
A PDDL-Based Planning Architecture to Support
Arcade Game Playing

Olivier Bartheye and Éric Jacopin

MACCLIA, CREC Saint Cyr, Écoles de Coëtquidan, F-56381 GUER Cedex
{olivier.bartheye,eric.jacopin}@st-cyr.terre.defense.gouv.fr

Abstract. First, we explain the Iceblox game, which has its origin in the Pengo
game. After carefully listing requirements on game playing, the contents of plans,
their execution and planning problem generation, we design a set of benchmarks
to select good playing candidates among currently available PDDL-based plan-
ners. We eventually selected two planners which are able to play the Iceblox
video game well and mostly in real time. We describe both the predicates and
some of the operators we designed. Then, we give details on our planning ar-
chitecture and in particular discuss the importance of the generation of PDDL
planning problems. We wish to report that no planner was tweaked during the
benchmarks.

1 Introduction

On one side, the quality of the Artificial Intelligence is part of today’s game eval-
uations and on the other planning systems still wait for going mainstream. Could a
close encounter of both be fruitful? Over the years planning has occurred in the video-
game domain with some success (e.g. [1]), with the work on the Goal Oriented Action
Planning architecture being probably the most sucessful [2]. This time, we would like
video-gaming to occur in the planning domain: designing and implementing a game
and connect it to today’s planners. First, thanks to the International Planning Compe-
tition [3], today’s planners all accept planning problems written in PDDL [4] which is
going to ease the selection of a good planner for video-gaming. Then, it is not only
a matter of constructing a plan but also to generate PDDL planning problems from a
video-game situation. Third, it is also a matter of executing plans in a video-game. And
finally, what shall happen when the dynamics of video-games makes useless the plan
currently executed? These matters and questions have rarely been addressed in the case
of the close encounter of planning and video-games and it is the purpose of this paper
to report the sparks.

This paper is organized as follows. We begin with a description of the Iceblox ar-
cade game and argue why this game is a good choice for testing the performances of
PDDL-based planners coping with planning problems from this domain. The next sec-
tion presents and discusses the necessary requirements on a planning system playing
an arcade game such as Iceblox. Then, we report on the selection process of avail-
able PDDL-based planners, from a wide perspective (simple Iceblox situations, several
planners, various planning problem properties) to a narrow perspective where two plan-
ners were tested against more realistic Iceblox situations. Finally, we outline the main

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 170–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A PDDL-Based Planning Architecture to Support Arcade Game Playing 171

procedures of our arcade game playing architecture: the generation of PDDL planning
problem and the plan execution process and discuss the importance of path planning.

2 Iceblox

Description. In the Iceblox video game [5], the player presses the arrow keys to move
a penguin (named Pixel Pete) horizontally and vertically in rectangular mazes made of
ice blocks and rocks, in order to collect coins. But flames patrol the maze (their speed is
that of the penguin) and can kill the penguin in a collision; moreover, each coin is iced
inside an ice block which must be cracked several times before the coin is ready for
collection. The player can push (space bar) an ice block which will slide until it collides
with another ice block, a rock or any of the four side of the game. A sliding ice block
stops when it collides into another ice block, a rock or any of the four sides of the game
and kills a flame when passing over it. If the player pushes an ice block which is next
to another ice block, a rock or a side of the game, it cannot slide freely and shall begin
to crack. Once cracked, an ice block cannot move any more and thus pushing a cracked
ice block eventually results, after seven pushes, in its destruction. An ice block which
contains a coin slides and cracks as does an ordinary ice block. A coin cannot slide; it
can only be collected once revealed after the seventh push. The player gets to the next,
randomly generated, level when all coins have been collected. Killed flames reappear
from any side of the game and from time to time, as in Figure 1, it happens that locking
the flames is a better strategy than killing them: since there is no constraint on time to

Fig. 1. An Iceblox game in progress

172 O. Bartheye and É. Jacopin

Fig. 2. A Pengo game in progress [7]

finish any level of Iceblox, this strategy gives the player all the latitude to collect coins.
The number of flames and rocks increase during several levels and then cycle back to
their initial values. Finally, the player gets 200 points for each collected coin, 50 points
for each killed flames and begins the game with three spare lives.

Why Iceblox?. Iceblox is an open and widely available java implementation [6, pages
264–268] of the Pengo arcade game, published by Sega in 1982 (see Figure 2). In
Pengo, there are pushable and crackable ice blocks but neither rocks nor coins; the
main objective of the game is to kill all the bees patrolling the ice blocks mazes. Bees
hatch from eggs contained in some ice blocks; the destruction of an ice block contain-
ing eggs results in the destruction of these eggs. In Pengo, bees can be killed with a
sliding ice block and by a collision with the penguin when they are stunned. Pushing
a side of the game when a bee is next to this side shall stun the bee for some short
time. The player is given 60 seconds to kill all the bees of any of the 16 levels of the
game (after the sixteenth level, the game cycles back to the first level). Bees accelerate
when reaching the 60 seconds time limit and the player is given a short extra time to
kill them before they vanish, thus making the level impossible to finish. There also are
pushable diamonds which cannot be collected but must be aligned to score extra points.
As in any arcade game of the time, there are many bonuses, making the high score a
complex goal; and both the killing of the bees and the alignment of the diamonds score

A PDDL-Based Planning Architecture to Support Arcade Game Playing 173

differently according to the situation. We refer the reader to [7] for further details about
the game.

Iceblox obviously is easier than Pengo: no time constraint, uniform speed and scor-
ing, no bonuses,. . . Main targets (coins) fixed rather than moving (bees or flames),
flames cannot push ice blocks and fighting them is optional,. . . However, the locking
of flames in a closed maze of ice blocks and rocks possesses a geometrical spirit similar
to that of the alignment of diamonds in the Pengo game.

Consequently, we chose Iceblox because it is a simpler start in the world of arcade
video games than the commercial games of the time.

3 Requirements

Game playing. On its way to collect coins, the planning system playing the Iceblox
game shall badly either fight or avoid flames: disorganized movements or paths longer
than necessary shall be allowed as long as they do not prevent Pixel Pete from collecting
coins. Both the fighting and avoidance of flames shall be realized in (near) real time:
game animation might look sometimes slow or sometimes irregular but shall never stop;
in particular, flames shall always be patrolling the maze, even when traditional problem
solving (that is, Planning) shall take place.

Plans (what’s in a plan?). A plan shall be a set of partially ordered operators which
represent actions in the Iceblox domain. What kind of actions shall we allow to be part
of a plan?

Let us distinguish five kinds of actions that may happen in an arcade video game
such as (Pengo or) Iceblox:

1. Drawing a frame to animate a sprite; this is the pixel kind of action. Animation
always takes place, even if the player does nothing: for instance, a flame is always
animated in the Iceblox game, even in the case where it cannot move because it is
surrounded by ice blocks.

2. Basic moving of one step left, right, up or down and pushing an ice block. This is
the sprite kind of action which is not interruptible for a certain number of pixels,
usually the number of pixels of a side of the rectangle where the sprite is drawn (in
the case of Iceblox, sprites are squares of 30 by 30 pixels). Each action of this kind
exactly corresponds to a key pressed by the player: arrows keys to move left, right,
up and down and the space bar to push an ice block.

3. Moving horizontally or vertically in a continuous manner, that is making several
consecutive basic moves in the same direction; this is the path-oriented kind of
action and means following a safe path in the maze.

4. Avoiding, fleeing, fighting or locking the flames in a closed maze of ice blocks and
rocks. This is the problem solving kind of action and concerns survival and basic
scoring. Ice block cracking until destruction to collect a coin also is a problem
solving kind of action.

5. Defining goals and setting priorities on them; this is the game level strategy kind
of action and is oriented towards finishing the game with the highest score. In the

174 O. Bartheye and É. Jacopin

case of Iceblox, this means ordering the collection of coins, noticing the opportu-
nity to lock the flames in a maze and setting its importance in finishing the level;
or else seizing the opportunity to seek cover behind ice blocks of a geometrical
configuration created during game playing.

Out of the five kinds of action, only push actions of kind 2, abstract Moves based on
rectilinear moves of kind 3 and the coin collection action of kind 4 shall be represented
as operators.

The Plans just described are not as simple as they may appear: it is not the case
that either their construction shall be too simple or their use shall be redundant with
the player’s actions. First, these Plans look like the plans for the storage domain which
is part of the deterministic IPC benchmarks [3]. Second, as Table 1 shows, current
planners agree with their non easiness. Third, there are Plans (both constructed and
executed [8] or only executed [1]) in commercial video-games which are shorter and
simpler.

Plan execution. The plan execution system receives a plan from the Planning system in
order to execute it in the Iceblox game. Execution of a plan means executing the play-
ers actions (that is, actions of kind 2) corresponding to the operators of the plan, in an
order compliant with the partial order of the plan. For instance, the plan execution sys-
tem shall decide of several basic moves actions to execute a Move operator in the plan;
which can include ice block pushing to facilitate the realization of the Move operator.
The plan execution system shall also decide of taking advantage of the current Iceblox
situation to avoid pushing an ice block when a flame is no longer aligned with it, to
choose a new weapon or to avoid unexpected flames. These decision shall result from
a local analysis and no global situation assessment shall be realized to take such ad-
vantages. The plan execution system shall eventually warn the user when it terminates
(whatever the outcome, success or failure). The player can terminate the plan execution
at any time by pressing any arrow key or else the space bar.

In case of emergency situations (e.g. no weapon is locally available, fleeing seems
locally impossible, etc), the plan execution system shall call for re-Planning.

Planning. Planning refers to the plan formation activity. The player shall intentionally
start the planning activity by pressing a designated key (e.g. the “p” key). Once running,
planning shall not stop the Iceblox game: flames shall patrol the maze and sliding ice
blocks shall continue to slide while the plan formation activity is running. The user shall
be warned when the activity ends, either with success or else failure (e.g. a different
sound for each case). If any of the arrow keys or else the space bar (push) is pressed
before the end of the planning activity, then it is terminated. The user shall be able to
play at any time.

Planners. The main objective of the work reported in this paper is to determine whether
any of today’s planners is able to play the Iceblox game: no planner shall be specifically
designed to play Iceblox and no existing planner shall be tweaked to play Iceblox.

Due to the on-going effort of the International Planning Competition (IPC) [3], many
planners are available today and most of them accept Planning data (i.e. states, oper-
ators) written in the PDDL language. Because of this wide acceptance, the overhead

A PDDL-Based Planning Architecture to Support Arcade Game Playing 175

of both generation and processing of PDDL shall first be ignored; writing directly to a
planner’s data structures shall be considered only if game playing requirements are not
met. Consequently, the Planning activity in the Iceblox domain shall take as input an
initial state, a final state and a set of operators all written in the PDDL language.

Available planners are in general more ready to process PDDL text files than ready
to be connected to a video game. We shall thus begin with the design of a set of Iceblox
planning problems of increasing difficulty, in the spirit of the IPC: executable files for
the planners, PDDL Iceblox problems files and scripts files to automate this Iceblox
benchmarking process. If a planner fails these off line tests then it shall not be a good
candidate for Iceblox video game playing.

What shall demonstrate that a planner is a good candidate for a connection to Ice-
blox? Solving the Iceblox benchmarks fast enough seems the obvious answer. Rather,
the question should be: what is the time limit beyond which the current Iceblox situa-
tion is so dangerous that an action has to be taken right away, thus changing the initial
state of the planning problem and consequently asking for re-planning? Iceblox has a
good playability when the frame rate is about 30 frames per second, that is, when the
flames coordinates (in pixel) are updated about 30 times per second. Luckily, the sprites
are 30 by 30 pixels; it then takes about 1 second for a flame to move from one cross-
road to another. According to the Iceblox code, a flame gets a random new direction
between 1 and 4 crossroads, while keeping in mind that the new direction at the fourth
crossroad might just be the same than the previous one. We can then consider that the
limit is when Pixel Pete is 4 crossroads away from a flame, which gives a plan search
runtime of at most 4 seconds. If a plan has been found then it needs to be executed,
which undoubtedly takes time to trigger. Consequently, the flame should not reach the
fourth crossroad and since movement between two crossroads is not interruptible, the
flame should not reach the third crossroad before the plan search ends, which gives us
a time limit of 3 seconds.

A planner shall be a good candidate for Iceblox video-game playing if it can (off
line) solve Iceblox planning problems within the time limit of 3 seconds. This time
limit sorts out dangerous flames from harmless flames.

4 Minimal Iceblox Situations

Three examples. We here describe three Iceblox planning problems of increasing dif-
ficulty which we designed in order to get a set of good candidate planners. Both plan
length and planning problem size shall be used as criteria of difficulty: the larger num-
ber of predicates describing both the initial and the final states and the larger number of
operators in the plan solution, the more difficult the problem.

It is necessary to collect a coin in each of the three problems. Figures 3, 4, 5 contain
a screen shot of an iceblox planning problem and its PDDL code. See Figure 3 for
the simplest of our three problem; this is obviously a ”Welcome-to-Iceblox-world!”
problem. In Figure 4, we introduce danger from one flame with only one weapon to kill
this flame. In Figure 5, we set the case for two weapons to kill a flame guarding a coin.
The properties of these three problems are the following:

176 O. Bartheye and É. Jacopin

See Figure 3 4 5
Requires flame fighting? No Yes Yes
Number of weapons 0 1 2
Number of predicates 7 10 13
(initial and final states)
Number of typed objects 4 8 10
Number of paths leading
to the coin

1 1 2

Length of solution plan 2 4 4 or 5

Why these three problems? First because their number of predicates all are very small
and yet they cover the basics of Iceblox game playing: these situations are so simple that
if a planner fails at these problems then it is certainly not able to play iceblox. Moreover,
although more problems have been designed, they confirm the results of Table 1. Given
as Iceblox levels to an Iceblox planning system, these problems can be solved in real
time; screen shots of the final Iceblox situations are gathered in Figure 6.

Planning problems predicates. The following predicates are used to describe both the
initial and final states of the planning problems of Figures 3, 4 and 5 (crossroadi,j

denotes the location at the intersection of line i and column j):

– (position i j): a sprite (Pixel Pete, ice block, iced coined, weapon) is at the
crossroadi,j.

– (extracted i j): the coin at the crossroadi,j has been collected by the player.
– (guard i1 j1 i2 j2): the flame at the crossroadi1,j1 guards the coin at the

crossroadi2,j2 . The idea of guarding a coin is linked to the 3 seconds time con-
straint (see the planners requirements): a flame makes dangerous the collection of
a coin when it is within a range of 3 crossroads.

– (iced-coin i j): there is an ice block at the crossroadi,j which contains a coin.
– (protected-cell i j): there exists a path towards the crossroadi,j . This path is safe:

no flame makes this path dangerous.
– (reachable-cell i j): there exists a path towards the crossroadi,j; there exists at least

one flame putting this path in danger.
– (weapon i1 j1 i2 j2 i3 j3): there exists a weapon at the crossroadi2,j2 ; Pixel Pete

should push this weapon from the crossroadi1,j1 . The weapon shall stop sliding at
the crossroadi3,j3 ; this is useful information when an ice block needs more than
one push before the final kick at a flame.

Operators use two more predicates:

– (blocked-path i j): there is an ice block on the path to crossroadi,j.
– (blocked-by-weapon i1 j1 i2 j2): the weapon at crossroadi2,j2 is on the path to

crossroadi1,j1 .

Over all the operators we designed, 4 proved to be critical for Iceblox game play-
ing: move-to-crossroad, destroy-weapon, kick-to-kill-guard and extract. We hope their
names are self explanatory. There are more (e.g. pushing a block to lock flames in a

A PDDL-Based Planning Architecture to Support Arcade Game Playing 177

maze of ice blocks and rocks) but basic Iceblox playing is impossible if you don’t get
those 4 operators. Due to space limitations, we only give the PDDL code of kick-to-
kill-guard and extract; these operators are given to the planners for benchmarking and
playing:

(:action extract
:parameters (?coinx - coord-i ?coiny - coord-j)
:precondition (and (protected-cell ?coinx ?coiny)

(iced-coin ?coinx ?coiny) (position ?coinx ?coiny)
(reachable-cell ?coinx ?coiny))

:effect (and (extracted ?coinx ?coiny)
(not (iced-coin ?coinx ?coiny))
(not (protected-cell ?coinx ?coiny))
(not (reachable-cell ?coinx ?coiny))))

(:action kick-to-kill-guard
:parameters

(?reachablewx - coord-i ?reachablewy - coord-j
?weaponx - coord-i ?weapony - coord-j
?newweaponx - coord-i ?newweapony - coord-j
?guardx - coord-i ?guardy - coord-j
?coinx - coord-i ?coiny - coord-j
?blockedx - coord-i ?blockedy - coord-j)

:precondition (and (iced-coin ?coinx ?coiny)
(position ?reachablewx ?reachablewy)
(guard ?guardx ?guardy ?coinx ?coiny)
(weapon ?reachablewx ?reachablewy ?weaponx ?weapony

?newweaponx ?newweapony)
(reachable-cell ?weaponx ?weapony)
(protected-cell ?weaponx ?weapony))

:effect (and (position ?weaponx ?weapony)
(protected-cell ?coinx ?coiny)
(blocked-by-weapon ?blockedx ?blockedy ?newweaponx ?newweapony)
(reachable-cell ?newweaponx ?newweapony)
(protected-cell ?newweaponx ?newweapony)
(not (reachable-cell ?weaponx ?weapony))
(not (protected-cell ?weaponx ?weapony))
(not (reachable-cell ?blockedx ?blockedy))
(not (guard ?guardx ?guardy ?coinx ?coiny))
(not (weapon ?reachablewx ?reachablewy ?weaponx ?weapony

?newweaponx ?newweapony))))

These operators can be much simpler and indeed we designed and used very simple
versions of them. But of course, there is a compromise between simplicity which ques-
tions the overall utility of all this, and complexity which gets the planners nowhere. It
is very easy to put more information in the operators than necessary; and then: bye bye
runtimes!

Results. Several planners have been tested against these three problems (and others),
with a 3.2 GHz Pentium 4 PC, loaded with 1Gb of memory. The runtimes, in seconds,

178 O. Bartheye and É. Jacopin

(define (problem first-case)
(:domain iceblox-strips)
(:objects i-1 - coord-i i-12 - coord-i j-1 - coord-j j-4 - coord-j)
(:init (position i-1 j-1) (iced-coin i-12 j-4)
(protected-cell i-1 j-1) (reachable-cell i-1 j-1)
(protected-cell i-12 j-4) (reachable-cell i-12 j-4))
(:goal (extracted i-12 j-4)))

Fig. 3. The danger is away, the path is obvious: you’re fired if you can’t solve this one

(define (problem second-case)
(:domain iceblox-strips)
(:objects i-4 - coord-i i-12 - coord-i i-11 - coord-i j-2 - coord-j
j-4 - coord-j j-3 - coord-j j-11 - coord-j j-10 - coord-j)
(:init (position i-4 j-2) (iced-coin i-12 j-4)
(protected-cell i-4 j-2) (reachable-cell i-4 j-2)
(guard i-11 j-4 i-12 j-4) (protected-cell i-11 j-3)
(weapon i-11 j-2 i-11 j-3 i-11 j-10 i-11 j-11)
(reachable-cell i-11 j-3) (reachable-cell i-12 j-4))
(:goal (extracted i-12 j-4)))

Fig. 4. There is danger, but the fight is easy

(define (problem third-case)
(:domain iceblox-strips)
(:objects i-4 - coord-i i-12 - coord-i i-11 - coord-i i-9 - coord-i i-
10 - coord-i j-2 - coord-j j-4 - coord-j j-3 - coord-j j-11 - coord-j
j-10 - coord-j)
(:init (position i-4 j-2) (iced-coin i-12 j-4)
(protected-cell i-4 j-2) (reachable-cell i-4 j-2)
(guard i-11 j-4 i-12 j-4) (protected-cell i-10 j-4)
(weapon i-9 j-4 i-10 j-4 i-11 j-4 i-12 j-4)
(weapon i-11 j-2 i-11 j-3 i-11 j-10 i-11 j-11)
(protected-cell i-11 j-3) (reachable-cell i-10 j-4)
(reachable-cell i-11 j-3) (reachable-cell i-12 j-4))
(:goal (extracted i-12 j-4)))

Fig. 5. Two unsafe paths: one shorter, one longer. . .

averaged over ten runs, are gathered in Table 1. The planners appearing in Table 1
reflect all the cases which happened during the tests: some planners rejected part or all
of the PDDL files, reporting PDDL mistakes and some planners found no solution to

A PDDL-Based Planning Architecture to Support Arcade Game Playing 179

Fig. 6. When off line benchmarking becomes real time Iceblox playing. The red and white track
marks the path followed by the penguin during the plan execution.

Table 1. Performances of several planners on PDDL files of the 3 problems of Figures 4, 5 and 6.
A typed and untyped coordinates version was tested for each problem. All times, averaged over
ten runs, are in seconds; planners were given 120 seconds to search for a solution although the
required time limit is 3 seconds (see the requirements for planners).

Typed Untyped
Fig. 3 Fig. 4 Fig. 5 Fig. 3 Fig. 4 Fig. 5

FF [9] 0.01 0.49 1.83 0.01 > 120

HSP2 [12] PDDL Syntax errors
Metric-FF [13] 0.01 0.33 1.07 0.01 > 120

Qweak [10] 0.01 0.02 0.02 0.02 0.02 0.02
SGPlan [14] 0.01 0.35 1.14 0.01 > 120

STAN [15] 0.18 PDDL Syntax errors 0.2 > 120

TSGP [16] 0.03 25 > 120 0.05 > 120

YAHSP [17] 0.01 No plan found 0.01 No plan found

the problems. Hopefully, others correctly read the PDDL files; among those planners,
some found solutions within the time limit and others did not. All the solutions found
were correct: no planner we tested returned an incorrect plan.

Four planners, FF, Metric-FF, Qweak and SGPlan compose the set of good candi-
dates for playing Iceblox. We eventually reduced the set to the well known and success-
ful FF [9] and the less known and fastest but exotic Qweak [10][11].

Again, no planner was tweaked during both benchmarking and game playing (see
the requirements for planners).

As you can notice, ice blocks in this design can only be pushed for killing flames
guarding an iced coin and there is no action to crush an ice block. Indeed, we imple-
mented the crushing of ice blocks in the execution module. Then, by carefully designing
our levels, both FF and Qweak were able to play large Iceblox levels (i.e. 12 lines by
12 columns with at most 3 flames and several ice blocks) almost in real-time.

In the next section, we see how to plan the pushing and crushing of ice blocks with
FF and Qweak.

180 O. Bartheye and É. Jacopin

5 Game Playing Situations

The previous game situations might be perfect for the selection of PDDL-based plan-
ners, but they are far from real iceblox game playing situations. In this section we carry
on testing and see how more realistic game playing situations can be handled by the
planners FF and Qweak. Looking at figure 1 we can observe that putting more objects
in an Iceblox game level produces more realistic game situations: more ice blocks, more
coins, more flames, more weapons,. . . We need problems with more objects, and con-
sequently more predicates and more actions. However, FF’s instantiation mechanism is
sensible to more actions with more parameters. Consequently, if we propose more ac-
tions to the planners, we should be careful with the number of objects of our problems.

The first four problems we designed have the following properties:

See figure 7 top-left top-right bottom-left bottom-right
Requires flame fighting? No Yes Yes Yes
Number of weapons 0 1 1 4
Number of predicates 7 10 10 19
(initial and final states)
Number of typed objects 5 8 8 15
Number of paths leading to the coin 1 1 2 4
Length of solution plan 2 4 5 7

As you can observe, the size of these problems (except the bottom-right) correspond
to the size of the problems of figures 3, 4 and 5. However, our domain file now has 7
actions instead of 4 and our new kick-to-kill-guard action now possesses 11 parameters
while our push action has 6 parameters; the crush action, given below, only possesses 4
parameters.

New planning problem predicates are the following:

– (guard f i1 j1 i2 j2): the flame f at the crossroadi1,j1 guards the coin at the
crossroadi2,j2 . This predicate now possesses a new parameter f to record a flame
number to facilitate the execution process: we may have already killed this flame,
thus making needless to focus on it any longer; or it is another flame which is now
dangerous and a new plan must be computed.

– (blocked-by-cell i1 j1 i2 j2): there is an ice block at the crossroadi1,j1 which can be
either pushed or else crushed when at the crossroadi2,j2 ; this predicate is a rewriting
of the two predicates (blocked-path i j) and (blocked-by-weapon i1 j1 i2 j2).

– (crushable i j): the ice block at the crossroadi,j can be crushed so that (reachable-
cell i j) becomes true.

– (pushable i1 j1 i2 j2): the ice block at the crossroadi1,j1 can be pushed; if pushed,
it shall stop at the crossroadi2,j2 .

One operator use one more predicate:

– (connected-with-cell i1 j1 i2 j2): this new predicate is always used in conjunc-
tion with the predicate (reachable-cell i2 j2) thus asserting that the cell at the

A PDDL-Based Planning Architecture to Support Arcade Game Playing 181

crossroadi1,j1 also is reachable (see the set-reachable action below). In fact, any
crossroad is reachable in the Iceblox game since it is always possible to push or
crush an ice block to reach it. So, in theory, we should generate this predicate for
many interesting positions we could detect and in particular around weapons. How-
ever, the dynamics of the game render this generation useless: flames move and
weapons change.

We first implemented ice block crushing in the execution module (see next section) but
we soon realized it was not coherent with our design of PDDL actions: crushing an ice
block is a 7 push action in the same direction. Consequently, we designed an abstract
push action gathering several basic pushes as our move action gathers several basic
moves:

(:action crush-iceblock
:parameters

(?crushablex - coord-i ?crushabley - coord-j
?blockedx - coord-i ?blockedy - coord-j)

:precondition (and (position ?crushablex ?crushabley)
(reachable-cell ?crushablex ?crushabley)
(protected-cell ?crushablex ?crushabley))
(crushable-cell ?crushablex ?crushabley)
(blocked-by-cell ?blockedx ?blockedy ?crushablex ?crushabley))

:effect (and (reachable-cell ?blockedx ?blockedy)
(not (reachable-cell ?crushablex ?crushabley))
(not (crushable-cell ?crushablex ?crushabley))))

As discussed for the new predicate connected-with-cell, we designed an action to com-
pute, through planning, the transitive closure of reachable-cell predicate. In practice,
solution plans are rarely generated with this action.

(:action set-reachable
:parameters

(?cellx - coord-i ?celly - coord-j ?cellu - coord-i ?cellv - coord-j)
:precondition (and (reachable-cell ?cellx ?celly)

(connected-with-cell ?cellu ?cellv ?cellx ?celly))
:effect (and (reachable-cell ?cellu ?cellv))))

Results. We tested both FF and Qweak against typed versions of the four problems of
figure 7; anticipating bad runtimes, we traded our previous every-office-of-yesterday-
machine to a newer 2.20GHz T7500 core duo loaded with 3Gb of memory. FF solves
the first two problems in, respectively, 30 milli-seconds and 200ms, and fails to solve
the last two, running out of memory: as predicted, FF’s instantiation mechanism can be
blamed for these failures. We thus decided to test Metric-FF and SGPLan as well, but
with no more success than FF. Qweak solves the first three problems at about the same
speed of 30ms and solves the last problem in 140ms: a faster machine entails faster
runtimes.

Again, no planner was tweaked during these tests, but we did correct a couple of
bugs in Qweak which appeared when testing even bigger problems.

Realistic iceblox levels can be solved in real-time. However, to achieve good playa-
bility in the video-game domain, everything must be fast: the construction of plans, of

182 O. Bartheye and É. Jacopin

Fig. 7. The Penguin starts in line 1 and column 1 and its objective is to extract the only coin in each
problem. When pushed, an ice block can slide only when its other side is free; an ice block can be
crushed if its opposite side is not free. A flame dies when it collides with a sliding ice block which
is then called a weapon. Because there even is no flame at all, the top-left problem is simpler than
that of figure 3 and the top-right problem is similar to that of figure 4. The lower-left problem
corresponds to that of figure 5: when pushed to kill the flame, the ice block in line 4 and column 8
shall stop just above the iced coin thus blocking the path to the iced coin; then, the Penguin must
either walk round the ice blocks to reach the left side of the iced coin or else destroy the weapon
which stopped sliding on the upper side of the iced coin. The lower-right problem appears to be
more difficult than all other previous problems: first, there are four weapons which, once pushed,
could collide with the flame; second, there is an obstacle on the path to these weapons: the entry
point between the two rooms is blocked and an ice block must be crushed and another one must
be pushed. Now, go to figure 8 to see how difficult these problems really are.

A PDDL-Based Planning Architecture to Support Arcade Game Playing 183

Fig. 8. The moment of truth for the planning problems described in figure 7. The four problems
must be solved so we feed the planner with actions to push and crush ice blocks: 7 actions and
12 predicates in the domain file are now necessary to solve these problems whereas 4 actions and
10 predicates were needed for the problem of figures 3, 4 and 5. Current IPC planners can solve
the two problems of the top line on today’s machines but only when objects are typed and the
:typing requirement appears in the PDDL problem file (several milliseconds for FF [9] on the
top-left problem and 0.2s for the top-right problem). However, the two problems on the bottom
line are too difficult: all planners but Qweak [10] fails to find a solution within 120 seconds: the
11 parameters of the kick-to-kill-guard action, the 6 parameters of the push action and the number
of weapons in the lower-right problem create too many search alternatives for the planners. The
red and white track marks the path followed by the penguin during the plan execution.

184 O. Bartheye and É. Jacopin

course, but also the generation of PDDL problems and the execution of plans and prob-
ably above all, the coupling of all these procedures to the game must not slow down the
game. The next section digs our game playing architecture and, in particular, the on line
generation of PDDL problems.

6 Game Playing Architecture

This section outlines the plan execution procedure and the generation of PDDL planning
problem from Iceblox game situations. Finally we discuss path planning in the Iceblox
domain.

6.1 The Plan Execution Process

Table 2 outlines the plan execution process; it is implemented as a thread and can give
orders to the game through a global variable which usually contains the key just pressed
by the user.

The tricky part is the compiling of the PDDL actions of the plan returned by the
PDDL-based planner into basic instructions (the keys pressed by the user) for the game.
This allows a regular sensing of danger and gives regular opportunities to response to
unexpected events.

6.2 The Generation of PDDL Planning Problems

Table 3 presents how the collection-of-a-single-coin is generated as a PDDL planning
problem during game playing. This very fast procedure, also implemented as a thread,

Table 2. The plan execution thread

Repeat
If the first operator of the plan is Move-To-Crossroad(i,j) then

Compute a path from current location to crossroadi,j

Repeat
Execute one basic move following that path

Until crossroadi,j is reached
Else

If the ice block at crossroadi,j is not destroyed
Execute a push action in direction of crossroadi,j

Else
Execute a basic move towards crossroadi,j

End if
End if
Delete the first operator of the plan

When the flame is no longer dangerous
Ignore it

When the flame is no longer aligned with the weapon or
an unexpected flame becomes dangerous

Find a weapon and use it
When the penguin must leave the computed path

Remember the current crossroadi,j

Get the penguin back to crossroadi,j as soon as possible
Until the plan is empty

A PDDL-Based Planning Architecture to Support Arcade Game Playing 185

Table 3. The PDDL Planning problem generation thread for the collection of a single coin

Document-the-path-to(object)
Compute a path for this object
Generate (reachable-cell i-object j-object)
If this path is clear then

Generate (protected-cell i-object j-object)
Else

For each ice block on this path do
Generate (blocked-by-cell i-object j-object i-block j-block)
If this ice block can be moved with a simple push then

Generate (pushable-cell i-block j-block i-stop j-stop)
Else /* this ice block cannot move and must be crushed */
Generate (crushable-cell i-block j-block i-crush j-crush)
End if

End for each
End if

End Document-the-path-to

Generate PDDL planning problem header
Generate PDDL initial state header
Generate (position i-penguin j-penguin)
Find the (nearest or possibly flame-less) iced coin
Generate (iced-coin i-coin j-coin)
Document-the-path-to(iced-coin)
For each flame do

If this flame is less than four crossroads away from the (iced-coin i-coin j-coin) then
Generate (guard flame i-flame j-flame i-coin j-coin)
For each nearest weapon in each of the four direction do

Generate (weapon i-push j-push i-weapon j-weapon i-stop j-stop)
Document-the-path-to(weapon)

End for each
End if

End for
Generate PDDL final state header and (extracted i-coin j-coin)

first computes what to do (either push or else crush) with ice blocks on its path to an
iced coin. Then it finds weapons by looking in the four directions around a dangerous
flame while managing the ice blocks it encounters on its path to these weapons.

6.3 Path Planning

Path planning is obviously used to compute paths from a location to another. This path
planning procedure is first called during the generation of PDDL planning problem (see
table 3) and then during the plan execution process (see table 2): path planning is an
essential activity.

We implemented the A* [20] algorithm with ideas from [21]: for instance, we added
a penalty for each direction change to the cost of a path in order to get more rectilinear
paths, following our requirements on actions of kind 3 (see section 3 above). However,
Iceblox is not a free path world and destructive operations must happen to find paths:
searching on empty crossroads is not sufficient to find paths. Pushing and crushing ice
blocks often are necessary actions to find paths, but both modify the game level in an
irreversible manner: for the sake of completeness of the A* algorithm, modified game
levels must be saved as new search spaces for path planning, which obviously costs
memory and therefore time.

186 O. Bartheye and É. Jacopin

0 200 400 600 800 1000
70

75

80

85

90

95

100

Runtime in milliseconds

�
of

th
e

to
ta

ln
um

be
ro

f
ru

nt
im

es

From a coin

From Pixel Pete

Fastest

Fig. 9. On the horizontal axis are runtimes (milliseconds) from our implementation of A* which
computes paths in Iceblox randomly generated levels (10 lines by 12 columns); Pixel Pete appears
in the top left corner, and 9 rocks, 5 coins and 35 pushable ice blocks are randomly placed in this
order on the remaining cells. This makes an amazing 10 342 621 660 587 151 106 372 657 654
037 758 770 942 528 117 680 different game levels (see section 6.3). The cost of a path is the
cost of actions (this cost is 1 for a basic move in each of the four directions, 1 for pushing an ice
block and 7 for crushing an ice block) plus the number of corners (i.e. direction changes) plus
the manhattan distance to the goal position. 200 levels were randomly generated; we recorded
both the runtime to compute a path from one coin to Pixel Pete (the lowest curve) and from Pixel
Pete to the same coin (the second curve); the five coins of each level were tested. Consequently,
1000 paths have been computed in each of the two directions. How fast (or slow?) are these
computations? As we can observe in the above figure, 85% of the computations from a coin took
less than 2OO milli-seconds whereas 87% of the computations from Pixel Pete took less than
200ms; so should we prefer to compute a path always from Pixel Pete? The answer is no: the
computations from Pixel Pete produced 513 of the fastest runtimes while the computations from a
coin produced 547 of the fastest runtimes (60 tests produced the same runtime). But despite these
547 fastest runtimes, the lowest curve in the above figure shows that it generally takes a little
more time to compute a path from a coin than from Pixel Pete. However, if we choose the fastest
runtime of the two available runtimes for each coin, it appears that 97% of the computations took
less than 200ms which is just fine (the highest curve).

The figure 9 shows the proportions (vertical axis) of runtimes (horizontal axis) in
milli-seconds above a given runtime for paths computed from Pixel Pete to a coin (the
middle curve) and from a coin to Pixel Pete (the lowest curve). For instance, 95% of
the runtimes are below 800ms, which clearly is unsatisfactory for real-time playabil-
ity. If we look for path planning runtimes equivalent to PDDL-based plan construction
runtimes, we observe that around 86% of the runtimes are below 200ms (which is not

A PDDL-Based Planning Architecture to Support Arcade Game Playing 187

very fast yet). 1000 paths (in both ways: 2000 paths in total) have been computed over
200 generated levels where Pixel Pete appears in line 1 and column 1, 9 blocks, 5 coins
and 35 ice blocks are placed at random on the remaining cells, in this order. The ini-
tial position of the penguin is fixed so we first have to choose 9 cells among the 119
remaining cells to place the rocks, then choose 5 cells among the 110 remainings cells
and finally choose 35 cells among the 105 remaining cells; let lc be number of lines
times the number of columns, we have:

(
(lc − 1)

9

)
×

(
(lc − 10)

5

)
×

(
(lc − 15)

35

)
=

(lc − 1)!
5! 9! 35! (lc − 50)!

This total number of such levels has to do with astronomy and we leave the compu-
tations to the numbers lovers; it is, however, not difficult to remark that 200 gener-
ated levels is a desperately small number compared to the numbers provided by the
above formula. However, it seems that more tests only reinforce the observed results of
figure 9.

By taking the minimum value of the two available runtimes for each coin, we get
the highest-curve in figure 9, where 97% of these minimum runtimes are less than 200
ms. Consequently, we are left with several options: (i) let the two computations (from
Pixel Pete and from a coin) run concurrently and take the first returned path, (ii) search
in a destructive manner (whatever the path), (iii) investigate a bi-directional search
procedure, (iv) spend some time optimizing any step of our A* implementation, in the
spirit of [22] and (v) focus on something else. After failing to gain much with the third
and fourth options, perhaps strangely, we chose the fifth option: it happens that, finally,
the gaming experience is not much affected by a somewhat slow but nicely correctly
implemented path planning procedure. Now, we advise the wise programmer to first
investigate option (ii) before trying option (i).

7 Conclusions

This paper reports on the design and implementation of a PDDL-based planning system
(problem generator, planner and plan execution) which, most of the time, is able to play
an arcade game in real-time. We detailed engineering decisions because this research
project showed us that an efficient planner itself (PDDL-based or not) certainly is not
sufficient to achieve real-time playability. In the case of an arcade game, everything
must be fast; or, if preferred, nothing must be slow. To avoid slowing the game, many
planning knowledge oriented decisions must be taken: which predicates must be de-
signed to represent a gaming situation? What is the balance between detailed planning
operators and a clever plan execution system? What can be put in a thread? What part
of planning computations can be distributed over multiple graphic frames? This paper
proposes answers to these questions, mainly from an engineering perspective and not
from a theoretical perspective: decisions have, most of the time, been made in favour of
the game playability.

Due to the good quality of the path planning computation, Pixel Pete looks pretty
rational at the speed of the flames. Sincerely, we thought many times we’d never make it
and the granularity of our Plans is crucial to achieve our goal: we just produce Planning

188 O. Bartheye and É. Jacopin

problems with a small number of predicates. Since then, we have reused our architecture
in the commercial serious game domain; we successfully coupled our planning system
to Virtual Battle Space 2 [23] [24], in a bottom-up manner. We are actually working on
extending this coupling.

Acknowledgements. This work is part of a 3 year project founded by the Fondation
Saint-Cyr. Thanks to Jeremy Buisson for his help on multithreading. Thanks to Rick Al-
terman, Marc Cavazza, Jon Gratch, David Kirsh, Carlos Linarès, Jeff Orkin and Adrian
Smith for helpful discussions since the beginning of this project.

References

1. O’Brien, J.: A flexible goal-based planning architecture, pp. 375–383. Charles River Media
(2002)

2. Orkin, J.: Applying goal-oriented action planning to games. In: Rabin, S. (ed.) AI Game
Programming Wisdom 2, pp. 217–227. Charles River Media (2003)

3. International Planning Competition (1998–2009),
http://ipc.icaps-conference.org/

4. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the
fifth international planning competition: Pddl3 and experimental evaluation of the planners.
AI Journal 173, 619–668 (2009)

5. Hornell, K.: Iceblox (1996),
http://www.javaonthebrain.com/java/iceblox/

6. Bartlett, N., Simkin, S., Stranc, C.: Java Game Programming. Coriolis Group Books (1996)
7. Wikipedia: Pengo, arcade game (2007), http://www.wikipedia.org/
8. Orkin, J.: Three States and a Plan: The A.I. of F.E.A.R. In: Proceedings of the Game Devel-

opper Conference, 17 pages (2006)
9. Hoffmann, J.: FF: The Fast-Forward planning system. AI Magazine 22(3), 57–62 (2001)

10. Bartheye, O., Jacopin, É.: New results for arithmetic constraints partial order planning. In:
24th Workshop of the UK Planning and Scheduling Special Interest Group, London, UK,
December 15-16 (2005)

11. Nareyek, A., Fourer, R., Giunchiglia, E., Goldman, R., Kautz, H., Rintanen, J., Tate, A.:
Constraints and AI Planning. IEEE Intelligent Systems, 62–72 (March/April 2005)

12. Bonet, B., Geffner, H.: Heuristic search planner 2.0. AI Magazine 22(3), 77–80 (2001)
13. Hoffman, J.: The metric-ff planning system: Translating “ignoring delete list” to numeric

state variables. Journal of AI Research 20, 291–341 (2003)
14. Chen, Y., Wah, B., Hsu, C.W.: Temporal planning using subgoal partioning and resolution in

sgplan. Journal of AI Research 26, 323–369 (2006)
15. Long, D., Fox, M.: Efficient implementation of the plan graph in stan. Journal of AI Re-

search 10, 87–115 (1999)
16. Coles, A., Fox, M., Long, D., Smith, A.: Planning with respect to an existing schedule of

events. In: Proceedings of the 17th ICAPS. AAAI Press, Menlo Park (2007)
17. Vidal, V.: A lookahead strategy for heuristic search planning. In: Proceedings of the 14th

ICAPS, pp. 150–159. AAAI Press, Menlo Park (2004)
18. Bartheye, O., Jacopin, É.: Planning as a software component: a report from the trenches.

In: 26th Workshop of the UK Planning and Scheduling Special Interest Group, Prague, CZ,
December 17-18 (2007)

19. Microsoft: Directx 9 (2009), http://msdn.microsoft.com/en-us/directx

http://ipc.icaps-conference.org/
http://www.javaonthebrain.com/java/iceblox/
http://www.wikipedia.org/
http://msdn.microsoft.com/en-us/directx

A PDDL-Based Planning Architecture to Support Arcade Game Playing 189

20. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, Reading (1984)

21. Rabin, S.: A* aesthetic optimizations. In: Deloura, M. (ed.) Game Programming Gems, pp.
264–271. Charles River Media (2000)

22. Rabin, S.: A* speed optimizations. In: Deloura, M. (ed.) Game Programming Gems, pp.
272–287. Charles River Media (2000)

23. Bartheye, O., Jacopin, É.: A planning plug-in for virtual battle space2: A report from the
trenches. In: Proceedings of the Spring Simulation Multiconference, 4 pages (2009)

24. Bartheye, O., Jacopin, É.: A real-time pddl-based planning component for video games. In:
Proceedings of 5th AIIDE. AAAI Press, Menlo Park (to appear, 2009)

	A PDDL-Based Planning Architecture to Support Arcade Game Playing
	Introduction
	Iceblox
	Requirements
	Minimal Iceblox Situations
	Game Playing Situations
	Game Playing Architecture
	The Plan Execution Process
	The Generation of PDDL Planning Problems
	Path Planning

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

