A Variable Neighborhood Descent Search
Algorithm for Delay-Constrained Least-Cost
Multicast Routing

Rong Qu', Ying Xu!?, and Graham Kendall!

! The Automated Scheduling, Optimisation and Planning (ASAP) Group,
School of Computer Science, The University of Nottingham, Nottingham, UK
2 School of Computer and Communication, Hunan University, Hunan, China

{rxq,yxx,gxk}@cs.nott.ac.uk

Abstract. The rapid evolution of real-time multimedia applications re-
quires Quality of Service (QoS) based multicast routing in underlying
computer networks. The constrained Steiner Tree, as the underpinning
mathematical structure, is a well-known NP-complete problem. In this
paper we investigate a variable neighborhood descent (VND) search, a
variant of variable neighborhood search, for the delay-constrained least-
cost (DCLC) multicast routing problem. The neighborhood structures
designed in the VND approaches are based on the idea of path replace-
ment in trees. They are simple, yet effective operators, enabling a flexible
search over the solution space of this complex problem with multiple con-
straints. A large number of simulations demonstrate that our algorithm is
highly efficient in solving the DCLC multicast routing problem in terms
of the tree cost and execution time. To our knowledge, this is the first
study of VND algorithm on the DCLC multicast routing problem. It
outperforms other existing algorithms over a range of problem instances.

1 Introduction

The general problem of multicast routing has received significant research atten-
tion in the area of computer networks and algorithmic network theory [TI2/[3].
It is defined as sending messages from a source to a set of destinations that be-
long to the same multicast group. Many real-time multimedia applications (e.g.
video conferencing, distance education) require the underlying network to sat-
isfy certain quality of service (QoS). These QoS requirements include the cost,
delay, delay variation and hop count, etc, among which the delay and cost are
the most important for constructing multicast trees. The end-to-end delay is the
total delay along the paths from the source to each destination. The cost of the
multicast tree is the sum of costs on its edges.

To search for the minimum cost tree in the multicast routing problem is the
problem of finding a Steiner Tree [4], which is known to be NP-complete [5].
The Delay-Constrained Least-Cost (DCLC) multicast routing problem is the
problem of finding a Delay-Constrained Steiner tree (DCST), also known to be

T. Stiitzle (Ed.): LION 2009 III, LNCS 5851, pp. 15-Z9] 2009.
© Springer-Verlag Berlin Heidelberg 2009

16 R. Qu, Y. Xu, and G. Kendall

NP-complete [6]. Surveys in the literature of multicast communication problems
exist on both the early solutions [7] and recent optimization algorithms [g].

Algorithms for multicast routing problems can usually be classified as source-
based and destination-based algorithms. Source-based algorithms assume that
each node has all the necessary information to construct the multicast tree (e.g.
[9UT0UTT]). Destination-based algorithms do not require that each node maintains
the status information of the entire network, and multiple nodes participate in
constructing the multicast tree (e.g. [6I12]).

The first DCST heuristic, Kompella-Pasquale-Polyzos (KPP) heuristic, uses
Prim’s algorithm [14] to obtain a minimum spanning tree. Another heuristic,
Constrained Dijkstra (CDKS) heuristic, constructs delay-constrained shortest
path tree for large networks by using Dijkstra’s heuristic [15]. Bounded Shortest
Multicast Algorithm (BSMA) [I1], a well known deterministic multicast algo-
rithm for the DCST problem, iteratively refines the tree to lower costs. Although
developed in the mid 1990s, it is still being frequently compared with many mul-
ticast routing algorithms in the current literature. However, it requires excessive
execution time for large networks as it uses the k Shortest Path algorithm [16]
to find lower cost paths.

The second group of algorithms considers distributed multicast routing prob-
lems. The idea of Destination-Driven MultiCasting (DDMC) comes from Prim’s
minimum spanning tree algorithm and Dijkstra’s shortest path algorithm. The
QoS Dependent Multicast Routing (QDMR) algorithm extends the DDMC al-
gorithm by using a weight function to dynamically adjust how far a node is from
the delay bound and adds the node with the lowest weight to the current tree.

In recent years, metaheuristic algorithms such as simulated annealing [T7JI8],
genetic algorithm [I9J20], tabu search [2T22I23l24], GRASP [25] and path re-
linking [26] have been investigated for various multicast routing problems. In the
tabu search algorithm in [24], initial solutions are generated based on Dijkstra’s
algorithm. A modified Prim’s algorithm iteratively refines the initial solution by
switching edges chosen from a backup path set. In the path relinking algorithm
in [26], pairs of solutions in a reference are iteratively improved. A repair proce-
dure is used to repair any infeasible solution. Simulation results show that this
path relinking algorithm outperforms other algorithms with regards to the tree
cost. However, when the network size increases and many infeasible solutions
need to be repaired, it is time consuming and this is suitable for real-time small
networks.

In this paper we investigate variable neighborhood descent (VND) search,
a variant of variable neighborhood search (VNS), for DCLC multicast routing
problems. Although VNS algorithms have been applied to Steiner tree problems
(e.g. VNS as a post-optimization procedure to the prize collecting Steiner tree
problem [27], and the bounded diameter minimum spanning tree problem [2§]),
as far as we are aware, no research has been carried out using VND on DCST
problems. Experimental results show that our VND algorithms obtained the best
quality solutions when compared against the algorithms discussed above.

A VND Search Algorithm 17

The rest of the paper is organized as follows. In Section 2, we present the
network model and the problem formulation. Section 3 presents the proposed
VND algorithms. We evaluate our algorithms by computer simulations on a
range of problem instances in Section 4. Finally, Section 5 concludes this paper
and presents possible directions for future work.

2 The Delay-Constrained Least-Cost Multicast Routing
Problem

We consider a computer network represented by a directed graph G = (V, E)
with |V| = n nodes and |E| = [edges, where V is a set of nodes and E is a
set of links. Each link e = (i, j) € FE is associated with two parameters, namely
the link cost C(e): E — RT and the link delay D(e): E — RT. Due to the
asymmetric nature of computer networks, it is possible that C'(e) # C(e’) and
D(e) # D(€'), for link e = (i, j) and link ¢’ = (4, i). The nodes in V include
a source node s, destination nodes which receive data stream from the source,
denoted by R C V — {s}, called multicast groups, and relay nodes which are
intermediate hops on the paths from the source to destinations.

We define a path from node u to node v as an ordered set of links, denoted by
P(u, v) = {(u, i), (4, j), ..., (k, v)}. A multicast tree T(s, R) is a set of paths
rooted from the source s and spanning all members of R. We denote by Pr(r;)
C T the set of links in T that constitute the path from s to r; € R. The total
delay from s to r;, denoted by Delay[r;], is simply the sum of the delay of all
links along Pr(r;), i.e.

Delay[r;] = > D(e), Vr; € R (1)
e€ Py (ry)

The delay of the tree, denoted by Delay[T], is the maximum delay among all
the paths from the source to each destination, i.e.

Delay|T) = max{Delay[r;] | Vr; € R} (2)

The total cost of the tree, denoted by Cost(T), is defined as the sum of the costs
of all links in the tree, i.e.

Cost(T) =Y Ce) (3)

ecT

Applications may assign different upper bounds d; for each destination r; € R.
In this paper, we assume that the upper bound for all destinations is the same,
and is denoted by A = §;, r; € R.

Given these definitions, we formally define the Delay-Constrained Steiner Tree
(DCST) problem as follows [6]:

The Delay-Constrained Steiner Tree (DCST) Problem: Given
a network G, a source node s, destination nodes set R, a link delay func-
tion D(-), a link cost function C(-), and a delay bound A, the objective

18 R. Qu, Y. Xu, and G. Kendall

of the DCST Problem is to construct a multicast tree T'(s, R) such that
the delay bound is satisfied, and the tree cost Cost(T) is minimized. We
can define the objective function as:

min{Cost(T) | Pr(r;) C T(s, R), Delay[r;] < A,Vr; € R} (4)

3 The Variable Neighborhood Search Algorithms

Variable neighborhood search (VNS), jointly invented by Mladenovié¢ and Hansen
[29] in 1996, is a metaheuristic for solving combinatorial and global optimization
problems. Unlike many standard metaheuristics where only a single neighbor-
hood is employed, VNS systematically changes different neighborhoods within
a local search. The idea is that a local optimum defined by one neighborhood
structure is not necessarily the local optimum of another neighborhood struc-
ture, thus the search can systematically traverse different search spaces which
are defined by different neighborhood structures. This makes the search much
more flexible within the solution space of the problem, and potentially leads to
better solutions which are difficult to obtain by using single neighborhood based
local search algorithms [29J30031]. The basic principles of VNS are easy to apply,
parameters being kept to a minimum. Our proposed algorithm is based on basic
variable neighborhood descent search (VND), a variant of VNS algorithm [29].

3.1 Initialisation

In our VND Multicast Routing (VNDMR) algorithm, let us denote N, k =
1, ..., kmasz as the set of solutions of the k** neighborhood operator upon an
incumbent solution xz. We first create an initial solution Ty and then iteratively
improve Ty by employing three neighborhoods, defined in Section 3.2, until the
tree cost cannot be reduced, while the delay constraint is satisfied. To investigate
the effects of different initial solutions, we design two variants of the algorithm,
namely VNDMRO and VNDMRI1, with the same neighborhood structures, but
starting from different initial solutions:

— Initialisation by DKSLD (VNDMRO): Dijkstra’s shortest path algorithm is
used to construct the least delay multicast tree;

— Initialisation by DBDDSP (VNDMRI1): A modified Delay-Bounded DDSP
(DBDDSP) algorithm is used as the initialisation method based on the
Destination-Driven Shortest Path (DDSP) algorithm, a destination-driven
shortest path multicast tree algorithm with no delay constraint developed
in [32].

3.2 Neighborhood Structures within the VND Algorithms

The first group of neighborhood structures within our VNDMR algorithms are
designed based on an operation called path replacement, i.e. a path in a tree T;

A VND Search Algorithm 19

is replaced by another new path not in the tree 7;, resulting in a new tree T;;.
Our delay-bounded path replacement operation guarantees that the tree T4 is
always a delay-bounded and loop free. To present the candidate paths chosen in
the path replacement, we define superpath (based on [I1], also called key-path in
the literature [33I34]) as the longest simple path in the tree T;, where all internal
nodes, except the two end nodes of the path, are relay nodes and each relay node
connects exactly two edges. The pseudo-code of VNDMR is presented in Fig.1.

— VNDMR(G = (V, E), S, R, 4, kmaz, Nk, k =1, ..., kmaz)

— /*S: the source node; R: the destination nodes set; A > 0: the delay bound; kmaa
= 3: the number of neighborhood structures; Ni: the set of neighborhoods by
employing neighborhood N */

e Create initial solution To; // by using DKSLD or DBDDSP, see Section 3.1
e if To = NULL then return FAILED; // a feasible tree does not exist
e clse
* Tbest = To; k‘ = 1;
* while k < kmax
- select the best neighbor T3, T; € N (Tpest);
- if(T; has lower cost or low delay) then Trest = T35 k = 1;
- else k++;
+ end of while loop
o return Tpest

Fig. 1. The Pseudo-code of the VNDMR Algorithm

The three neighborhood structures of VNDMRO and VNDMR1 are described
as below:

1. Neighborl: the most expensive edges on each superpath in tree T; are
the candidates of the path replacement. At each step, one chosen edge is
deleted, leading to two separate subtrees 7, and 7. The Dijkstra’s shortest
path algorithm is then used to find a new delay-bounded shortest path that
connects the two subtrees and reduces the tree cost;

2. Neighbor2: this operator operates on all superpaths in the tree T; (either
connecting or not connecting to a destination node). At each step, one su-
perpath is replaced by a cheaper delay-bounded path using the same path
replacement strategy in Neighborl,

3. Neighbor3: all the superpaths connected to destination nodes in T; are the
candidate paths to be replaced. At each step, the deletion of a superpath
divides the tree T; into a subtree 7] and a destination node r;. Then the
same path replacement strategy is used to search for a new delay-bounded
shortest path reconnecting r; to T7.

To test how different neighborhood structures will affect the performance of
the VND algorithm with the same initial solution, another VND algorithm,
named VNDMR2, is developed with an extended new node-based neighborhood
structure. The three neighborhood structures of VNDMR2 are as follows:

20 R. Qu, Y. Xu, and G. Kendall

1. Neighborl’: one neighborhood tree is defined by deleting a non-destination
node from the current multicast tree and creating a minimum spanning tree
which spans the remaining nodes by using Prim’s spanning tree algorithm.
Once a better tree is found, the current tree is updated. These steps are
repeated until no better tree can be found for 3 times;

2. Neighbor2’: the same as Neighbor2 in VNDMRO and VNDMR1;

3. Neighbor3’: the same as Neighbor3 in VNDMRO and VNDMRI1.

3.3 Time Complexity of the VNDMR Algorithm

Proof of the probability of transition from a spanning tree s; to s; (see [35]):
According to Cayley’s theorem [36], for a n node network, there are n"~2
possible spanning trees. Thus, the number of Steiner trees is bounded by n™2.
Let us consider a Markov chain of n"~2 states, where each state corresponds to
a spanning tree. We sort these states in a decreasing order with respect to the
cost of the Steiner tree. Replace each state in the sorted list with n copies of
itself results into a total number of n®~! states. In the Markov chain, transition
edges from a state s; go only to a right state s; of s;. Assume that each possible
transition is equally likely. Thus the probability of a transition from s; to s; is:

1 .
Pij=i71(1§J<Z,P11=1) (5)
We prove the time complexity of VNDMR based on the method used in [35]. Let
m; be the number of transitions needed to go from state s; to s1, the expected
value E[m;] = log(i). Therefore, if the VNDMR algorithm starts from the most
expensive state, i.e. n" 71, the expected number of transitions is O(log(n" 1)) =
O(nlog(n)). So the expected maximum number of iterations of the neighborhood
structures in VNDMR is O(nlog(n)). The VNDMR algorithm includes three
neighborhood structures (N7, N2, N3), then the time complexity of VNDMR
is:

O(nlog(n)(O(N1) + O(N2) + O(N3))) (6)
For example, the three neighborhoods of VNDMRO and VNDMR]1 use the same
path replacement strategy. A path-replacement operation is dominated by Dijk-
stra’s shortest path algorithm which takes O(llog(n)), where | = |E| is the total

links in the network. In the worst case, each neighborhood requires replacing at
most O(l) superpaths. Thus the time complexity of VNDMRO and VNDMRI is:

O(nlog(n)(3 * 1 % llog(n))) = O(I*nlog*(n)) (7)

4 Performance Evaluation

To evaluate the efficiency of our VNDMR algorithm, we use a multicast rout-
ing simulator (MRSIM) implemented in C++ based on Salama’s generator [IJ.
MRSIM generates random network topologies using a graph generation algo-
rithm described in [37]. The positions of the nodes are fixed in a rectangle of

A VND Search Algorithm 21

size 4000 x 4000km?. The simulator defines the link delay function D(e) as the
propagation delay of the link (queuing and transmission delays are negligible)
and the link cost function C(e) as the current total bandwidth reserved on the
link in the network. The Euclidean metric is used to determine the distance I(u,
v) between pairs of nodes (u, v). Edges connect nodes (u, v), with a probability

P(u,v) = Bexp(—I(u,v)/aL) «,B € (0,1] (8)

where parameters a and (§ can be set to obtain desired characteristics in the
graph. A large (8 gives nodes a high average degree, and a small a gives long
connections. L is the maximum distance between two nodes. In our simulations,
we set a = 0.25, 8 = 0.40, the average degree = 4 and the capacity of each link
= 155Mb/s (in this paper we set the capacity to a large enough value so that
such constraint is not considered in the problem). All simulations were run on a
Windows XP computer with Pentium VI 3.4GHZ, 1G RAM.

To encourage scientific comparisons, we have put the problem details of all in-
stances tested at http://www.cs.nott.ac.uk/~yxx/resource.html, with some ex-
ample solutions obtained by the proposed algorithms.

4.1 VNDMR with Different Initialisations

In the first set of experiments, we randomly generate 20 different network topolo-
gies for each size of 20, 50, 100, 200 and 300 nodes in the networks. For each
network topology, the source node and the destination nodes are randomly se-
lected. The delay bound in our experiments for each network topology is set as 2
times the tree delay of the DKSLD algorithm, i.e. A =2 xDelay(Tpxsrp). For
each network topology, the simulation was run 50 times, where the average tree
costs and execution times were reported. We investigate the performance of two
variants of VNDMR with different initializations, e.g. VNDMRO with DKSLD
and VNDMRI1 with DBDDSP. Both variants employ the same neighborhood
structures as defined in Section 3.2.

Fig.2 presents the tree cost and execution time of VNDMRO0 and VNDMRI1 for
problems of different network sizes with a group size (number of destinations) of
10. We can see that the tree cost of the initial solutions obtained from DBDDSP
and DKSLD can both be improved by the VNDMR algorithms. The paired t-test
value of the average tree cost between VNDMRO and VNDMRI1 is 3.85, meaning
VNDMRI1 is significantly better than VNDMRO. We conclude that VNDMRI1
performs better than VNDMRO in terms of both tree cost and computational
time.

Fig.3.(a) presents the tree costs of the two VNDMR algorithms with differ-
ent initial solutions for networks of 50 nodes with different group sizes. In the
table, the above observations still hold. The initial solutions from DBDDSP for
VNDMRI1 are better than that of DKSLD for VNDMRO. Both VNDMR algo-
rithms can further reduce the tree cost, and VNDMRI1 performs slightly better
than VNDMRO. Fig.3.(b) also shows that VNDMRI requires less execution time
than that of VNDMRO.

22 R. Qu, Y. Xu, and G. Kendall

2000 Yo
1800 4 —+—DKSLD — B0 4 ——YMNDMRD
1600 A DBODSP g —m— YNDMRA
1400 1 —a—wNOMRD £ 50
B1200 {1 —e—\NDMRI g 0]
21000 4 E
& o0 4 e
= 600 4 £
400 - g
200 w10
1] T T T T 1] = T = f T T
20 0 100 200 300 20 S0 100 200 300
Hetwork Size Hetwork Size
{a) tree cost (b} execution time

Fig. 2. Results of VNDMR with different initialisations, group size = 10

2500 0.4
—#—D5KLD 0.35 { —e— VNDMRO

2000 DBODSP g 03 | —m— VNDMR1

—a— WNOMRD =

BAS001 o nomer ED.‘ZS

(X} =0z
% 1000 g

= 1000 §D.15

8 04
500 =

005

o T T T T T o T T T T
5 10 15 25 35 43 5 10 15 25 35 45
Group Size Group Size
(al tree Cost (b} execution time

Fig. 3. Execution time by VNDMR with different initialisations, network size = 50

This group of experiments show that our VNDMR, algorithms can always
improve the initial solutions when constructing the DCLC multicast trees. The
quality of initial solutions affects the performance of the VND algorithm. It is
shown that better initial solutions from more intelligent heuristics lead to better
final results, and also reduce the execution time of the VND algorithm.

4.2 VNDMR with Different Neighborhood Structures

In the second group of experiments, we test VNDMR1 and VNDMR2 on the
same randomly generated network topologies in the same manner as mentioned
in Section 4.1. Both VNDMR1 and VNDMR2 start from the same initial solution
(DBDDSP), whereas they apply the different neighborhood structures described
in Section 3.1 and 3.2, respectively.

The average tree cost and execution time of VNDMRI1 and VNDMR2 on
5 different network sizes with group sizes equal to 10 are shown in Table 1.
VNDMR2 always gets better average tree cost than VNDMRI1 on these different
network sizes. The paired t-test value of the average tree cost between VNDMR1
and VNDMR?2 is 4.84, indicating a significantly difference between them. It is
also observed that VNDMR2 spends longer computing time than VNDMRI.

A VND Search Algorithm 23

Table 1. Average tree cost and execution time vs. network size, group size = 10

Network|Initial Solution| VNDMR1 VNDMR2
Size DBDDSP Cost |Time(s)| Cost |Time(s)
20 513.85 416.25| 0.008 |407.9| 0.053
50 583.1 466.5 | 0.067 |456.85| 0.509
100 892.75 667.85| 0.924 | 650.2 | 4.969
200 1029.15 840.55| 16.474 |829.55(29.891
300 1084.55 875.05| 41.379 |851.25| 86.365

Table 2. Average tree cost and execution time vs. group size, network size = 50

Group|Initial Solution VNDMRI1 VNDMR2
Size DBDDSP Cost |Time(s)| Cost |Time(s)
5 330.05 280.75 | 0.038 [280.15| 0.075
10 583.1 466.5 0.067 |456.85| 0.214
15 809.1 682.95 | 0.117 [643.65| 0.373
25 1077.75 840.25 | 0.141 | 845.15 | 0.473
35 1359.95 1055.75| 0.187 |1063.45| 0.583
45 1591.45 1214.75| 0.287 [1224.95| 0.595

The average tree cost and execution time of VNDMRI1 and VNDMR2 on the
same group of 50-node networks with different group sizes are shown in Table 2.
We can see that VNDMR2 gets better tree costs on the networks with small
group sizes (5, 10, 15), while VNDMRI performs better than VNDMR2 when
the group size increases (25, 35, 45). It means the design of the neighborhood
structures affects the performance of the VND algorithm. The Neighbori’ of
VNDMR2 is based on an operation on the nodes in the multicast tree. With the
increasing group size, i.e. the number of destination nodes, the amount of nodes
which can be deleted from the current tree decreases. Since the possible neigh-
borhood trees of the current tree that can be explored are reduced, Neighbori’
plays not much role when exploring the solution space. However, the edge-based
VNDMRI1 still performs well even on the networks with large group sizes. On
the other hand, VNDMRI1 spends less computing time than VNDMR2 on the
tested problems.

4.3 Comparisons with Existing Algorithms

In the second set of experiments, we compare VNDMR1 with four existing mul-
ticast routing algorithms in terms of both the solution quality and the computa-
tional time on the same network topologies in Section 4.1. The four algorithms
include BSMA, CDKS, QDMR, which are(DCLC multicast routing algorithms,
and DKSLC, which uses Dijkstra’s algorithm to construct the least cost mul-
ticast trees without the delay constraint. These algorithms have already been
integrated in the MRSIM simulator and reviewed in Section 1.

24 R. Qu, Y. Xu, and G. Kendall

1200 7o
—+—BSMA —+— B35k
om0 | —=—coKs /,Fd 801 —m—COKS
—4— QDM »- T g | —+GOMR
§00 4 DHSLC 3 DKSLC
3 —%— YNDMR_ Bl ——wnowr
S8 oo £
§ I 5 an |
= |
400 4
§ 20
']
200 4 10
i T T 0 —
20 50 100 200 300 20 50 100 200 300
Hetwork Size Hetwork Size
(a) tree cost {b} execution time

Fig. 4. Tree cost and execution time with group size = 10 from different approaches

Fig.4 presents the tree cost and execution time of these four algorithms and
our VNDMRI1 algorithm. It can be clearly seen in Fig.4.(a) that VNDMRI out-
performs the other four algorithms in terms of the tree cost. CDKS and DKSLD
have the worst and similar tree cost; BSMA is better than QDMR but worse on
the tree cost than VNDMR. In addition, Fig.4.(b) shows that VNDMRI requires
less execution time than BSMA. The other three algorithm CDKS, QDMR and
DKSLC require lower computational time. However, the solution quality is of
much lower quality than both BSMA and VNDMRI.

Fig.5 presents the results of our VNDMRI1 algorithm and other algorithms
in terms of the tree cost and execution time for problems of different network
sizes, where the group size is 10% of the overall network size. Again, it can be
seen in Fig.5.(a) that VNDMR]1 outperforms the other four algorithms upon the
solution quality. Fig.5.(b) shows that VNDMRI requires less execution time than
BSMA. This is due to that the time complexity of VNDMR1 is O(I>nlog?(n)),
while BSMA’s time complexity is O(kn®log(n)) (n: the number of nodes, I: the
number of edges, k: the k*" shortest path between source and a destination).

In [26], Ghaboosi and Haghighat develop a path relinking algorithm and show
that it outperforms a number of existing algorithms including KPP, BSMA, GA-
based algorithms [I9I20], tabu search based algorithms [23[2422]2T] and another
path relinking algorithm [38]. In order to compare our VNDMR algorithms with
these algorithms in the literature, we generate a group of random graphs with
different network sizes (10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nodes). For a fair
comparison, three random topologies are generated for each network size, which
are the same as the simulations designed in [26]. In these graphs, the link cost
depends on the link length, all the link delays are set to 1, the group size is set to
30% of the network size, the delay bounds are set to different values depending
on the network sizes (A = 7 for network size 10-30, A = 8 for network size 40-60,
A = 10 for network size 70-80 and A = 12 for network size 90-100).

We test two variants of VND, VNDMR1 and VNDMR2, with the same ini-
tial solution DBDDSP but different neighborhood structures as described in
Section 3.2. The simulation results are reported in Tables 3 and 4.

A VND Search Algorithm 25

3000 B00
——BSh, —e—BEha

500 4 —=—CDKS
—— QDR

23500

2000 gmo 1 DKSLE
4 g —%— VNDMR
21500 =300
3 g
= B
1000 £200 4
=
o
500 4 100
1} T T T T a T T —
20 a0 100 200 300 20 a0 100 200 300
Hetwork Size Hetwork Size
(a) tree cost (b} execution time

Fig. 5. Results of different approaches, group size = 10% of network size

Table 3. Average tree costs of existing algorithms on random graphs

Algorithms Average Tree Costs
KPP1 [9] 905.581
Heuristics KPP2 [9] 911.684
BSMA [11] 872.681
GA-based Wang et al. [19] 815.969
Algorithms Haghighat et al. [20] 808.406
Skorin-Kapov and Kos [22] 897.578
TS-based Youssef et al. [21] 854.839
Algorithms Wang et al. [23] 1214.75
Ghaboosi and Haghighat [24] 739.095
Path relinking |Ghaboosi and Haghighat [26] 691.434
VNDMR1 680.067
VNS Algorithms| VNDMR2 658.967

As only the average tree cost over all problem instances of different sizes are
reported in [26], we report the same in Table 3. It shows that the VNDMR2 per-
forms the best in terms of the average tree cost from 10 runs for each graph. De-
tails of the average tree cost and the execution time of VNDMRI1 and VNDMR2
on each network size are given in Table 4, showing that VNDMR2 obtains the
best solutions on 8 out of 10 network sizes, while VNDMRI1 gets 1 best result.
We also observe that VNDMR2 spends longer computing time than VNDMRI1 to
get the better results. The standard deviations of both VNDMR1 and VNDMR2
for each graph are 0, due to that the order of the nodes changed in the search is
fixed for comparisons, i.e. there is no random factor in VNDMR1 and VNDMR2.
For the 3 graphs of each size, results vary in VNDMR1 and VNDMR2. For ex-
ample, for the largest graph, VNSMR2 obtained solution of 1097, 922 and 998
(average 1005.67), compared with those of 1130, 916 and 1076 (average 1040.67)
from VNSMRI1.

26 R. Qu, Y. Xu, and G. Kendall

Table 4. Average results of our VNDMR on the random graphs

Network| VNDMR1 VNDMR2
Size Cost |Time(s)| Cost [Time(s)
10 94.67 | 0.005 | 94.67 | 0.003
20 282.33 | 0.015 | 275.33 | 0.032
30 415.67 | 0.036 | 399.67 | 0.17
40 518 0.063 514 0.362
50 726.67 | 0.151 | 674.67 | 0.859
60 812.33 | 0.292 | 777.67 | 1.392
70 805.33 | 0.682 805 2.571
80 922.33 | 1.286 | 905.33 | 5.127
90 1182.67| 3.151 (1137.67| 11.705
100 |1040.67| 4.292 |1005.67| 15.332

We re-implemented the path relinking algorithm in [26]. Fig.6 presents the
execution time of the path relinking algorithm, VNDMR1 and VNDMR2 tested
on the same computer. Our VNDMR algorithms can obtain better results in a
very short time compared with that of the path relinking algorithm.

200

160 { —+—YMNDMR1
B0 { —=— wNDMR2
@40 { —k— PathRelinking
E12D
=100 4
S &0
5
T 60
& 40

2004
ol s

10 20 30 40 a0 1] oo 80 a0 100
Hetwork Size

Fig. 6. Average execution time of VNDMR and the Path Relinking [26]

In summary, over a large number of simulations on instances of different char-
acteristics, we have demonstrated that the proposed VND algorithms outperform
other existing algorithms with regard to both the average tree cost and compu-
tational time. Our VNDMR2 obtains the best average tree cost on the random
graphs so far.

5 Conclusions

In this paper, we have investigated variable neighborhood descent (VND) search
algorithms for solving multicast network routing problems, where delay-
constrained least-cost multicast trees are constructed. The problem is a Delay-
Constrained Steiner tree problem and has been proved to be NP-complete. The

A VND Search Algorithm 27

main characteristic of our VND algorithms is that of using three simple, yet
effective, neighborhood structures. Each neighborhood is designed to reduce the
tree cost in different ways and at the same time satisfy the delay constraint.
This enables a much more flexible search over the search space. A large num-
ber of experimental results demonstrate that our VND algorithms are the best
performing algorithms in comparison with other existing algorithms in terms of
both the total tree cost and the execution time.

Many promising directions of future work are possible. Real world network
scenarios are mostly dynamic with some nodes leaving and joining the multicast
groups at various times. Additionally, our VND algorithm can be easily adapted
for solving a variety of network routing problems with different constraints.

Acknowledgements. This research is supported by Hunan University, China,
and the School of Computer Science at The University of Nottingham, UK.

References

1. Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms
for realtime communication on high-speed networks. IEEE Journal on Selected
Areas in Communications 15, 332-345 (1997)

2. Yeo, C.K., Lee, B.S., Er, M.H.: A survey of application level multicast techniques.
Computer Communications 27, 1547-1568 (2004)

3. Masip-Bruin, X., Yannuzzi, M., Domingo-Pascual, J., Fonte, A., Curado, M., Mon-
teiro, E., Kuipers, F., Van Mieghem, P., Avallone, S., Ventre, G., Aranda-Gutierrez,
P., Hollick, M., Steinmetz, R., [annone, L., Salamatian, K.: Research challenges in
QoS routing. Computer Communications 29, 563-581 (2006)

4. Hwang, F.K., Richards, D.S.: Steiner tree problems. IEEE/ACM Trans. Network-
ing 22, 55-89 (1992)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

6. Guo, L., Matta, I.: QDMR: An efficient QoS dependent multicast routing algo-
rithm. In: Proceedings of the 5th IEEE Real Time Technology and Applications
Symposium, pp. 213-222 (1999)

7. Diot, C., Dabbous, W., Crowcroft, J.: Multicast communication: a survey of pro-
tocols, functions, and mechanisms. IEEE Journal on Selected Areas in Communi-
cations 15, 277-290 (1997)

8. Oliveira, C.A.S., Pardalos, P.M.: A survey of combinatorial optimization problems
in multicast routing. Computers & Operations Research 32(8), 1953—1981 (2005)

9. Kompella, V.P., Pasquale, J.V., Polyzos, G.C.: Multicast routing for multimedia
communication. IEEE/ACM Transactions on Networking 1, 286-292 (1993)

10. Sun, Q., Langendoerfer, H.: Efficient multicast routing for delay-sensitive applica-
tions. In: Proceedings of the 2nd Workshop on Protocols for Multimedia Systems,
pp. 452-458 (1995)

11. Zhu, Q., Parsa, M., Garcia-Luna-Aceves, J.J.: A source-based algorithm for delay-
constrained minimum-cost multicasting. In: Proceedings of the 14th Annual Joint
Conference of the IEEE Computer and Communication (INFOCOM 1995), pp.
377-385. IEEE Computer Society Press, Boston (1995)

28

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

R. Qu, Y. Xu, and G. Kendall

Shaikh, A.; Shin, K.: Destination-driven routing for low-cost multicast. IEEE Jour-
nal on Selected Areas in Communications 15, 373-381 (1997)

Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta
Informatica 15, 141-145 (1981)

Cormen, T.H., Leiserson, C.E., Revest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1997)

Betsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, Englewood
Cliffs (1992)

Eppstein, D.: Finding the k shortest paths. STAM Journal of Computing 28, 652—
673 (1998)

Wang, X.L., Jiang, Z.: QoS multicast routing based on simulated annealing algo-
rithm. In: Proceedings of International Society for Optical Engineering on Network
Architectures, Management, and Applications, pp. 511-516 (2004)

Zhang, K., Wang, H., Liu, F.Y.: Distributed multicast routing for delay variation-
bounded Steiner tree using simulated annealing. Computer Communications 28,
1356-1370 (2005)

Wang, Z., Shi, B., Zhao, E.: Bandwidth-delay-constrained least-cost multicast rout-
ing based on heuristic genetic algorithm. Computer communications 24, 685-692
(2001)

Haghighat, A.T., Faez, K., Dehghan, M., Mowlaei, A., Ghahremani, Y.: GA-based
heuristic algorithms for bandwidth-delay-constrained least-cost multicast routing.
Computer Communications 27, 111-127 (2004)

Youssef, H., Sait, M., Adiche, H.: Evolutionary algorithms, simulated annealing
and tabu search: a comparative study. Engineering Applications of Artificial Intel-
ligence 14, 167-181 (2001)

Skorin-Kapov, N., Kos, M.: The application of steiner trees to delay constrained
multicast routing: a tabu search approach. In: Proceedings of the seventh interna-
tional Conference on Telecommunications, Zagreb, Croatia, pp. 443-448 (2003)
Wang, H., Fang, J., Wang, H., Sun, Y.M.: TSDLMRA: an efficient multicast routing
algorithm based on tabu search. Journal of Network and Computer Applications 27,
77-90 (2004)

Ghaboosi, N., Haghighat, A.T.: A tabu search based algorithm for multicast rout-
ing with QoS constraints. In: 9th International Conference on Information Tech-
nology, pp. 18-21 (2006)

Skorin-Kapov, N., Kos, M.: A GRASP heuristic for the delay-constrained multicast
routing problem. Telecommunication Systems 32, 55-69 (2006)

Ghaboosi, N., Haghighat, A.T.: A path relinking approach for Delay-Constrained
Least-Cost Multicast routing problem. In: 19th International Conference on Tools
with Artificial Intelligence, pp. 383-390 (2007)

Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for
the prize collecting Steiner tree problem in graphs. Networks 38, 50-58 (2001)
Gruber, M., Raidl, G.R.: Variable neighborhood search for the bounded diameter
minimum spanning tree problem. In: Hansen, P., Mladenovié, N., Pérez, J.A.M.,
Batista, B.M., Moreno-Vega, J.M. (eds.) Proceedings of the 18th Mini Euro Con-
ference on Variable Neighborhood Search, Tenerife, Spain (2005)

Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Opera-
tions Research 24, 1097-1100 (1997)

Jari, K., Teemu, N., Olli, B., Michel, G.: An efficient variable neighborhood search
heuristic for very large scale vehicle routing problems. Computers & Operations
Research 34, 2743-2757 (2007)

31.

32.

33.

34.

35.

36.
37.

38.

A VND Search Algorithm 29

Burke, E.K., Curtois, T.E., Post, G., Qu, R., Veltman, B.: A hybrid heuristic order-
ing and variable neighbourhood search for the nurse rostering problem. European
Journal of Operational Research 2, 330-341 (2008)

Zhang, B., Mouftah, H.T.: A destination-driven shortest path tree algorithm. In:
IEEE International Conference on Communications, pp. 2258-2262 (2002)
Martins, S.L., Resende, M.G.C., Ribeiro, C.C., Pardalos, P.M.: A parallel GRASP
for the Steiner tree problem in graphs using a hybrid local search strategy. Journal
of Global Optimization 17(1-4), 267-283 (2000)

Leitner, M., Raidl, G.R.: Lagrangian Decomposition, Metaheuristics, and Hybrid
Approaches for the Design of the Last Mile in Fiber Optic Networks. In: Blesa,
M.J., Blum, C., Cotta, C., Ferndndez, A.J., Gallardo, J.E., Roli, A., Sampels, M.
(eds.) HM 2008. LNCS, vol. 5296, pp. 158-174. Springer, Heidelberg (2008)

Sun, Q., Langendoerfer, H.: An efficient delay-constrained multicast routing al-
gorithm. Technical Report, Internal Report, Institute of Operating Systems and
Computer Networks. TU Braunschweig, Germany (1997)

Cayley, A.: A theorem on trees. Journal of Math. 23, 376-378 (1989)

Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Ar-
eas in Communications 6, 1617-1622 (1988)

Bastos, M.P., Ribeiro, C.C.: Reactive tabu search with path relinking for the
Steiner problem in graphs. In: Proceedings of the third Metaheuristics Interna-
tional Conference, Angra dos Reis, Brazil (1999)

	A Variable Neighborhood Descent Search Algorithm for Delay-Constrained Least-Cost Multicast Routing
	Introduction
	The Delay-Constrained Least-Cost Multicast Routing Problem
	The Variable Neighborhood Search Algorithms
	Initialisation
	Neighborhood Structures within the VND Algorithms
	Time Complexity of the VNDMR Algorithm

	Performance Evaluation
	VNDMR with Different Initialisations
	VNDMR with Different Neighborhood Structures
	Comparisons with Existing Algorithms

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

