
Linear Complementarity Algorithms
for Infinite Games

John Fearnley1, Marcin Jurdziński1, and Rahul Savani2

1 Department of Computer Science, University of Warwick, UK
2 Department of Computer Science, University of Liverpool, UK

Abstract. The performance of two pivoting algorithms, due to Lemke
and Cottle and Dantzig, is studied on linear complementarity problems
(LCPs) that arise from infinite games, such as parity, average-reward,
and discounted games. The algorithms have not been previously studied
in the context of infinite games, and they offer alternatives to the classi-
cal strategy-improvement algorithms. The two algorithms are described
purely in terms of discounted games, thus bypassing the reduction from
the games to LCPs, and hence facilitating a better understanding of the
algorithms when applied to games. A family of parity games is given,
on which both algorithms run in exponential time, indicating that in
the worst case they perform no better for parity, average-reward, or dis-
counted games than they do for general P-matrix LCPs.

1 Introduction

In this paper we consider infinite-duration zero-sum games played on finite
graphs, such as parity, average-reward, and discounted games. Parity games are
important in the theory of algorithmic formal verification because they provide
a combinatorial characterization of the meaning of nested inductive and co-
inductive definitions, as formalized in the modal µ-calculus and other fixpoint
logics [12]. In particular, deciding the winner in parity games is polynomial-
time equivalent to checking non-emptiness of non-deterministic parity tree au-
tomata, and to the modal µ-calculus model checking, two fundamental algorith-
mic problems in automata theory, logic, and verification [7, 18, 12]. Discounted
and average-reward games have been introduced by Shapley [17] and Gillette [11]
in the 1950s, and they have been extensively studied in the game theory, math-
ematical programming, algorithms, and AI communities [21, 8]. Parity, average-
reward, and discounted games have an intriguing complexity-theoretic status.
The problems of deciding the winner in these games are some of the few known
combinatorial problems in NP ∩ co-NP (and even UP ∩ co-UP [13]) that are
not known to be solvable in polynomial time.

The linear complementarity problem (LCP) is a fundamental problem in
mathematical programming. It naturally captures equilibrium problems, as well
as the complementary slackness and Karush-Kuhn-Tucker conditions of linear
and quadratic programming, respectively. The monograph of Cottle et. al. [6]
is the authoritative source on the LCP. In general, deciding if an LCP has a

ar
X

iv
:0

90
9.

56
53

v1
 [

cs
.G

T
]

 3
0

Se
p

20
09

solution is NP-complete [3]. If, however, the matrix (which is a part of the LCP
input) is a P-matrix (i.e., if all its principal minors are positive) then the problem
is arguably easier computationally. Every P-matrix LCP (P-LCP) has a unique
solution and computing it is in PLS ∩ PPAD. A significant amount of effort has
been invested by the mathematical programming community towards finding an
efficient algorithm for the P-LCP, which has led to a wide body of literature
in this area. Polynomial-time reductions from simple stochastic games [10, 19]
and discounted games [14] to the P-LCP have been recently proposed, however
the techniques commonly used to solve P-LCPs remain largely unknown in the
infinite games community. It is possible that these techniques could shed new
light on the computational complexity of solving infinite games.

In this paper we consider two classical pivoting algorithms for the P-LCP,
Lemke’s algorithm and the Cottle-Dantzig principal pivoting algorithm, and we
study their performance on P-LCPs obtained from discounted games by the
reduction of Jurdziński and Savani [14]. Our first main contribution is to describe
both algorithms purely as a process that works on the original discounted game,
bypassing the reduction from games to the P-LCP, and hence we facilitate their
analysis without the need to consider or understand concepts of the LCP theory.
We present the algorithms for discounted games because they have technical
advantages that make the exposition particularly transparent [14]. We argue,
however, that this is done without loss of generality: the algorithms can be
readily applied to parity games and average-reward games because there are
transparent polynomial-time reductions from parity games to average-reward
games [16, 13], and from average-reward games to discounted games [21].

It has long been known that the two algorithms can take exponential time
when applied to P-LCPs. However, it is not known whether these lower bounds
hold for the LCPs that arise from infinite games. Our second main contribution
is to prove that there is a family of discounted games on which the algorithms
of Lemke, and Cottle and Dantzig run in exponential time, and hence we indi-
cate limitations of the classical LCP theory in the context of infinite games. Our
family of examples are derived from those given by Björklund and Vorobyov [2]
for their strategy improvement algorithm for average-reward games. For tech-
nical convenience and without loss of generality, we present these families of
hard examples as discounted games; it is easy to construct parity and average-
reward games from which those discounted games are obtained via the standard
reductions [16, 13, 21].

We stress that these lower bounds are not fatal. The lower bound for Lemke’s
algorithm requires a specific covering vector and the lower bound for the Cottle-
Dantzig algorithm relies on a specific choice of ordering on the vertices. The
covering vector and the ordering are free choices left up to the user of the al-
gorithm. This situation can be compared to the classical strategy improvement
algorithms for infinite games [5, 20, 2]. It has long been known that these al-
gorithms can be made to run in exponential time by choosing sufficiently bad
vertices to switch [15]. However, it has only recently been shown that reasonable
switching policies can be made to run in exponential time [9]. The complexity of

our algorithms when equipped with reasonable covering vectors and reasonable
orderings remains open. The literature on P-LCPs contains exciting complexity
results for special cases. For example Adler and Megiddo [1] studied the per-
formance of Lemke’s algorithm for the LCPs arising from linear programming
problems. They showed that for randomly chosen linear programs and a care-
fully selected covering vector, the expected number of pivots performed by the
algorithm is quadratic. Our results open the door to extending such analyses to
infinite games.

2 Preliminaries

A binary discounted game is given by a tuple G = (V, VMax, VMin, λ, ρ, r
λ, rρ, β),

where V is a set of vertices and VMax and VMin partition V into the set of vertices
of player Max and the set of vertices of player Min, respectively. Each vertex
has exactly two outgoing edges which are given by the left and right successor
functions λ, ρ : V → V . Each edge has a reward associated with it given by the
functions rλ, rρ : V → R. Finally, the discount factor β is such that 0 ≤ β < 1.

The game begins with a token on a starting vertex v0. In each round, the
player who owns the vertex on which the token is placed chooses one of the
two successors of that vertex and moves the token to that successor. In this
fashion the two players form an infinite path π = 〈v0, v1, v2, . . . 〉 where vi+1 is
equal to either λ(vi) or ρ(vi). The path yields the infinite sequence of rewards
〈r0, r1, r2, . . . 〉, where ri = rλ(vi) if λ(vi) = vi+1, and ri = rρ(vi) otherwise. The
payoff of an infinite path is denoted by D(π) =

∑∞
i=0 β

iri. Since the game is
zero-sum, player Max wins D(π) and player Min loses an equal amount.

A positional strategy for player Max is a function that, for each vertex be-
longing to player Max, chooses one of the two successors of the vertex. The
strategy is denoted by χ : VMax → V with the condition that, for every vertex v
in VMax, the function χ(v) is equal to either λ(v) or ρ(v). Positional strategies
for player Min are defined analogously. The sets of pure positional strategies for
Max and Min are denoted by ΠMax and ΠMin, respectively. Given a pair of posi-
tional strategies, χ and µ for Max and Min respectively, and an initial vertex v0,
there is a unique infinite path 〈v0, v1, v2 . . . 〉, where χ(vi) = vi+1 if vi is in VMax

and µ(vi) = vi+1 if vi is in VMin. This path, referred to as the play induced by
the two strategies, will be denoted by Play(χ, µ, v0).

For all v in V , we define Val∗(v) = minµ∈ΠMin maxχ∈ΠMax D(Play(χ, µ, v)),
and Val∗(v) = maxχ∈ΠMax minµ∈ΠMin D(Play(χ, µ, v)). These will be known as
the lower and upper values of v, respectively. It is always true that Val∗(v) ≤
Val∗(v). It is well known that for discounted games the two values are equal, a
property known as determinacy.

Theorem 1 ([17]). For every discounted game G and every vertex v ∈ V , we
have Val∗(v) = Val∗(v).

The value of the game starting at a vertex v, equal to both Val∗(v) and Val∗(v), is
denoted by Val(v). The computational task associated with discounted games is

to compute Val(v). Moreover, we want to find optimal strategies, i.e., a strategy χ
that achieves the upper value and a strategy µ that achieves the lower value.

For convenience, we introduce the concept of a joint strategy σ : V → V that
specifies moves for both players. The notation σ � Max and σ � Min will be used
to refer to the individual strategies of Max and Min that constitute the joint
strategy. For a vertex v, the function σ(v) gives the successor of v not chosen
by σ. The functions rσ and rσ give the reward on the edge chosen by σ and the
reward on the edge not chosen by σ, respectively. The path denoted by Play(σ, v)
is equal to the path Play(σ � Max, σ � Min, v). The joint strategy is optimal if
both σ � Max and σ � Min are optimal. For a given joint strategy σ, the value
of a vertex v when σ is played will be denoted by Valσ(v) = D(Play(σ, v)).

Given a joint strategy σ and a vertex v, the balance of v is the difference
between the value of v and the value of the play that starts at v, moves to σ(v)
in the first step, and then follows σ,

Balσ(v) =

{
Valσ(v)− (rσ(v) + β ·Valσ(σ(v))) if v ∈ VMax,

(rσ(v) + β ·Valσ(σ(v)))−Valσ(v) if v ∈ VMin.
(1)

A vertex v is said to be switchable under σ if Balσ(v) < 0. If Balσ(v) = 0
for some vertex then that vertex is said to be indifferent. There is a simple
characterisation of optimality in terms of switchable vertices.

Theorem 2 ([17]). If no vertex is switchable in a joint strategy σ then it is an
optimal strategy for every choice of starting vertex.

The two algorithms that we will present use only positional joint strate-
gies. From now on, all joint strategies that we refer to can be assumed to be
positional joint strategies. If a play begins at a vertex v and follows a po-
sitional joint strategy σ then the resulting infinite path can be represented
by a simple path followed by an infinitely repeated cycle. Let Play(σ, v) =
〈v0, v1, . . . , vk−1, 〈c0, c1, . . . , cl−1〉ω〉. It is then easy to see that

Valσ(v) =
k−1∑
i=0

βi · rσ(vi) +
l−1∑
i=0

βk+i

1− βl · r
σ(ci).

Therefore, the amount that the reward on the outgoing edge of a vertex u con-
tributes towards the value of v can be defined as follows.

Definition 3 (Contribution Coefficient). For vertices v and u, and for a
positional joint strategy σ, we define:

Dv
σ(u) =

βi if u = vi for some 0 ≤ i < k,
βk+i

1−βl if u = ci for some 0 ≤ i < l,

0 otherwise.

3 Lemke’s Algorithm For Discounted Games

Lemke’s algorithm is a classical algorithm for solving the linear complementarity
problem [6]. We can apply Lemke’s algorithm to a discounted game by utilising
the reduction of Jurdziński and Savani [14], however this yields little insight
into how the algorithm works on a discounted game. In this section we bypass
the reduction, and give a description of Lemke’s algorithm entirely in terms of
discounted games.

Lemke’s algorithm begins with the joint strategy σ0 = ρ that selects the right
successor for every vertex in the game. This is actually a free choice since the
left and right successors can be swapped to obtain an arbitrary starting strategy.
The algorithm will then move through a sequence of strategies until it arrives at
the optimal strategy. The algorithm will also construct a modified game for each
strategy that it considers. The modified games will take the following form.

Definition 4 (Modified Game For Lemke’s Algorithm). For a real num-
ber z, we define the game Gz to be the same as G but with a modified left-edge
reward function, denoted by rλz , and defined, for every vertex v, by:

rλz (v) =

{
rλ(v)− z v ∈ VMax,

rλ(v) + z v ∈ VMin.
(2)

For a modified game Gz, the function rσz will give the rewards on the edges
chosen by σ. The notations Valσz and Balσz will give the values the balances of the
vertices in the game Gz, respectively. For every strategy σi that is considered,
the algorithm must choose an appropriate value zi so that σi is optimal in Gzi .
Moreover, we want to choose the minimum value zi for which this property holds.
The next proposition shows how to compute this for the initial strategy σ0.

Proposition 5. Let z0 = max{−Balσ0(v) : v ∈ V }. The strategy σ0 is optimal
in Gz0 and the vertex v in V that maximizes −Balσ0(v) is indifferent. Moreover,
there is no value y < z0 for which σ0 is optimal in Gy.

Proposition 5 gives an initial value for the parameter z. The principal idea
behind the algorithm is to drive z down from its initial value to 0, while main-
taining optimality of the current strategy in Gz. Unfortunately, Proposition 5
implies that we cannot drive z down further without losing the optimality of σ0

in Gz. We do however know that there is some vertex v that is indifferent un-
der σ0 in Gz0 . We define σ1 = σ0[σ0(v)/v], i.e., σ1(u) = σ0(u) if u = v, and
σ1(u) = σ0(u) otherwise. The operation of modifying a strategy by changing the
successor of a vertex v will be referred to as switching v.

The value of no vertex changes when switching an indifferent vertex in a
strategy. Since σ0 was optimal in Gz0 and v was indifferent we therefore have
that σ1 is optimal in Gz0 . There is one important difference however, whereas z
could not be decreased without σ0 losing its optimality, the parameter z can be
decreased further whilst maintaining the optimality of σ1. The task now is to
find z1, the minimum value of z for which σ1 is still optimal.

At a high level, when the algorithm arrives at a strategy σi its task is to
find zi, the minimum value of z for which σi is optimal in Gz. As we shall show,
for this minimum value of z there will always be at least one vertex that is
indifferent under σi played in Gz. The algorithm then switches this indifferent
vertex to create σi+1 and the process is repeated. The remainder of this section
is dedicated to showing how zi can be computed.

Each step begins with a strategy σi and the value zi−1, which was the min-
imum value of z for which σi−1 was optimal in Gz. We now wish to know how
much further z can be decreased before σi ceases to be optimal. From Theorem 2
we know that a strategy is optimal as long as no vertex is switchable and that
a vertex is switchable only when it has a negative balance. It is for this reason
that we want to know how the balance of each vertex changes as z is decreased.
In order to understand this, we must first know how the value of each vertex
changes as z is decreased. We will use the notation ∂−z Valσz (v) to denote the
rate of change of the value of v as z decreases, i.e., −∂z Valσz (v). This notation
will be used frequently throughout the rest of the paper to denote the rate of
change of various expressions. For a proposition p, we define [p] to be equal to 1
if p is true, and 0 otherwise. We can now give an explicit formula for ∂−z Valσz (v),
which is based on the left edges that are passed through after visiting the ver-
tex v while playing the strategy σ, and the contribution coefficient of those edges
to the value of v.

Proposition 6. For a vertex v and a joint strategy σ, let L be the set of vertices
for which σ picks the left successor, L = {v ∈ V : σ(v) = λ(v)}. The rate of
change of the value of v is

∂−z Valσz (v) =
∑
u∈L

([u ∈ VMax]− [u ∈ VMin]) ·Dv
σ(u).

From equation (1) we know that the balance of a vertex is computed as a
difference of the values of two vertices. We now show how the rate of change of
the balance can be derived by substituting the rate of change of the values into
equation (1).

Proposition 7. For a vertex v and a joint strategy σ we have

∂−z Balσz (v) =

{
∂−zValσz (v)− ([σ(v) = λ(v)] + β · ∂−zValσz (σ(v))) if v ∈ VMax,

−[σ(v) = λ(v)] + β · ∂−zValσz (σ(v))− ∂−zValσz (v) if v ∈ VMin.

Now that we have an expression for the rate of change of the balance of a
vertex, we can compute how far z can be decreased from zi−1 before some vertex
gets a negative balance. For each vertex v, the expression Balσizi−1

(v)/∂−z Balσiz (v)
gives the amount that z can be decreased before v gets a negative balance, and
so the minimum over all these ratios gives the amount that z can be decreased
before some vertex gets a negative balance. It should also be clear that a vertex
that achieves this minimum will be indifferent in the modified game when z is
decreased by this amount. We can also show that this is the minimum value of z
for which σi is optimal in Gz.

Proposition 8. Let a joint strategy σi be optimal in the modified game Gzi−1 ,
and

zi = zi−1 −min{
Balσzi−1

(v)
∂−z Balσz (v)

: v ∈ V and ∂−z Balσz (v) < 0}. (3)

Then strategy σ is optimal in Gzi , and it is not optimal in Gx for all x < zi.

Until now, we have ignored the possibility of reaching a strategy σ in which
there is more than one indifferent vertex. In LCP algorithms this is known as
a degenerate step. In this case, the task is to find a strategy in which every
indifferent vertex v satisfies ∂−z Balσz (v) > 0, so that z can be decreased further.
It is not difficult to prove that such a strategy can be reached by switching
only the indifferent vertices. One method for degeneracy resolution is Bland’s
rule, which uses the least index method to break ties, and another is to use
lexicographic perturbations; both methods are well-known, and are also used
with the simplex method for linear programming [4].

Algorithm 1 Lemke(G)
i := 0; σ0 := ρ; z0 := max{−Balσ0(v) : v ∈ V }
while zi > 0 do
σi+1 := σi[σi(v)/v] for some vertex v with Balσizi (v) = 0

zi+1 := zi −min{ Bal
σi+1
zi

(v)

∂−z Bal
σi+1
z (v)

: v ∈ V and ∂−z Bal
σi+1
z (v) < 0}

i := i+ 1
end while

Lemke’s algorithm is shown as Algorithm 1. Since in each step we know that
there is no value of z < zi for which σi is optimal in Gz and we decrease z
in every step it follows that we can never visit the same strategy twice with-
out violating the condition that the current strategy should be optimal in the
modified game. Therefore the algorithm must terminate after at most 2|V | steps,
which corresponds to the total number of joint strategies. The algorithm can
only terminate when z has reached 0, and G0 is the same game as G. It follows
that whatever strategy the algorithm terminates with must be optimal in the
original game.

Theorem 9. Algorithm 1 terminates, with a joint strategy σ that is optimal
for G after at most 2|V | iterations.

Lemke’s algorithm for LCPs allows a free choice of covering vector, and in
our description we used a unit covering vector. This can be generalised by giving
a positive covering value to every vertex. If each vertex v has a covering value dv
then the modification of the left edges in Definition 4 becomes:

rλz (v) =

{
rλ(v)− dv · z v ∈ VMax,

rλ(v) + dv · z v ∈ VMin.

The algorithm can then easily be modified to account for this altered definition.

4 The Cottle-Dantzig Algorithm For Discounted Games

The principle idea behind the Cottle-Dantzig algorithm is to maintain a set of
vertices whose balance is non-negative. The algorithm begins with an arbitrary
strategy, and it goes through a series of major iterations, where in each iteration
one vertex is brought into the set of vertices with non-negative balances, while
maintaining the non-negative balances of the vertices that are already in that
set. It is clear that if such a task can be accomplished, then the algorithm will
terminate after |V | major iterations.

We require a method for bringing some distinguished vertex v into the set
of vertices with a non-negative balance without the vertices currently in the set
getting a negative balance in the process. To accomplish this we will modify the
game by adding a bonus to the edge that the strategy currently chooses at v.
We will then drive the bonus up from 0 while maintaining an optimal strategy
for the modified game. Eventually the balance of v will become 0 in the modified
game, at which point the strategy at v can be switched away from the edge with
the bonus attached to it, and the bonus can be removed. We will prove that
after this procedure v will have a positive balance.

In this section we will override many of the notations that were used to
describe Lemke’s algorithm.

Definition 10 (Modified Game For The Cottle-Dantzig Algorithm).
For a real number w, a joint strategy σ, and a distinguished vertex v, we define
the game Gw to be the same as G but with a different reward on the edge chosen
by σ at v. If σ chooses the left successor at v then the left reward function is
defined, for every u in V , by:

rλw(u) =

rλ(u) + w if u = v and u ∈ VMax,
rλ(u)− w if u = v and u ∈ VMin,
rλ(u) otherwise.

If σ chooses the right successor at v then rρ modified in a similar manner.

We begin the major iteration with a strategy σ0, a value w0 = 0, and a set
of vertices with non-negative balances P . The task is to raise w from 0 until
Balσw(v) = 0, while maintaining the invariant that every vertex in P has a non-
negative balance. This can be accomplished using methods that are similar to
those used in Lemke’s algorithm. For every vertex in P we must compute how
the balance of that vertex changes as w is increased. The following propositions
are analogues of Propositions 6, 7, and 8.

Proposition 11. Consider a vertex u and a joint strategy σ. Suppose that v is
the distinguished vertex. The rate of change ∂w Valσw(u) is Du

σ(v).

Proposition 12. Consider a vertex u and a joint strategy σ in the game Gw.
The rate of change ∂w Balσw(u) is:

∂w Balσw(u) =

{
∂w Valσw(u)− β · ∂w Valσw(σ(u)) if u ∈ VMax,

β · ∂w Valσw(σ(u))− ∂w Valσw(u) if u ∈ VMin.

Algorithm 2 Cottle-Dantzig(G, σ)
P := ∅
while P 6= V do
i := 0; w0 := 0; v := Some vertex in V \ P
while Balσwi(v) < 0 do

wi+1 := wi + min{−
Balσwi

(u)

∂w Balσw(u)
: u ∈ P ∪ {v} and ∂w Balσw(u) < 0}

σ := σ[σ(u)/u] for some vertex u with Balσwi(v) = 0
i := i+ 1

end while
σ := σ[σ(v)/v]; P := P ∪ {v}

end while

Proposition 13. Consider a modified game Gw, a joint strategy σ, and a set
of vertices P which must not have negative balances. Let

y = w + min{− Balσw(u)
∂w Balσw(u)

: u ∈ P ∪ {v} and ∂w Balσw(u) < 0}.

No vertex in P has a negative balance in Gy. Moreover, one vertex in P ∪ {v}
is indifferent, and for all values x > y that vertex has a negative balance in Gx.

The process of raising w up from 0 until the balance of v is 0 in the modified
game is the same as the process of decreasing z in Lemke’s algorithm, only using
the different definitions from Propositions 11, 12, and 13. Once the balance of v
has reached 0 we can stop increasing w. Since v is now indifferent we can switch
it away from the edge that has the bonus attached to it. Once this has been
done, the values of all vertices are no longer affected by w, since the edge to
which it is attached is no longer chosen by the current strategy. Therefore we
can remove the bonus and recover the original game. The major iteration then
terminates with a strategy in which every vertex in P ∪ {v} has a non-negative
balance, and the next major iteration can begin.

Theorem 14. Algorithm 2 terminates, with the optimal joint strategy, after at
most 2|V | iterations.

5 Exponential Lower Bounds

We show that both Lemke’s and the Cottle-Dantzig algorithms take exponen-
tially many steps on the family of games shown in Figure 1. Max vertices are
depicted as squares and Min vertices are depicted as circles. For every vertex,
we define the right successor to be the vertex with the same owner as the vertex
itself, and the left successor to be the vertex that belongs to the other player.
Recall that the initial strategy for Lemke’s algorithm is the one that chooses the
right successor for every vertex. When speaking about vertices in the game we
often refer to either the leftmost or the rightmost vertex with a certain property.

In this context, the vertex being referred to is the one that is furthest to the
right or to the left in Figure 1.

For ease of exposition, we will describe the steps of the algorithm as if the
discount factor was 1. Although this is forbidden by the definition of a discounted
game, since the game contains one cycle, whose value is zero, the value of every
vertex under every strategy will be finite. As long as the discount factor is chosen
sufficiently close to 1, the algorithm will behave as we describe.

. . .

. . .

−23−24 −21−22

−21−22−23−24

2324 2122

24 23 22 21
0

−2n−1

2n−1

−2n−1

2n−1

−2n

2n

Fig. 1. The game Gn.

Note that the game graph is symmetric with respect to the line that separates
the vertices of the two players. We frequently refer to a vertex and the vertex
that it is opposite to, and hence we introduce the concept of vertex reflections.
For a vertex v that is not the sink, we write v to denote the reflection of v,
that is the vertex belonging to the other player that is shown directly opposite v
in Figure 1. We say that a joint strategy σ is symmetric if for all vertices v,
the strategy σ chooses the right successor of v if and only if it chooses the right
successor of v. The initial strategy for Lemke’s algorithm is a symmetric strategy.
Lemke’s algorithm always switches v directly before or after v and so it can be
seen as traversing through symmetric strategies.

Before discussing the modified games that Lemke’s algorithm constructs, we
give a simple characterisation of when a vertex is switchable in the original game.

Proposition 15. If σ is a symmetric joint strategy, then a vertex v is switchable
if and only if the path from v has an even number of left edges.

We now use this characterisation to give a simple formula for ∂−z Balσz (v) for
every vertex v under every symmetric joint strategy σ.

Proposition 16. If σ is a symmetric joint strategy, then ∂−z Balσz (v), the rate
of change of the balance of a vertex v, is 1 if v is switchable, and −1 otherwise.

Together, Propositions 15 and 16 imply that the parameter z can be set to
the largest balance of a switchable vertex. We show that the largest balance will
always belong to the rightmost switchable vertex.

Proposition 17. Let σ be a symmetric joint strategy, v be the rightmost switch-
able Max vertex, and z = −Balσ(v). Then no vertex in Gz is switchable, both v

and the reflection of v are indifferent, and for every real number y < z, there is
a switchable vertex in Gy.

Proposition 17 implies that whenever Lemke’s algorithm is considering a sym-
metric joint strategy, it must choose a z so that the rightmost switchable vertex
is indifferent. We show that this leads to an exponential number of switches.

Theorem 18. Lemke’s algorithm performs 2n+1− 2 iterations on the game Gn.

The Cottle-Dantzig algorithm is sensitive to the order in which to bring
the vertices into the non-negative set. We prove that there is an order that
causes exponential-time behaviour for this algorithm. The sequence of strategies
is similar to the sequence that Lemke’s algorithm follows.

Theorem 19. Consider an order in which all Min vertices precede Max vertices,
and Max vertices are ordered from right to left. The Cottle-Dantzig algorithm
performs 2n+1 − 1 iterations.

We have shown that both algorithms can take an exponential number of
steps on the discounted game Gn. We argue that this also implies an exponential
lower bound for parity and average-reward games. From the game Gn we can
obtain a parity game by replacing the reward ±2c with the priority c. The
standard reductions [16, 21, 13] convert this parity game into average-reward
and discounted games where priority c is replaced with reward (−n)c, and the
discount factor is chosen to be very close to 1. All arguments used to prove
Theorems 18 and 19 continue to hold if rewards of magnitude 2c are replaced
with rewards of magnitude nc, which implies the exponential lower bounds also
hold for parity games and average-reward games.

6 Future Work

Our adaptation of Lemke’s algorithm for solving discounted games corresponds
to its implementation in which the unit covering vector is used [6], and our
lower bounds are specific to this choice. Similarly our lower bounds for the
Cottle-Dantzig algorithm require a specific choice of ordering over the vertices.
Randomizing these choices may exhibit better performance and should be con-
sidered.

Adler and Megiddo [1] studied the performance of Lemke’s algorithm for
the LCPs arising from linear programming problems. They showed that, for
randomly chosen linear programs and a carefully selected covering vector, the
expected number of pivots performed by the algorithm is quadratic. A similar
analysis for randomly chosen discounted games should be considered.

References

1. I. Adler and N. Megiddo. A simplex algorithm whose average number of steps is
bounded between two quadratic functions of the smaller dimension. Journal of the
ACM, 32(4):871–895, 1985.

2. H. Björklund and S. Vorobyov. A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Applied Mathematics,
155(2):210–229, 2007.

3. S. J. Chung. NP-Completeness of the linear complementarity problem. Journal of
Optimization Theory and Applications, 60(3):393–399, 1989.

4. V. Chvátal. Linear Programming. Freeman, 1983.
5. A. Condon. On algorithms for simple stochastic games. In Advances in Computa-

tional Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 51–73. American Mathematical Society,
1993.

6. R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem.
Academic Press, 1992.

7. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments of
µ-calculus. In Computer Aided Verification (CAV), volume 697 of LNCS, pages
385–396. Springer, 1993.

8. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.
9. O. Friedman. A super-polynomial lower bound for the parity game strategy im-

provement algorithm as we know it. In Logic in Computer Science (LICS). IEEE,
2009. To appear.

10. B. Gärtner and L. Rüst. Simple stochastic games and P-matrix generalized lin-
ear complementarity problems. In Fundamentals of Computation Theory (FCT),
volume 3623 of LNCS, pages 209–220. Springer, 2005.

11. D. Gillette. Stochastic games with zero stop probabilities. In Contributions to the
Theory of Games, pages 179–187. Princeton University Press, 1957.

12. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games. A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.

13. M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP. Information
Processing Letters, 68(3):119–124, 1998.

14. M. Jurdziński and R. Savani. A simple P-matrix linear complementarity problem
for discounted games. In Logic and Theory of Algorithms, Computability in Europe,
volume 5028 of LNCS, pages 283–293. Springer, 2008.

15. M. Melekopoglou and A. Condon. On the complexity of the policy improvement
algorithm for Markov decision processes. ORSA Journal on Computing, 6:188–192,
1994.

16. A. Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD thesis,
University of California, Berkeley, 1995.

17. L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences
of the United States of America, 39(10):1095–1100, 1953.

18. C. Stirling. Local model checking games (Extended abstract). In Concurrency
Theory (CONCUR), volume 962 of LNCS, pages 1–11. Springer, 1995.

19. O. Svensson and S. Vorobyov. Linear complementarity and P-matrices for stochas-
tic games. In Perspectives of Systems Informatics, volume 4378 of LNCS, pages
409–423. Springer, 2007.

20. J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving
parity games (Extended abstract). In Computer Aided Verification (CAV), volume
1855 of LNCS, pages 202–215. Springer, 2000.

21. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158:343–359, 1996.

A Proofs for Section 3

A.1 Proof of Proposition 5

Proof. If there is no vertex v that satisfies Balσ0(v) < 0 then the current strategy
is optimal by Theorem 2 and there is no need to modify the game. Otherwise,
the definition of the modified game states that for every Max vertex, the weight
on the edge not chosen by σ0 is decreased by z0. Similarly for every Min vertex,
the weight on the edge not chosen by σ0 is increased by z0. Since none of the
modified weights are on edges chosen by σ0 every vertex has the same value
in Gz0 as it does in G when σ0 is played, and only the balance of the vertices will
change. These three observations imply that the balance of all vertices, as given
by equation (1), is increased by z0. Since z0 was chosen to be equal in magnitude
to the largest negative balance, the balance of every vertex when σ0 is played
in Gz0 must be non-negative. Therefore σ0 is optimal in Gz0 by Theorem 2. It is
also easy to see that the vertex with the largest negative balance is indifferent
and that this vertex would have a negative balance for all games modified by a
value smaller than z0. ut

A.2 Proof of Proposition 6

Proof. From equation (2) we find that for a vertex v,

rσz−c(v) =

rσz (v) + c if v ∈ VMax and σ(v) = λ(v),
rσz (v)− c if v ∈ VMin and σ(v) = λ(v),
rσz (v) otherwise.

Therefore, the change in Valσ(v) is equal to:

Valσz−c(v)−Valσz (v)

=
k−1∑
i=0

βi · rσz−c(vi) +
l−1∑
i=0

βk+i

1− βl · r
σ
z−c(ci)−Valσz (v)

=
∑
x∈L

([x ∈ VMax] ·Dv
σ(x)− [x ∈ VMin] ·Dv

σ(x)) · c+ Valσz (v)−Valσz (v)

=
∑
x∈L

([x ∈ VMax] ·Dv
σ(x)− [x ∈ VMin] ·Dv

σ(x)) · c .

ut

A.3 Proof of Proposition 7

Proof. The formula is obtained by substituting ∂−z Valσz for Valσ in Definition 1.
Additional care must be taken if σ chooses the right successor of v. In this
case, the left edge of v will also be decreased as z is decreased, and this is not
captured by ∂−z Valσz (σ(v)). This can be corrected for, however, by substituting
[σ(v) = λ(v)] for rσ(v) in Definition 1. ut

A.4 Proof of Proposition 8

Proof. All vertices with ∂−z Balσiz ≥ 0 can be ignored since their balances will
not decrease as z is decreased from zi−1. For every vertex v with ∂−z Balσiz (v) <
0, the ratio (Balσiz (v))/(∂−z Balσiz (v)) gives the largest amount that z can be
decreased by before Balσiz (v) becomes equal to zero. By choosing zi to be the
minimum over these ratios we ensure that the balance of all vertices remains
non-negative while the vertex with the minimum ratio becomes indifferent. For
all values x < zi the vertex with the minimum ratio will have a negative balance,
which implies σi will not be optimal in Gx by Theorem 2.

A.5 Proof of Theorem 9

Proof. In each step we have a game Gzi in which the current strategy σi is op-
timal. We also know that there is a unique vertex v that is indifferent, and that
∂−z Balσiz (v) < 0, which implies that z cannot be decreased further without the
balance of v becoming negative. The vertex v is then switched in σi, giving σi+1.
Note that by Proposition 7, the balance of v is computed as the difference be-
tween the successor chosen by the current strategy and the alternate successor.
Switching v causes this difference to be reversed and therefore, we have:

∂−z Balσiz (v) = −∂−z Balσi+1
z (v).

It follows that as z is decreased, Balσi+1(v) will increase. Since v was the unique
indifferent vertex, z can be decreased by a strictly positive amount while main-
taining optimality of σi+1.

Proposition 8 implies that σi is not optimal in Gx for all x < zi. Since
zi+j < zi for all j > 0 it follows that σi will never again be an optimal strategy
for the modified game. The algorithm always maintains optimality of the current
strategy in the modified game, and so it can never revisit σi. There are only 2|V |

possible strategies and therefore, the algorithm must terminate after at most 2|V |

iterations. The algorithm must terminate at the optimal strategy since optimality
of the current strategy in the modified game is maintained in each iteration and
it cannot terminate until z reaches zero, and G0 is the same as the original
game. ut

B Proofs for Section 4

B.1 Proof of Proposition 11

Proof. The proof is very similar to the proof of Proposition 6. Since Du
σ(v) gives

the precise contribution of the weight on the edge of v to the value of u and the
outgoing edge of v is the only edge that is modified in Gw it is clear that the
value of u will increase in proportion to Du

σ(v). ut

B.2 Proof of Proposition 12

Proof. The proof is very similar to the proof of Proposition 7. We obtain the
expression by substituting ∂w Valσw(v) for Valσ(v) in Definition 1. In contrast to
the expression used for Lemke’s algorithm, we do not need to account for the
edge not chosen by σ at u. This is because only one edge is modified in Gw, and
it is chosen by all strategies during the current major iteration. ut

B.3 Proof of Theorem 14

Proof. As with Lemke’s algorithm, we assume for now that there are no de-
generate steps during the execution of the algorithm, as these can be resolved
using the same rules that were outlined for Lemke’s algorithm. Using an identi-
cal argument as the one given in Theorem 9, it can be shown that during each
major iteration the algorithm can pass through at most 2|P | different strategies.
Since the set P is equal to V after the final major iteration, and all vertices
in P may never have a negative balance, all vertices will not be switchable in
the final strategy, and it must therefore be optimal by Theorem 2. To see that
the algorithm terminates after considering at most 2|P | strategies, note that
each major iteration passes through 2|P | strategies. The maximum number of
strategies visited must therefore be:

|V |−1∑
i=0

2i = 2|V |.

ut

C Proofs for Section 5

C.1 Proof of Proposition 15

Proof. If the vertex v belongs to player Max and the path from v uses an even
number of left edges then the final edge used before reaching the loop will have
weight −2n. By symmetry, the path starting at the alternate successor of v will
pass through the weight 2n. If we ignored the other weights on the two paths
then the balance of v would be 2 × −2n and v would be switchable. It can
easily be verified that no matter which other edges the path passes through,
the sum of the weights of those edges can never reach 2 × 2n. This means that
the balance of v cannot be brought above 0 and the vertex will therefore be
switchable. Conversely, if the path uses an odd number of left edges then the
difference of the final edge used will be 2 × 2n and there is no path that has
enough weight to bring the balance of the vertex below zero, implying that the
vertex is not switchable. The arguments work symmetrically for vertices owned
by player Min. ut

C.2 Proof of Proposition 16

Proof. We prove the proposition for the case when v is switchable. The proof for
the case where v is not switchable very similar. Since v is switchable, the path
from v that follows σ contains an even number of left edges. Since the owner of
vertex through which the path passes changes only when a left edge is taken it
follows that precisely half of the left edges originate from vertices belonging to
either player. If X is the set of vertices for which the path from v uses a left
edge, then by Proposition 6 the rate of change of v is:

∂−z Valσz (v) =
∑
x∈X

([x ∈ VMax] ·Dv(x)− [x ∈ VMin] ·Dv(x))

=
∑
x∈X

([x ∈ VMax]− [x ∈ VMin]) = 0.

If σ chooses the left successor of v then the path starting from σ(v) that follows σ
contains an odd number of left edges, and by symmetry the path that follows σ
from the alternate successor of v has an odd number of left edges. Alternatively,
if σ chooses the right successor of v then the path that follows σ from σ(v)
contains an even number of left edges and so does the path that follows σ from
the alternate successor of v. Either way, the path starting at v that moves to σ(v)
and then follows σ contains an odd number of left edges. Moreover the final left
edge on that path emanates from a vertex owned by the same player that owns v.
Therefore, by Proposition 6

[σ(v) = λ(v)] + β · ∂−z Valσz (σ(v) =

{
1 if v ∈ VMax,

−1 if v ∈ VMin.

The proposition can now be proved by substituting the values into Proposition 7.
ut

C.3 Proof of Proposition 17

Proof. Let {v0, v1, . . . , vk} be the set of switchable vertices belonging to player
Max ordered left to right. By Proposition 15 we know that there are an even
number of left edges on the path that follows σ from each of these vertices.
From a vertex vi, the path either takes a right edge to vi−1 or takes a left edge
to a Min vertex, followed by a possibly empty sequence of right edges passing
through Min vertices followed by a second left edge back to a Max vertex u.
Since the path from vi passes through an even number of left edges the path
from all of the odd vertices passed through must have an odd number of left
edges indicating that they are all unprofitable and by symmetry all of the Max
vertices between vi and u are also unprofitable. It follows that u is equal to vi−1

and that the path from vi passes through every vertex vj with j < i.
Since both of the outgoing edges of vi have the same weight the balance at vi

is:
Balσ(vi) = Valσ(σ(vi))−Valσ(σ(vi)).

Since the path leaving vi+1 that follows σ passes through vi, by symmetry the
path leaving the alternate edge of vi+1 must pass through the reflection of vi+1

and then σ(vi). Let c and d denote the sum of the weights along the path
from vi+1 to vi and from the alternate edge of vi+1 to the reflection of vi. The
balance at vi+1 is then:

Balσ(vi+1) = (Valσ(σ(vi)) + rσ(vi) + c)− (Valσ(σ(vi)) + rσ(vi) + d)
= Balσ(vi) + (rσ(vi) + c)− (rσ(vi) + d).

Note that both rσ(vi) and −rσ(vi) are both negative and that c − d cannot
possibly cancel them out. Therefore:

Balσ(vi) > Balσ(vi+1).

Now, if z is equal to −Balσ(vk), since all other switchable vertices have
balances with smaller magnitude none of them will be switchable in Gz and vk
will be indifferent. For any real parameter y less than z the vertex vk would be
switchable in Gy. ut

C.4 Proof of Theorem 18

Proof. The claim will be proved by induction. In G1 there are only two vertices
with more than one successor and they are reflections of each other. Initially
they are both profitable, since their paths use zero left edges and in the first and
second iterations they switch, arriving at the optimal strategy in two iterations.

The game Gi can be broken down into the leftmost pair of vertices and a
game Gi−1 which encompasses the vertices to the right of this pair. Since Lemke’s
algorithm works from the right an optimal strategy for the game Gi−1 must be
computed before the algorithm will touch the leftmost pair. Once the algorithm
has arrived at this strategy the leftmost pair will both be switched, one after
the other. Suppose that while solving the sub-game Gi−1, the algorithm passed
through the sequence of strategies 〈σ0, σ1, . . . , σk〉. Let σ′i be the strategy σi with
the left pair switched. Note that due to Proposition 15 a vertex pair is switchable
in σi if and only if it is not switchable in σ′i. Suppose that v and v are the
rightmost switchable pair of vertices in σ′i. After switching the pair, the algorithm
moves to a strategy τ in which v and v are not switchable and everything to
the right of them is switchable. If the leftmost pair were not switched then the
situation would be precisely reversed with v and v being the rightmost switchable
pair. It follows that τ = σ′i−1 and therefore after switching the leftmost pair the
algorithm will then proceed to pass through all of the strategies that it has
visited up to that point in reverse order. From this we obtain the recursion:

T (1) = 2,
T (n) = T (n− 1) + 2 + T (n− 1).

It can easily be verified that T (n) = 2n+1 − 2. ut

D Exponential Lower Bound For The Cottle-Dantzig
Algorithm (Proof of Theorem 19)

We show that the example that was used to show an exponential lower bound for
Lemke’s algorithm can also be used to show an exponential lower bound for the
Cottle-Dantzig algorithm. The initial strategy will be the one that selects the
right successor for every Max vertex and the left successor for every Min vertex.
Note that for this strategy every Min vertex has a positive balance and every
Max vertex has a negative balance. Recall that the Cottle-Dantzig algorithm
allows a free choice for the order in which vertices are brought into the non-
negative set. We use the following order: all of the Min vertices will be brought
in first, followed by the Max vertices, which will be brought in from right to
left. Since the balance of all Min vertices is positive, bringing them into the
non-negative set is a trivial operation that does not require modification of the
initial strategy. The major iterations that follow will be numbered 1 to n, and
it is our goal to show that the Cottle-Dantzig algorithm will take 2i− 1 steps in
major iteration i.

. . .

−2i−1−2i + w −21−22

−21−22−2i−1−2i

2i 2122

2i 2i−1

2i−1

22 21

Symmetric portion

0

−2n−1

2n−1

−2n−1

2n−1

−2n

2n

. . .

12in
−2i−2

−2i−2

2i−2

2i−2

i− 1

Fig. 2. The state of the algorithm at the start of major iteration i.

The situation at the start of major iteration i is depicted in Figure 2. The
edges chosen by the current strategy are depicted as solid edges, while dotted
edges show the alternate edges. The indices on the Max vertices show in which
iteration they are designated to enter the non-negative set. For convenience, we
use these indices to identify both the vertices themselves and the pair consisting
of the vertex with index i and its reflection. It can easily be seen that in major
iteration i the strategy may only change at vertices that are to the right of the
vertex pair with index i, since no other vertices can reach the Max vertex with
index i. Unlike Lemke’s algorithm, the overall strategy will not be symmetric
until the optimal strategy is found, but after major iteration i the strategy will
be symmetric on the i rightmost vertex pairs. This is shown as the symmetric
portion in Figure 2.

We begin by giving a characterisation of ∂ Balσz for the vertices in the sym-
metric portion.

Proposition 20. Suppose that the algorithm is in the major iteration i at a
strategy σ, and that v is a vertex in the symmetric portion of σ. Let π be the
path from v to the vertex with index i or its reflection, according to σ. Then we
have:

∂z Balσz (v) =

{
−1 If π contains an odd number of left edges,
1 otherwise.

Proof. If v is a Max vertex and the path from v to vertex pair with index i
takes an odd number of left edges then the path will arrive at the reflection of
Max vertex with index i. It follows that ∂z Valσz (v) is equal to 0, since the path
does not pass through the Max vertex with index i. Now consider the alternate
successor of v, which we call u = σ(v). Since the strategy is symmetric until
it reaches the vertex pair with index i, the path from u must lead to the Max
vertex with index i and so ∂z Valσz (u) is equal to 1. Substituting these into the
definition of ∂z Balσz (v) gives:

∂z Balσz (v) = ∂z Valσz (v)− β · ∂z Valσz (u) = 0− 1 = −1.

If the path from v uses an even number of left edges then the above is reversed:
the path from v passes through the Max vertex with index i and the path from
u does not. With the same reasoning we can conclude that ∂z Balσz (v) = 1. The
proof for vertices belonging to player Min is entirely symmetrical. ut

Proposition 20 implies that for the initial strategy σ in major iteration i,
every vertex v to the right of the vertex pair with index i has ∂z Balσz (v) equal
to −1. It follows that as w is increased, the first vertex to switch will be the
one with the smallest balance. For the initial strategy this will be the rightmost
vertex pair.

Proposition 21. Consider the first strategy in major iteration i. For every ver-
tex v with index j which is smaller than i, the balance of v will be 2 × (2i −∑i−1
k=j+1 2k)

Proof. It can be seen in Figure 2 that Max vertex with index i− 1 has balance:

2i − 2i−1 − (−2i − 2i−1) = 2× 2i

The Min vertex with index i− 1 has the same balance. Now, for every vertex to
the right of the Max vertex v with index i− 1, the balance can be computed by
considering two paths: the path that follows σ from v to the sink and the path
that uses the alternate edge of v and then follows σ to the sink. These two paths
join at the Max vertex with index i+ 1, and so the weights after this point are
irrelevant. The two weights on the outgoing edges are also irrelevant since they
are identical and one will be subtracted from the other. If v is the Max vertex
with index j then its balance is:

2i − 2i−1 − · · · − 2j − (−2i + 2i−1 + · · ·+ 2j+1 − 2j)

=2× (2i −
i−1∑

k=j+1

2k)

A symmetric proof can be used to show that the Min vertices have identical
balances to their reflections. ut

Our goal is to show that major iteration i will take 2i − 2 steps. For this
purpose we define, for 1 ≤ j < i, the quantity kj to be equal to the number of
strategies that the Cottle-Dantzig algorithm passes through before the vertex
with index j has balance 0 for the first time. Furthermore, we define wj to be
the value of the parameter w the first time the vertex with index j has balance
zero. Note that Proposition 20 implies that the first value of w chosen by the
algorithm will be the minimum over the balances of the vertices in the symmetric
portion. Proposition 21 implies that this will be the rightmost pair of vertices,
whose indices are 1. Therefore we set k1 = 0 and w1 = 2× (2i −∑i−1

k=2 2k). The
rightmost pair of vertices will be indifferent in the game Gw1 . We use these as
the base case for the following inductive proposition.

Proposition 22. Suppose that the algorithm is in major iteration i and that
is has passed through kj strategies, arriving at the first strategy in which the
vertices with index j have balance 0. All of the following hold:

– The algorithm will pass through kj + 2 further strategies before the vertex
with index j + 1 has balance 0 for the first time. That is kj+1 = 2kj + 2.

– The value of wj+1, which is equal to the value of the parameter w when
the vertex with index j + 1 has balance 0 for the first time, will be wj+1 =
2× (2i −∑i−1

k=j+2 2k).
– No vertex with index higher than j+ 1 will be switched before the vertex with

index j + 1 has balance 0.

Proof. Let 〈σ0, σ1, . . . σkj 〉 be the sequence of strategies that the algorithm con-
sidered before the vertex with index j had balance 0 for the first time. For a
strategy σl in this sequence we define the strategy σ′l as follows, for every ver-
tex v:

σ′l(v) =

{
σl(v) if the index of v is j,
σl(v) otherwise.

In other words, σ′l is σl in which the vertices with index j have been switched.
Since both vertices with index j are indifferent in σkj the algorithm will spend
two iterations switching them, one after the other. Note that the algorithm has
now arrived at σ′kj . Proposition 20 implies that for every l in the range 1 ≤ l ≤ kj
and every vertex v with index smaller than j,

∂z Balσlz (v) = −∂z Balσ
′
l
z (v).

This is because after switching the vertex pair with index j every vertex with
index less than j sees an extra left edge on its path to the cycle. So, as w is
increased the balance of every vertex σ′l will move in a direction that is opposite
to the way that it moved in σl. Under the assumption that no vertex with
index higher than j becomes indifferent, it can easily be verified that if w is

raised by wj − w1 the Cottle-Dantzig algorithm will pass through the sequence
of strategies 〈σ′kj , σ′kj−1, . . . σ

′
0〉 which together with the two iterations spent

switching the vertices with index j implies that the algorithm will pass through
2kj + 2 further strategies.

We now prove the assumption that the algorithm can raise w to wj+(wj−w1)
while not touching the vertices with indices higher than j. For a vertex v with
index m, which is higher than j, Proposition 21 implies that the balance of v at
the start of major iteration i was:

2× (2i −
i−1∑

k=m+1

2k).

Furthermore, the inductive hypothesis guarantees that the strategy has not been
changed from the initial strategy on all vertices with index higher than j. Since
in the initial strategy ∂z Balσ0

z (v) = −1 it follows that ∂z Balσlz (v) = −1 and
∂z Balσ

′
l
z (v) = −1 for all l in the range 1 ≤ l ≤ kj . Hence, the balance of v has

been decreasing continuously since the start of major iteration i. Therefore, in
iteration kj , when the vertex with index j had balance 0 for the first time, the
balance of v was:

2× (2i −
i−1∑

k=m+1

2k)− wj

= 2× (2i −
i−1∑

k=m+1

2k)− (2× (2i −
i−1∑

k=j+1

2k))

= 2×
m∑

k=j+1

2k.

From this we can conclude that the balance of every vertex with index higher
than j is at least 2× 2j+1. We intend to raise w by an amount equal to wj −w1,
this is equal to:

2× (2i −
i−1∑

k=j+1

2k)− (2× (2i −
i−1∑
k=2

2k))

= 2×
j∑

k=2

2j < 2× (2j+1 − 1)

Since this value is smaller than 2× 2j+1 no vertex with index higher than j will
become negative while w is being raised.

So far we have proved that the algorithm will pass through kj + 2 fur-
ther strategies without changing the strategy at the vertices with indices higher
than j. We now prove that in iteration 2kj + 2 the vertex pair with index j + 1
will be indifferent. Note that in σ′0 the path from every vertex with index less

than or equal to j uses precisely two left edges: one which belongs to a vertex
with index j and one that belongs to a vertex with index i−1. From this we can
conclude, by Proposition 20, that ∂z Balσ

′
0
z (v) = 1 for every vertex v with index

smaller than or equal to j. This implies that once the algorithm has reached σ′0
it can continue to raise w until the balance of some vertex with index greater
than j becomes 0. We have already shown that the balance of every vertex with
index higher than j has decreased in every iteration before the algorithm arrived
at σ′0. Therefore, to find the first vertex whose balance becomes 0 as w is in-
creased we need only to find the vertex whose balance was the smallest, among
those vertices with indices higher than j, at the start of major iteration i. From
Proposition 21 this is clearly the vertex with index j + 1.

We have now fully proved the first and third parts of the proposition. To
finish the proof we need only to compute the value that w must be set to in
order to make the vertices with index j + 1 have a balance equal to 0. Since the
balance of these vertices has always decreased, this must be equal to the balance
that these vertices had at the start of major iteration i. By Proposition 21 this
is equal to:

2× (2i −
i−1∑

k=j+2

2k)

ut

Finally, we can provide a proof for Theorem 19, by showing that the Cottle-
Dantzig algorithm will take an exponential number of steps on this family of
games.

Proof (of Thoerem 19). The algorithm first spends n steps adding the Min ver-
tices to the non-negative set. Then, in major iteration i, Proposition 22 leads
to the same recursion that appears in the proof of Theorem 18. Thus, while
increasing w the algorithm must pass through T (i− 1) = 2i − 2 strategies. The
algorithm will then switch the Max vertex with index i, which means that it will
traverse 2i − 1 strategies in total during major iteration i. This gives the total
number of iterations used by the algorithm as

n+
n∑
i=1

(2i − 1) = 2n+1 − 1.

ut

