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Abstract

We give improvements over fixed parameter tractable (FPT) algo-
rithms to solve the Kemeny aggregation problem, where the task is
to summarize a multi-set of preference lists, called votes, over a set
of alternatives, called candidates, into a single preference list that has
the minimum total T-distance from the votes. The 7-distance between
two preference lists is the number of pairs of candidates that are or-
dered differently in the two lists. We study the problem for preference
lists that are total orders. We develop algorithms of running times
O*(1.403%t), O*(5.823/™) < O*(5.823%avs) and O* (4.829%ma=) for the
problem, ignoring the polynomial factors in the O* notation, where k;
is the optimum total 7-distance, m is the number of votes, and kqyq
(resp, kmaz) is the average (resp, maximum) over pairwise 7-distances
of votes. Our algorithms improve the best previously known running
times of O*(1.53%) and O*(16*evs) < O*(16%ma=) [4, 5], which also
implies an O*(16%+/™) running time. We also show how to enumerate
all optimal solutions in O*(36%*/™) < O*(36%avs) time.

1 Introduction

Preference lists are typical elements of psychology questionnaires and social
science surveys. In many cases, we wish to combine the gathered preference
lists into a single list that reflects the opinion of the surveyed group as much
as possible. The Kemeny aggregation problem, introduced by Kemeny in
1959, is a famous abstract form of this problem [9]. Given a set of m
total orders, called votes, over a set of n alternatives, called candidates, the
Kemeny-optimal aggregation problem asks for a total order over candidates,
called an optimal aggregation, that minimizes the sum of 7-distances from
the votes, where the 7-distance between total orders 7, w9 is the number of
pairs of candidates that are ordered differently in the two total orders.



Bartholdi et al. [2] proved that the problem is NP-hard. Later, Dwork
et al. [8] showed that the problem remains NP-hard for constant even m’s
as small as m = 4. They used Kemeny’s formalization [9] in their search
for an effective spam filtering method that combined the results of multiple
search engines. Dwork et al.’s article [8] initiated a series of papers study-
ing algorithmic aspects of the Kemeny aggregation problem. The problem
was shown to have an O(n*5 4+ mn?) 2-approximation [8]. Ailon et al. de-
veloped randomized approximation algorithms of ratios 11/7 and 4/3 [1].
Later, Kenyon-Mathieu and Schudy developed a PTAS for the feedback arc
set problem for special weighted tournaments, which solves the Kemeny ag-
gregation problem as a special case [10]. Despite being a theoretical break-
through, this algorithm could not be used in practise. Recently, in an at-
tempt to develop practical approximation algorithms, Williamson and van
Zuylen derived a deterministic 8/5-approximation algorithm for the prob-
lem [13]. The reader is referred to a survey by Charon and Hudry [6] for a
detailed list of results.

Computational experiments of Davenport and Kalagnanam [7] suggest
that the Kemeny aggregation problem might be easier to solve when an opti-
mal aggregation is close to the input votes. In this direction, Betzler et al. [4]
parameterized the problem with the sum of the 7-distances of the optimal
aggregation from the input votes, denoted by k;, and the maximum pairwise
T-distances of the input votes, denoted by k. They developed O*(1.53%¢)
and O*((3kmaz + 1)!) time algorithms, giving the first FPT algorithms for
the Kemeny aggregation problem [4]. Later, they parameterized the prob-
lem by the average pairwise 7-distances of the input votes, denoted by kqug,
and developed an algorithm that ran in time O*(16%avs) < O*(16¥ma=) [3, 5].

Our results. We develop parameterized algorithms of running times
O*(1.403F), O*(5.823%/™) < O*(5.823%ev3), and O*(4.829%ma=) for the prob-
lem, improving the previous best running times of O*(1.53%¢) [4] and O*(16%avs) <
O*(16Fmaz) [5]. We are the first to parameterized the problem in terms of
k¢/m, although, by kg < 4ki/m, any FPT algorithm in terms of kqq,q im-
plies an FPT algorithm in terms of k;/m. We also give an algorithm to
enumerate all optimal solutions in O*(36*/™) time. It is worth mention-
ing that k¢/m is smaller than kg, and ke, and therefore, parameterizing
the problem with k;/m, instead of kqyg O Kpmaz, leads to potentially tighter
analysis of FPT algorithms.

Figure 1 summarizes the running times proved in this paper and the best
previous running times, in terms of the three parameters k¢, kqvg and ke

We fix pertinent notation in Section 2 and explain the parameterized
algorithms in Section 3.



Our Results Previous Running Times

m k¢ ‘ kavg Emazx Ky kavg kEmazx
3 1.403F 1.968Favs | 1.968Fmaz

4 1.403kt 2.760kavs | 2.760kmax

5 1.342k 3.241kavs | 3.241kmas

6 1.342k 4.348kavg | 4.348kmax

m || (2.415Y/m/21)ke | 5.833kave | 4,829Fmaz || 153K [4] | 16Faws[5] | 16Fmes [5]

Figure 1: A summary of the running times proved in this paper and the
best previous running times. Only the exponential terms are listed.

2 Preliminaries

We use U to denote the set of candidates. A binary relation on U is a subset
of U x U. A binary relation R is irreflexive if no (z,z), x € U, is in R. A
binary relation R is asymmetric if (x,y) € R, z,y € U and x # y, implies
(y,x) ¢ R. In this article, we only work with irreflexive asymmetric binary
relations. We may use z <p y to denote (x,y) € R, and describe it as R
orders z before y, .

A binary relation R is called complete if for any =,y € U, x # y, either
(x,y) € R or (y,z) € R. A binary relation R is transitive if (w,xz) € R
and (x,y) € R imply (w,y) € R. A total order is an irreflexive asymmetric
binary relation that is complete and transitive. We use 7y to denote the set
of total orders on U. We use R™ for a transitive binary relation R to denote
the transitive closure of R.

For any set R C U x U, we use rev(R) to denote {(b,a) : (a,b) € R}; we
may abuse the notation a little bit and use rev((a, b)) instead of rev({(a, b)}).
We say that Ry C U x U is consistent with Re C U x U if Ry Nrev(Rg) = 0.

Definition 1. The 7-distance between 71,7y € Ty, denoted by 7(mwy,m2), is
the cardinality of w1 — mo. For a multi-set T over Ty, 1(m,Z) is defined as
the sum of T(mwy,m2) over all total orders m in I.

An optimal aggregation of a multi-set Z on 7Ty is a total order o € Ty
that minimizes 7(c0,Z). We use OPT(Z) to denote the set of all optimal
aggregations. The Kemeny aggregation problem is the problem of finding an
optimal aggregation for any given multi-set Z on 7y;. For the case |Z| =1 or




2, any o € 7 is an optimal aggregation [8]. Therefore, we are only interested
in input instances that include more than two total orders.
We let unanimity(Z) denote the binary relation () .7 7.

Observation 1. [11] For any o € OPT(ZI), unanimity(Z) C o.

Therefore, the Kemeny aggregation problem reduces to determining the
order of dirty pairs, defined below:

Definition 2. The set of dirty pairs of Z, denoted by dirty(Z), is {{a,b} :
(a,b) € U er(m — unanimity (7))} .
We use numqp)(Z) to denote the cardinality of {m € T : a <z b}.

Definition 3. The majority graph of Z, denoted by M(Z), is a weighted
directed graph constructed as follows: for each a € U, we put a vertex in
M(Z) labeled as a. For each pair of vertices a and b, we put an edge from
a to b if numqy)(Z) > numq)(Z), and set its weight to numqp)(Z) —
numy q) (7).

Definition 4. A tournament majority graph of Z is a supergraph TM of
M(Z) whose set of vertices is U, is a tournament, and the weight of any
edge in E(TM) — E(M(Z)) is zero.

Dwork et al. observed that o is in OPT'(Z) if and only if E(M(Z)) — o
is a minimum-weight feedback arc set for M (Z) [8].

Definition 5. A subset F' of edges of a graph G is called a feedback arc set
for G if (E(G) — F) Urev(F) is transitive.

It is easy to see that the same observation is true for any tournament
majority graph of I:
Observation 2. A total order o is in OPT(I) if and only if E(TM) — o
s a minimum-weight feedback arc set for a tournament majority TM of L.

For weighted tournament graphs, the search tree algorithm of Raman
and Saurabh [12] can be used to find a minimum-weight feedback arc set of
size at most k edges in O*(2.415%) time. We should mention that the original
algorithm is designed for weighted tournaments with edge weights greater
than or equal to one; however, the algorithm can be used for general weights
if the search is confined to feedback arc sets that have no more than k edges.
This variant is specially useful for finding a minimum-weight feedback arc
set in tournament majority graphs, since although these graphs can have
zero-weight edges, we will show that they have a minimum-weight feedback
arc set with small number of edges.

We use MINFAS(G, k) to refer to this version of the algorithm, shown
in the appendix.



Lemma 1. [12] Suppose that G is a weighted tournament graph and k is a
positive integer. Then, MINFAS(G, k) returns a minimum-weight feedback

arc set of G with at most k edges, if one exists, in time O*((1 + v/2)F) ~
O*(2.415%).
Definition 6. For any multi-set T with an optimal aggregation o, ki =
7(0,1), kavg = avg{r(m,m2) : m,m2 € I}, and kpmas = maz{r(m,m2) :
T, T € I}.

Observation 3. k;/(m — 1) < kqug < 4k/m.

Proof. By the definition of k44, there is a total order in Z within the 7-
distance (m — 1)kqug from Z. Since an optimal aggregation cannot have a
larger distance from Z, k; < (m — 1)kqyg. The triangle inequality proves the
second inequality. O

We use O*(f(k,|Z])) to denote O(f(k,T) -|Z|¢) for some constant c. In
the rest of the paper, we assume that Z is a multi-set on 7y, |Z| = m > 3,
|U| = n, and TM is an arbitrary tournament majority graph of Z.

3 Parameterized algorithms

3.1 Parameters k; and k;/m

We base our analysis on the following lemma; for simplicity, we use d to
denote |E(T'M) — unanimous(Z)| and use k to denote |E(T'M) — o| for an
arbitrary o € OPT(T).

Lemma 2. For any 7 € Ty,
(d—[E(TM) —=|) + |E(TM) — | - [m/2] < 7(m,T)

Proof. Each of the k pairs (a,b) € E(TM) — 7 indicates that 7 opposes the
ordering of {a,b} suggested by the majority. Also, by the definition of dirty
pairs, for each of the remaining d — |E(TM) — 7| dirty pairs, there exists
a total order in Z that disagrees with the pair’s ordering in 7. Therefore,
the number of disagreements of 7 with total orders in Z is at least (d —

|E(TM) —x|) + |[E(TM) — x| - [m/2]. O
Corollary 1. For any 7w € Ty, |E(TM) — | < 7(7,Z)/[m/2].
Corollary 2. k < k;/[m/2].

Corollary 2 and Lemma 1 prove that we can use MINFAS(T'M, k¢ /[m/2])
to compute an optimal aggregation in O*(2.415%/[™/21) time.



Theorem 1. An optimal aggregation can be found in time O*(2.4155/1m/21) <
O*(2.415((m*1)/[m/21)kavg) < O*(2.415((7”*1)/%/2})%”)_

We can also use Lemma 2 to improve the O*(1.53%¢) running time by
Betzler et al. [4] to O*(1.403%t). Since m > 3, Lemma 2 proves the following
relationship between d and k:

Corollary 3. d+ k < k.

The trick is to use MINFAS(T'M, k; — d) for large values of d and brute
force search for small values of d.

Theorem 2. An optimal aggregation can be found in O*(1.475%) time.

log, (1+/2) _
Proof. Ifd > 71HO2&(1+\/§) k¢, then by Lemma 1 we can run MINFAS(T'M, k;

d) to obtain an optimal aggregation in time

logo (14+v/2)

O*((1 + vV2)k=4) < 0((1 + v2)!' " Trom v ™) < O (1.475).

. . log, (1+v/2)
Otherwise, if d < THow, (11 v3)

of the d dirty pairs to find the optimal aggregation. The running time in
this case will be in

k: we can enumerate all possible orderings

logg (1+1/2)

0*(29) < O*(2THo0+vD ) < O*(1.475M).
0

In the remainder of this section, we show how to find an optimal ag-
gregation in time O*(3(#/2)). If we use this improvement in the proof of
Theorem 2 instead of 2¢, we will get the following.

Theorem 3. An optimal aggregation can be found in time

logo (1+v/2)

O*(min{(1 + ﬁ)kt*d73d/2}) < O*(310g2(3)+210g2(1+\/§)kt) < O*(1.403kt)‘

In the following we give a search tree algorithm, shown in Algorithm 1,
to find an optimal aggregation. We use C} to denote a cycle of length t.

The algorithm gradually decides on the orderings of dirty pairs and uses
a set L to keep track of the pairs of vertices ordered so far. Each branch is
stopped when either all dirty pairs are ordered in L or the computed L does
not correspond to any total order.



Algorithm 1: FINDAGGREGATION1

Require: 7
1 T'M < a tournament majority graph of Z;
2 O «— ENUMAGGREGATIONS1(T' M, unanimity(Z)});
3 return o € O that minimizes 7(0,Z);

Compared to the search tree algorithm of Betzler et al. [4], we incorporate
a tournament majority graph into our search algorithm, and branch on
triples of dirty pairs that form a C5 in T'M, instead of all triples of dirty pairs.
Using the ideas in the search tree algorithm of Raman and Saurabh [12],
designed to find a minimum feedback arc set, we go one step further, and
consider Cy’s whenever possible. Since we will use this search tree algorithm
for small values of d, we modify the algorithm of Raman and Saurabh to
optimize the running time for small d’s. More precisely, in places that they
branch on minimal feedback arc sets of a cycle, we branch on all feedback
arc sets of the cycle (lines 5 and 7).

Algorithm 2: ENUMAGGREGATIONS1

Require: G, L
1 if G does not have a C5 then /* no cycles remained */
2 | return E(G);
3 else if G has a C5 = (V,, E.) with E.N L # () then
4 if £. C L then return (; /* L has a cycle */
5 else P — {m € Ty, : w is consistent with L};
6 else if G has a Cy = (V,, E.) then
7 ‘ P — {m €Ty, : mis consistent with L};
8 else /* C3’s in G do not have common edges */
9 let (V., E.) be a C5 in G;
10 let e be a minimum-weight edge in E,;
11 P — {E.—{e}Urev({e})};

=
N

return | J, . p ENUMAGGREGATIONS1((G — rev(r)) +m, LU T);

Theorem 4. FINDAGGREGATIONL(Z) returns an optimal aggregation of T

in time O*((+v/3)%).

Due to space limitations, the proof of running time of FINDAGGREGA-
TION1(Z) is moved to appendix.



Algorithm 3: FINDAGGREGATION2

Require: 7

1 T'M < a tournament majority graph of Z;

2 Kmaz < max{7(m,ms) : m1, M2 € L};

3 Initialize Q to E(TM); /* max-weight subset of edges */
4 foreach m € 7 do

5 foreach S C (E(TM) — m) with |S| < kmag do

6 P — (E(TM)—-7m)-S;

7 Py — MINFAS(TM — P + rev(P1), kmaz — |5));

8 if weight(P, U Py) < weight(Q) then Q «— Py U Py;
9 end
10 end

=
=

return (E(TM) — Q) Urev(Q);

Note that for m > 5 the bound of Theorem 1 is better than O*(1.403%),
with respect to k;. Perhaps, the reason is that the value of k; generally
increases when m is increased, and therefore, k;/m is a more reasonable
parameter than k; for large m’s.

3.2 The parameter k,,,,

In this section, we focus on the parameter k4, and show how to improve the
running time O*(2.415((m=D/[m/2Dkmaz) ~ O*(5.833Fmaz ) to O*((4.829)kma=),
The idea is to work with a total order in Z that is close to some 0 € OPT(Z),
and agrees with the majority of Z in most pair orderings. The precise algo-
rithm, called FindAggregation2, is shown in Algorithm 3.

The algorithm goes through every m € Z. For every m, the algorithm
assumes that 7 is close to some optimal aggregation, and starts the search
by deciding on the ordering of the pairs in E(T'M ) —, using the assumption
to confine the search space.

Theorem 5. FINDAGGREGATION2(Z) returns an optimal aggregation in
time O*(4.829Fmaz),

Proof. Since any computed P> in line 7 is a feedback arc set for TM — P, +
rev(Py), P U Py is always a feedback arc set for TM. By Observation 2,
the algorithm is proved to be sound once we show that P U P, is set to a
minimum-weight feedback arc set for 7'M at some point. We suppose that o
is an optimal aggregation. There exists some 7 in line 4 such that 7(o, 7) <



Emaz; since otherwise, mky,q, < 7(0,7), proving that mky,g, < 7(w,Z) for
every w € Z, which violates the definition of k4.

The set (E(T'M) —7) — (E(T'M) — o) is among the enumerated S’s in
line 5, since it is a subset of 0 — 7 and therefore its size is at most kyqz.
The value of P; for this S will be (E(TM) —7) N (E(TM) — o).

We claim that weight(P,) will be equal to weight((E(T'M)—o)—P;). The
weight of P, is not larger than weight((E(T'M) — o) — Py), since (E(TM) —
o) — Py is a feedback arc set for TM — P; + rev(P;) that has no more
than kpmez — |S| edges: the two sets S = (E(TM) — ) — (E(TM) — o) and
(E(TM) -0 —P) = ((E(TM) —0) — (E(TM) — m)) are disjoint subsets
of E(T'M), and in both sets, each edge connects a pair of vertices that are
ordered differently by ¢ and w. Therefore, |E(T'M)—o — Pi|+|S] is at most
7(0o, ), which is no more than k4., due to the choice of 7.

Consequently, the weight of PyUP; is at most weight(P; )+weight(E(T'M )—
o—P). Since P, C (E(TM)—o0), this weight is equal to weight(E(T'M)—o).
Therefore, P; U P, is a minimum-weight feedback arc set in some iteration.
This proves that the algorithm is sound.

The FindAggregation2 algorithm can construct the majority graph in
O(mn?) time. Also, computing the value of k.. takes at most O(m?n?)
time. The next time-consuming steps of the algorithm are lines 5 and 7. The
first branching step, line 5, takes O((‘E(T];/[)fﬂ)) time, for any 1 <14 < kpmaz-
By Lemma 1, the second branching step, line 7, takes O*((2.415)kmaz—7)
time. Overall, the algorithm runs in time

O*(m?*n? +m - > i<ich (IE(TAiJ)—W\) .2_415(kmam_i)) _
O*(Zlgigkmw (|E (TM)— w\) 2'415(kmw—1))

By the definition of kypez, 7(7,Z) < (m — 1)kmas. Hence, Corollary 1
proves that |E(TM) — 7| < 2kmae, and the running time is bounded by

or Zl<z<kmaz (%m‘”) 2. 415(’%”—@')) _
O (2.415(Fmar) Zl<z<kmax (%m‘”) 2.4152kmaz— z))
(@]

(
(

#(2.415(Fmar) SO (Pmar) L9, 415(@kmar ) =
(

kmax
O*(2.415(-Fmaz) (1 4- 2.415)2kmas) = o*(% ) < O*(4.829kmaz) .

O]

Theorem 5 improves the best previous running time of O*(16¥ma=) by
Betzler et al. [5].



Algorithm 4: ENUMAGGREGATIONS2

Require: 7
1 OPT « 0
2 0 «+ FINDAGGREGATION1(Z);
3 foreach tournament majority graph T'M of Z do

4 foreach S C (E(TM) — o) do

5 if |head(S)| = |tail(S)| = |S| then

6 P — {(z,u): (u,v) € S,z € (intervaly((v,u)) — head(S))};
7 foreach R C P do

8 R— RUrev(P—-R)US,

9 R~ RU{(z,u) : (u,v) € S, (x,v) € RT};

10 R— RU{(v,y): (u,v) € S, (u,y) € R};

11 Q « (0 —rev(R"))URT;

12 if @ is transitive and 7(Q,Z) = 7(0,Z) then
13 | OPT — OPT U{Q};

14 end

15 end

16 end

17 end

18 end

19 return OPT;

3.2.1 Enumerating Optimal Aggregations

In this section, we give an algorithm, shown in Algorithm 4, to enumerate
OPT(Z). The key point is to focus on candidates that are ordered consec-
utively in the goal optimal aggregation. To this end, we define seq(m) for
a total order m € Z as {(a,b) : fornoc € U, a < ¢ <, b}, and define
interval, ((u,v)) for any (v,u) € m as {x : z € U,v <p = <5 u}. Our algo-
rithm uses the fact that the seq of any optimal aggregation is a subset of
M(Z).

Due to space limitations, the proofs of the following two lemmas are
moved to appendix.

Lemma 3. If there ezists a total order m € Ty that is consistent with R,
seq(m) C E(TM) and seq(m) N (E(TM) — o) =S, then Q = .

Lemma 4. For any fired TM, |P| < 2ki/m — |S|, in line 6.

Theorem 6. ENUMAGGREGATIONS2(Z) returns OPT(T) in time O*(36%/™).

10



Proof. ENUMAGGREGATIONS2(Z) iterates through all possible orderings of
pairs {{a, b} : num,p)(Z) = numq)(Z)}. For any fixed ordering L of these
pairs, the algorithm searchs for the subset OPTL(Z) = {m € OPT(ZI) :
7 is consistent with L}. It divides OPT(Z) further in line 4, and look for
the subset OPTy, g(Z) of OPTL(Z) defined as {m € OPTL(Z) : seq(c) N
(E(TM)—o0)=S}. All potential S’s are produced in line 4. Line 5 removes
those S’s that contain two edges with the same head or the same tail, since
the seq of a total order cannot contain such edges. Finally, a set P of
pairs is computed such that any decision on the orderings of the pairs in P
narrows OPTy, s(Z) down dramatically. Indeed, Lemma 3 proves that for
any chosen R there is either one or zero m € OPTy, ¢(7) that is consistent
with RT. Furthermore, in case there exists one such 7, it is consistent with
the transitive relation @ (in line 11). Consequently, we can produce all total
orders in OPT(Z) by going through all possible R’s and see if () becomes
transitive and it is indeed an optimal aggregation.

For any chosen T'M, the number of iterations with [S| =i, 0 < i <
|E(TM) — of, will be (lE(TZZ/[)*”') x 2Pl We will prove in Lemma 4 that
|P| < 2k¢/m — |S|. Therefore, the number of iterations for each TM is at
most Y o<;<|E(TM)—o| ('E(TZ;ZI)*”') x22kt/m=i By Corollary 1, |E(TM)—o| <
2k;/m. Therefore, this value is bounded by

2 0<i<2ki/m (/™) x 22he/m=i = g2ke/m o (141 /2)2ke/m = ght/m

Any edge (a,b) € L indicates that o opposes the preference of exactly
m/2 total orders in Z. Therefore, |L| < 2k;/m. Since there are 2/"l possible
TM’s, the total number of iterations is bounded by 365/™. O
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Appendix

Proof of Theorem 4. We prove that the algorithm runs in O*((v/3)?) time.
We use u(L) to denote the number of undecided pairs, i.e. |{{a,b} :a,b €
U, (a,b) ¢ L}|. Initially u(L) is d. If at any point u(L) becomes zero, the
algorithm returns: either G does not have a cycle at that point, causing a
return in line 2, or has some Cj3’s, in which case all edges of its C3’s are also
in L, causing a return in line 4. For non-zero u(L)’s, if E. has two edges in L,
the algorithm branches on one case and reduces u(L) by one in line 5. If E,
has one edge in L, the algorithm branches on three cases, reducing u(L) by
two in all cases, in line 5. If E. does not have an edge in L and forms a Cy,
then E. has either zero or one edges in L. Therefore, either the algorithm
branches on 24 cases, reducing u(L) by six in all cases, or branches on 12
cases, reducing u(L) by five in all cases, in line 7. Otherwise, E. has no
edges in L and the algorithm branches on one case, reducing u(L) by three,
in line 11.

Therefore, the size of the search tree is bounded by «
satisfies the following inequalities:

u(L) for any a that

a¥>1

au(L) > 1 x au(L)—l
au(L) >3 x au(L)—Q
L) > 19 x quE)—5
L) > 24 x quL)=6
(L) >1x aL)—3

Consequently, the running time of the algorithm is in O*((v/3)9). O

To prove Lemma 3, we need two auxiliary lemmas:

Lemma 5. For any edge (u,v) € S and any verter x € intervaly((u,v)),
either (x,u) € R or (z,u) € rev(R").

Proof. We prove the lemma by strong induction: assuming that the state-
ment is true for every 2’ with x <, 2’ that is in an interval of some edge in
S, we prove the claim for x.

By definition of P in line 6, the lemma holds for = ¢ head(S).

If € head(S), there exists an edge (w,x) € S. Due to the condition of
line 5, the edges in S do not have common heads, and hence, w = u cannot
happen. If w <, u, then w € interval,((u,v)). Therefore, by induction
hypothesis, either (w,u) € RT or (w,u) € rev(R'). In the former case.
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(x,u) is inserted into R in line 10 when S is set to (w, x). In the latter case,
since (u,w) € R and (w,z) € S C R, the transitive closure of R contains
(u, ), and hence, (z,u) € rev(R™).

If u <, w, then u € interval,((w,z)). By induction hypothesis, either
(u,w) € RT or (u,w) € rev(R"). In the former case, (u,w) € RT and
(w,r) € S C R result in (u,x) € RT. In the latter case, (x,u) is inserted
into R in line 10 when S is set to (w, z). O

Lemma 6. Suppose that there exists a total order m € Ty that is consistent
with R. If v <,y and y <, x, then (y,r) € RT.

Proof. We prove the lemma by strong induction: assuming that the state-
ment is true for every x’ with x <, z’ and every v’ that satisfies 2’ <, 7/
and 3y’ <, 2/, we prove the claim for x.

Suppose that 7 imposes the order ... wqiws...wy..., for w1 =y, wy = =,
and ¢ > 2. Since z <, y, ™ cannot order x after y unless there exist some 1 <
i < £ such that (w;, w;y1) € S with = w;41 or x € intervaly, ((w;, wit1)).

In both cases (w;,z) € R™: in the former case, w;+1 = x. There-
fore, (w;,z) € S C RT. In the latter case, x € interval,((w;, w;y1)). By
Lemma 5, (x,w;) is in RT or rev(R™'). Since 7 is consistent with Rt and
orders w; before z, then (w;,z) must be in RT.

If w; = y, then (y,z) € R* is trivially true. For other cases, we show
that (y,w;) € RT, which proves that (y,z) € R™: if w; <, y, we can use the
induction hypothesis for w; and y to prove that (y,w;) € RT. Otherwise, if
y <o w; then y € interval,((w;, wit+1)). Thus, by Lemma 5 (y,w;) is in RT
or rev(R™T). Since 7 is consistent with RT and orders y before w;, (y,w;)
must be in RT. O

Proof of Lemma 3. As is true for any total order, (seq(m))* = 7. There-
fore, if seq(m) C @ and @ is transitive, then @ = 7.

We first prove that seq(m) C Q. Due to the assumptions for seq(7), the
edges in seq(m) are either in S or in E(T'M) — (E(TM) — o), which is a
subset of o. Therefore, seq(m) = S U K for some K C o. By definitions of
R and @, in lines 8 and 11, S C @Q. It only remains to prove that K C Q.
Since 7 is consistent with R, it is also consistent with R*, which proves that
any subset of 7, in particular K, has no edges in rev(RT). As Q contains
all edges in o except for the edges in rev(R™), it must include all edges in
K.

Next, we prove that Q = (o0 — rev(R")) U R is transitive. Since Q
is a complete binary relation, it is enough to show that it does not con-
tain a C3. Assume instead that there is a C3 on a set of edges E. =
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{(a,b), (b,c),(c,a)} C Q. Not all the edges in E, are in 0 — rev(R"), since
o —rev(R™") is part of the transitive binary relation o. On the other hand,
there exists at most one edge in E. that is in R, due to the transitivity of
R*. Consequently, the only potential case is that two of the edges in E.,
say (a,b) and (b, c), are in ¢ — rev(R") and the other edge, i.e. (c,a), is in
R™ but not in o — rev(R™).

Therefore, we know that a <, b <, ¢. If b <; a, then by Lemma 6
(b,a) € R*, which contradicts (a,b) € o — rev(R"). Otherwise, if ¢ <, b,
then by Lemma 6 (¢,b) € R™, which contradicts (b,¢) € 0 —rev(RT). O

Proof of Lemma 4. The idea is to prove that there are at least (|P| +
|S|)m/2 tuples of the form ({z,y},7), z,y € U, € T, such that the ordering
of {x,y} in o differs from its ordering in 7. That gives a lower-bound for k.

Every edge (u,v) € S indicates that o opposes the preference of u to
v in a multi-set O C 7 of at least m/2 votes. Moreover, for any w in
intervaly ((u,v)) — head(S), each vote in O orders either {u,w} or {v,w}
differently from o. Hence, for at least (14 |interval, ((u,v)) — head(S)|)m/2
tuples of the multi-set

{{z,y},m):m€O,(z =u,y =v) or (x € {u,v},y € interval,((u,v))—head(S)))}

the ordering of {z,y} in o differs from its ordering in 7.

Due to the condition in line 5, different edges eq,es € S correspond to
disjoint groups of tuples. Indeed, tuples of different edges in .S have different
first elements, since otherwise, either e; and es have a common endpoint and
there is a vertex in interval,(e;) N interval,(ez2), or e; has an endpoint in
interval, (e2) — head(S) and es has an endpoint in interval,(e1) — head(S).
The first case cannot happen, since the edges in S do have common heads
or common tails, and therefore, any two edges of S that share an endpoint
must have different sets of vertices in their intervals. The second case cannot
happen, since otherwise, tail(e;) € interval,(e2) and tail(ez) € interval,(eq)
must hold, which is not possible.

Consequently, the total number of disagreements of ¢ with the total
orders in Z, which is ) ., 7(m, o), is at least ) _g(1 + |interval,(e) —
head(S)|)m/2:

m/2- () (|interval,(e) — head(S)|) +|9]) < (o, I).
eeS
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Algorithm 5: MINFAS

I = | B NI R

©

10
11
12
13
14

Require: G,Y, k, Fyp,

; /* initially called with G,0,k, E(G) */
if G does not have a C'5 then /* no cycles remained */
‘ return F' € {F,;, Y} with minimum weight;
else if |Y| = k then /* cannot afford more edges */
‘ return (;
else if G has a C3 = (V, E.) with E.NY # () then
if £. CY then return 0; /* Y has a cycle */

else P—{F:FNY =

(0, F is a minimal subset of E. such that E. — F is transitive};
Ise if G has a Cy = (V,, E.) then

P—{F:FnY =

(0, F is a minimal subset of E. such that E. — F is transitive};
else /* C3’s in G do not have common edges */
let (V., E.) be a C3 in G;
let e be a minimum-weight edge in E,;
P —{e};
return F' € {F,;} U{MINFAS(G — F +rev(F),Y UF) : F € P} with
minimum weight;

(0]
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