆(nt(t− 1) + 1)

=
t

t+ 1
+ 2δ0,

by definition of∆. As there are in totalt(t−1)n identical items of sizeσ02 andnt identicalσ01 items in the
input set, we get that all these items are packed in thesent second type bins in theNE packing constructed
above.

The t(t − 1)n − 1 bins of third type in theNE packing each contain(t − 2) items of sizeσ05 = 1
t+1 ,

and, in addition, one pair of items of sizesσi+1
03 andσi

04, for some1 ≤ i ≤ t(t − 1)n from the phase 0
bins. The sum of sizes of this pair of items is:σi+1

03 + σi
04 =

1
t+1 +∆nt(t− 1) + (i+ 1)∆ + 1

t+1 − i∆ =

18

2
t+1 + ∆(nt(t − 1) + 1) = 2

t+1 + 2δ0. Thus, the total load of such bin is(t − 2) · 1
t+1 + 2

t+1 + 2δ0 =
t

t+1 + 2δ0, which equals the load of the bins of the second type in theNE packing. As there are in total
((t− 2) · t(t− 1)n− (t− 2)) = (t− 2)(t(t− 1)n− 1) items of sizeσ05 andt(t− 1)n− 1 pairs ofσi

03 and
σi
04 items, we conclude that all the items of sizeσ05 andσi

03, σ
i
04 are packed in theset(t− 1)n− 1 NE bins

of the third type, as defined above.
We now should verify that the sum of sizes of the items packed in the three types of bins in the definedNE

packing does not exceed 1. This holds for the second and the third type bins, as: t
t+1 +2δ0 <

t
t+1 +2nδs =

t
t+1 +

2n
(4n)s = t

t+1 +
1

22s−1ns−1 < t
t+1 +

1
t+1 = 1. For the bins of the first type, this property directly follows

from the inequality proven in the next claim.

Claim A.2. The loads of the bins in the packing defined above are monotonically increasing as a function
of the phase.

Proof. It is enough to show1 − 1
(t+1)·2j

+ δj((t + 1) · 2j−1 + 1 + 2dtj) < 1 − 1
(t+1)·2j+1 for 1 ≤ j ≤ s,

t ≥ 2 which is equivalent to provingδj((t + 1) · 2j−1 + 1 + 2dtj)2
j+1 < 1

t+1 . Usingdtj < n, we have:

δj((t + 1) · 2j−1 + 1 + 2dtj)2
j+1 < δj((t + 1) · 22j + 2j+2n) < (t + 1) · 2δjn

2, asn > 2s
3
. Using

δj ≤ δs =
1

22sns ≤ 1
16n3(t+1)2 we get2δjn2 < 1

t+1 .

For j = 0, t
t+1 + 2δ0 < 1 − 1

(t+1)·2j
+ δj((t + 1) · 2j−1 + 1 + 2dtj) holds for allj ≥ 1, as2δ0 ≤

δj((t+ 1) · 2j−1 + 1 + 2dtj), sincet ≥ 2 andδj is a strictly increasing sequence.

Claim A.3. The packing defined above is a valid NE packing.

Proof. To show that this is aNE packing, we need to show the an item of phasej > 0 cannot migrate to
a bin of a levelk ≥ j, since this would result in a load larger than 1, and that it cannot migrate to a bin of
phasek < j, since this would result in a load smaller than the load of a phasej bin. Due to the monotonicity
we proved in Claim A.2, we only need to consider a possible migration of a phasej item into a phasej bin,
and a phasej − 1 bin, if such bins exist. Moreover, in the first case it is enough to consider the minimum
size item and in the second case, the maximum size item of phase j.

For phase 0 items, since the smallest phase 0 item has size1
t+1 −∆nt(t− 1), if it migrates to another

bin of this phase, we get a total load oftt+1 +∆(nt(t−1)+1)+ 1
t+1 −∆nt(t−1) = 1+∆ > 1, as∆ > 0.

For items of phasej ≥ 1: The smallest phasej item has size 1
(t+1)·2j

− δj(2(d
t
j − 1)) = 1

(t+1)·2j
−

δj(2d
t
j − 2). If it migrates to another bin of this phase, we get a total load of

1−
1

(t+ 1) · 2j
+ δj((t+ 1) · 2j−1 + 1 + 2dtj) +

1

(t+ 1) · 2j
− δj(2d

t
j − 2)

= 1 + δj((t+ 1) · 2j−1 + 1 + 2dtj)− 2dtjδj + 2δj

= 1 + δj(3 + (t+ 1) · 2j−1) > 1.

The check for the largest item in the phase should be done separately for casesj = 1 andj ≥ 2, because
we want to show that the largest item of phasej = 1 (in first type bin) cannot migrate into a phase 0 bin (a
second or third type bin), while for the largest item of phasej ≥ 2 we need to show that it cannot move into
other bin of first type. For phasej = 1: The largest phase item has size12(t+1) +2(dt1+1)δ1. If it migrates to

a bin of phase 0, we get a load oftt+1 +2δ0+
1

2(t+1) +2(dt1+1)δ1 =
2t+1
2(t+1) +2δ0+2(dt1+1)δ1. This load is

strictly smaller than a load of level1which is1− 1
(t+1)·2+δ1((t+1)+1+2dt1) =

2t+1
2(t+1)+δ1((t+1)+1+2dt1),

ast ≥ 2 andδ1 > δ0.

19

For phasej ≥ 2: The largest phasej item has size 1
(t+1)·2j

+2(dtj +1)δj . If it migrates to a bin of phase
j − 1, we get a load of

1−
1

(t+ 1) · 2j−1
+ δj−1((t+ 1) · 2j−2 + 1 + 2dtj−1) +

1

(t+ 1) · 2j
+ 2(dtj + 1)δj

= 1−
1

(t+ 1) · 2j
+ δj−1((t+ 1) · 2j−2 + 1 + 2dtj−1) + 2(dtj + 1)δj

= 1−
1

(t+ 1) · 2j
+ δj−1((t+ 1) · 2j−2 + 1 + 2dtj−1) + 2dtjδj + 2δj .

We compare this load with1− 1
(t+1)·2j

+ δj((t+1) ·2j−1+1+2dtj), and prove that the first load is smaller.

Indeedδj−1((t + 1) · 2j−2 + 1 + 2dtj−1) < δj((t + 1) · 2j−1 − 1) sinceδj = 16n2δj−1, n > 2s
3

and
((t+ 1) · 2j−2 + 1 + 2dtj−1) < 4n(t+ 1) < 16n2((t+ 1) · 2j−1 − 1).

Finally, we bound thePoA as follows. The cost of the resultingNE packing isnt + t(t − 1)n − 1 +
s
∑

j=1
rtj = t2n − 1 +

s
∑

j=1
rtj . Using Observation A.1 we get that

s
∑

j=1
rtj ≥

s
∑

j=1
(n
(t+1)j ·2j(j−1)/2 − 1) and since

OPT = t(t− 1) · n+ n andn >> s, we get a ratio of at least

t2 +
∑s

j=1 (t+ 1)−j · 2−j(j−1)/2

t(t− 1) + 1
.

Letting s tend to infinity as well results in the claimed lower bound.
Note that we assume that all numbersrtj anddtj are integer values for eacht ≥ 2, which is not necessarily

the case. To overcome this, we letrtj+1 =
⌊ rtj−1

(t+1)·2j−1

⌋

, for 0 ≤ j ≤ s − 1, anddtj+1 = ((t + 1) · 2j−1 −

1)rtj+1 + 1. In this case, it is possible to prove n
(t+1)j ·2j(j−1)/2 − 3 ≤ rtj ≤ n

(t+1)j ·2j(j−1)/2 , which leads to
the same result.

A.5 Proof of Claim 3.1

Consider the well-known First Fit algorithm (FF for short) for bin packing. FF packs each item in turn into
the lowest indexed bin to where it fits. It opens a new bin only in the case where the item does not fit into any
existing bin. It was shown in [13] that any bin (accept for maybe two) in the packing produced by FF is more
than t

t+1 full for any t ≥ 2. For eachNG instance, it is possible to define (modulo reordering the items) an
instance for which running the FF algorithm will produce exactly the packingb. So, as anyNE packingb
can be produced by a run of FF, it has all the properties of a FF packing, including the one mentioned above.

A.6 Proof of Claim 3.2

First, consider the bins in groupD. For t ≥ 3, as all bins inD are filled by no more thant
2−t+1
t2 , no bin in

this group (except maybe the leftmost bin) contains an item of size in(0, t−1
t2

], as such an item will reduce
its cost by moving to the leftmost bin inD (which is the bin with the largest load inD), contradicting the
fact thatb is anNE. Hence, all the items in bins (except for maybe one) in groupD have items of sizes
in (t−1

t2
, 1t]. For t = 2, as all bins inD are filled by no more than1724 , no bin in this group (except maybe

the leftmost bin) contains an item of size in(0, 7
24], as such an item will reduce its cost by moving to the

leftmost bin inD, which contradicts the fact thatb is anNE. Hence, all the items in bins (except for maybe
one) in groupD have items of sizes in(7

24 ,
1
2].

Now, consider the bins in groupC. For t ≥ 3, as all bins inC are filled by no more thant+1
t+2 , no bin in

this group (except maybe the leftmost bin) contains an item of size in(0, 1
t+2], as such an item will reduce

20

its cost by moving to the leftmost bin inC (which is the bin with the largest load inC), contradicting the fact
thatb is anNE. Also, no bin inC contains an item of sizex ∈ (1

t+2 ,
t−1
t2

], as such an item will benefit from
moving to a bin in groupD, asx + t

t+1 > t+1
t+2 for anyx > 1

(t+2) . Hence, all the items in bins in groupC

are of sizes in(t−1
t2

, 1t]. For t = 2, as all bins inC are filled by no more than34 , no bin in this group (except
maybe the leftmost bin) contains an item of size in(0, 14], as such an item will reduce its cost by moving to
the leftmost bin inD, which contradicts the fact thatb is anNE. Also, no bin inC contains an item of size
x ∈ (14 ,

7
24], as such an item will benefit from moving to a bin in groupD, asx + 2

3 > 3
4 for anyx > 1

4 .
Hence, all the items in bins (except for maybe one) in groupC have sizes in(7

24 ,
1
2].

Finally, consider the bins in groupB. For t ≥ 3, as all bins inB are filled by no more than2t+1
2(t+1) , no

bin in this group (except maybe the leftmost bin) contains anitem of size in(0, 1
2(t+1)], as such an item will

reduce its cost by moving to the leftmost bin inB (which is the bin with the largest load inB), contradicting
the fact thatb is anNE. Also, no bin inB contains an item of sizex ∈ (1

2(t+1) ,
t−1
t2

], as such an item will

benefit from moving to a bin in groupD, asx + t
t+1 > 2t+1

2(t+1) for anyx > 1
2(t+1) . Hence, all the items in

bins (except for maybe one) in groupC have items of sizes in(t−1
t2

, 1t]. For t = 2, as all bins inB are filled
by no more than56 , no bin in this group (except maybe the leftmost bin) contains an item of size in(0, 16],
as such an item will reduce its cost by moving to the leftmost bin in B, which contradicts the fact thatb is
anNE. Also, no bin inB (except maybe the leftmost bin) contains an item of sizex ∈ (16 ,

7
24], as such an

item will benefit from moving to a bin in groupD, asx+ 2
3 > 5

6 for anyx > 1
6 . Hence, all the items in bins

(except for maybe one) in groupC have sizes in(7
24 ,

1
2].

We conclude, that any bin in groupsB, C andD, except for maybe a constant number of bins, contain
only items of sizes in(t−1

t2
, 1t] for t ≥ 3, and items of sizes in(7

24 ,
1
2] for t = 2.

Now, we show that each one of these bins contains exactlyt such items. Note, that by definition of the
groups all bins inB, C andD (except maybe two) have loads in(t

t+1 ,
2t+1
2(t+1)] for t ≥ 3, or in (23 ,

5
6] for t = 2.

If a bin contains at mostt− 1 such items, then it has a load of at most(t− 1) · 1
t = t−1

t for t ≥ 3 of at
most 7

24 for t = 2, which is less than the assumed load in these bins, so they must have more than(t − 1)
such items.

If a bin contains at leastt + 1 such items, then it has a load of at least(t + 1) · t−1
t2

= 1 − 1
t2

, which
is greater than2t+1

2(t+1) for t ≥ 3, or at least78 which is greater than56 for t = 2, so they must have less than
(t+ 1) such items.

We conclude that each bin in groupsB, C andD), except for maybe 5 special bins (the leftmost bins in
groupsB, C andD and the two rightmost bins inD) contain exactlyt items with sizes in(t−1

t2
, 1t] for t ≥ 3,

or exactly2 items of sizes in(7
24 ,

1
2] for t = 2.

A.7 Proof of Claim 3.3

Assume by contradiction that(Nt + k) · t of these items fork ≥ 0 are packed together int-tuples in bins
of groupsB, C andD in theNE packing. Consider the firstNt such bins. Call themB1, B2, . . . , BNt .
In a slight abuse of notation, we useBi to indicate both thei-th bin and its load. Denote the sizes of the
remainingNt t-items byt1, t2, . . . , tNt . These items are also packed in bins of groupsB, C andD in b, and
share their bin witht−1 t-items (when at least one of these items is not packed in any ofthe aforementioned
Nt bins in the optimal packing). Obviously, as all theseNt · (t + 1) t-items fit intoNt unit-capacity bins,
t1 + . . . + tNt +B1 + . . .+BNt ≤ Nt holds. To derive a contradiction, we use the following observation:

Observation A.2. A t-tuple of items with sizes in(t−1
t2

, 1t] always has a greater total size than any(t− 1)-
tuple of such items.

Proof. The total size of any(t− 1) items with sizes in(t−1
t2

, 1t] is at mostt−1
t , while the total size of anyt

items with sizes in(t−1
t2

, 1t] is strictly greater thant(t−1)
t2

= t−1
t .

21

Thus, any itemti, 1 ≤ i ≤ Nt would be better off sharing a bin with othert items of size in(t−1
t2

, 1t]
instead of justt − 1 such items as it does in theNE packingb. For an item which shares a bin witht − 1
t-items we conclude that the only reason it does not move to another bin witht such items inb is that it does
not fit there.

So, we know that no itemt1, 1 ≤ i ≤ Nt fits in any of the binsB1, B2, . . . , BNt in b. We get that for
any1 ≤ i ≤ Nt, for any1 ≤ j ≤ Nt, the inequalityti +Bj > 1 holds. Summing these inequalities over all
1 ≤ i ≤ Nt and1 ≤ j ≤ Nt we gett1 + . . . + tNt +B1 + . . .+BNt > Nt, which is a contradiction.

22

	Introduction
	Tight worst-case analysis of the Subset Sum algorithm
	Analysis of the Price of Anarchy
	Concluding Remarks
	Omitted proofs
	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Theorem ??
	Proof of Claim ??
	Proof of Claim ??
	Proof of Claim ??

