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Abstract

We consider the satisfiability problem for circuits of limited size and/or depth. Say that an
algorithm solving a Boolean satisfiability problem on n variables is improved iff it takes time
O(2cn) for some constant c < 1, i.e. iff it is exponentially better than a brute force search.
We show an improved algorithm for the satisfiability problem for circuits of constant depth and
linear size. If improved upper bounds are not possible for a variant where the size is somewhat
more than linear or the depth grows, can we provide evidence regarding the hardness of the
problem? (note to authors: Did we actually discuss this question in greater depth in the paper?
Maybe this should be reworded.)

For each d and c, we give a randomized algorithm solving the satisfiability problem for depth d

circuits with n variables and at most cn gates in time 2(1−δ)n where δ ≥ 1/O(c2d−2
−1 lg3·2d−2

−2 c),
and the constant in the big-Oh depends only on d. The algorithm can be adjusted for use with

Grover’s algorithm to achieve a run time of 2
1−δ

2
n on a quantum computer.



1 Introduction

All NP-complete problems are equivalent as far as the existence of polynomial time algorithms is
concerned. However, the exact complexities of these problems vary widely. There are frequently
algorithms for NP-complete problems that achieve substantial improvement over exhaustive search.
This raises the questions: Which problems have such improved algorithms? How much can we
improve? Can we provide evidence that no improvement over some known algorithm is possible?
Work addressing such questions, both from the algorithmic and complexity theoretic sides, has
become known as exact complexity, and it is related to the field of parameterized complexity. While
significant work has been done, both areas are still fairly new and leave open many problems. In
particular, the answers and techniques seem to rely on the exact NP-complete problem in question,
and there are few unifying techniques. (This is in some ways similar to the situation for the
exact approximation ratios achievable for different NP-complete problems, which also is problem
dependent. However, the use of probabilistically checkable proofs, and the unique games conjecture
and related conjectures, provide very general tools for understanding approximability for a wide
variety of problems. We are still looking for similar tools for exact complexity.)

From the viewpoint of exact complexity, the most studied and best understood problems are
probably the restricted versions of the general satisfiability problem (SAT), in particular, k-SAT,
a restriction of SAT to k-CNFs, and CNF-SAT, a restriction to general CNFs. There has been
a sequence of highly nontrivial and interesting algorithmic approaches to these problems [Sch99,
PPZ99, PPSZ05, Sch05, DW05, CIP06], where the best known constant factor improvements in
the exponent are of the form 1 − 1/O(k) for k-SAT and 1 − 1/O(lg c) for CNF-SAT with at
most cn clauses. Also, a sequence of papers ([IPZ01, IP01, CIKP08, CIP06]) has shown many
nontrivial relationships between the exact complexities of these problems, and helped characterize
their hardest instances (under the assumption that they are indeed exponentially hard.) For what
other circuit/formula models can we expect to show improved exponential-time (i.e. O(2cn)-time
for c < 1) algorithms for the satisfiability problem?

1.1 Linear-size Bounded Depth Circuits

In this paper, we consider the exact complexity of the satisfiability problem for circuits of limited
size and depth, which seems significantly harder than k-SAT. We give what we believe are the first
improved algorithms for the satisfiability problem for circuits of constant depth d > 2 (AC 0 type).
(There is some work that improves the performance of SAT algorithms in terms of the circuit size
parameter, but these algorithms are no better than exhaustive search once the circuit size gets
larger than around 4n or so.) For each c, d > 0, we give a constant δ > 0 and a randomized
algorithm that works in 2(1−δ)n time and solves the satisfiability problem for depth d, size at most
cn circuits. (Here, it is significant that circuit size is measured by gates rather than wires.)

For d = 2, our algorithm becomes deterministic and matches the current best bound [CIP06],
since our algorithm and analysis are generalizations of the ones there. However, the randomization
procedure described above also yields the best quantum algorithm for this case, with running time

O(2
1−1/O(lg c)

2
n). For d = 3, this gives δ ≥ 1/O(c lg4 c), which, as far as the authors know, is the

first improvement achieved for this problem.
There are a few motivations to consider linear-size circuits. One is the question of ideal block

cipher design. Block ciphers are carefully constructed to maximize efficiency for a given level of
security. Particularly, since we want ciphers to be usable by low-power devices, and to be imple-
mented at the network level, it is often very important to have efficient hardware implementations
that make maximum use of parallelism. A typical cipher computes for a small number of “rounds”,
where in each round, very simple operations are performed (e.g., substitutions from a look-up table
called an S box, permutations of the bit positions, or bit-wise ⊕ operations). These operations
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are almost always AC0 type or even simpler. It is also considered vital to have key sizes that are
as small as possible, and an algorithm that breaks the cryptosystem in significantly less time than
exhaustive search over keys is considered worrisome. So this raises the question: Can we have an
ideal block cipher family (one per key size), i.e. so that the number of rounds remains constant,
each round being implementable in constant depth with a linear number of gates, and security is
almost that of exhaustive search over keys? Our results rule out such ideal block ciphers, and so
give a partial explanation for why the number of rounds needs to increase in new generations of
block ciphers. (Block ciphers require average-case security, not worst-case, but worst-case algo-
rithms obviously also rule out average-case security. Our values of δ are vanishingly small for the
sizes and depths of real cryptosystems, so our results cannot be used for cryptanalysis of existing
block ciphers.)

Another motivation is that linear-size circuits are perhaps the most general class of circuits for
which we can expect to show improved upper bounds on their exact complexity. To explain this
statement, we need the following notation. Let sk = inf{c|∃ a randomized algorithm for k-SAT
with time complexity poly(m)2cn for k-CNF formulas of size m over n variables}. Let ETH denote
the Exponential-Time Hypothesis: s3 > 0. We know that the sequence {sk} has a limit and let
s∞ denote this limit. [IP01] proposed the open question whether s∞ = 1, which we will call the
Strongly Exponential-Time Hypothesis (SETH). The best known upper bounds for sk are all of
the form 1− 1/O(k), which makes the conjecture SETH plausible.

Here is the connection between SETH and the complexity of satisfiability of linear-size circuits:
Since one can embed k-CNFs for any k into any non-linear size circuit model (in particular, noncon-
stant density CNF) [CIP06], improved upper bounds for the satisfiability problem for nonlinear-size
circuits would imply s∞ < 1. Thus, we are primarily left with the question of the complexity of
the satisfiability problem for linear-size circuits if SETH holds. The following partial converse
shows a further connection between SETH and improved bounds for the satisfiability of linear-size
circuits. If s∞ < 1, one can easily show using the depth-reduction technique of Valiant [Val77]
(see also [Cal08]) that the satisfiability problem for cn-size series-parallel circuits has an improved
upper bound of 2δ(c)n where δ(c) < 1.

Yet another motivation is that improved algorithms for SAT for a circuit model C may reveal
structural properties of the solution space of circuits in C. These structural properties may in turn
be helpful in proving stronger lower bounds on the size of circuits which are disjunctions of circuits
in C. In fact, [PSZ00, PPZ99, PPSZ05, IPZ01] exploit this connection to provide the best known
lower bounds of the form 2∆(k)n/k where ∆(k) > 1 for depth-3 unbounded fan-in circuits with
bounded bottom fan-in k. This connection between the hardness of the satisfiability problem for
a circuit model and lower bounds of a related circuit model is not surprising since a more general
circuit can compute more complicated functions, it may become more difficult to invert, i.e. check
the satisfiability of, these functions.

1.2 Extension to quantum computing model

Since Grover’s quantum search algorithm [Gro96] provides a quadratic speed-up, the baseline in
the quantum model for improved algorithms is 2n/2. In other words, a quantum algorithm is an
improvement for the satisfiability problem if the constant factor in the exponent in the running
time is strictly less than 1/2. However, it is not clear that every improved algorithm in the classical
model can benefit from a quadratic speed-up in the quantum model. It is known that the class of
algorithms that are exponential iterations of probabilistic polytime algorithms can obtain quadratic
speed-up using Grover’s technique.

More precisely, [Gro96, BBHT96] show that a probabilistic algorithm running in time t and with
success probability p can be transformed into a quantum algorithm with running time O(t/

√
p)

and with constant success probability. The quadratic speed-up provided by quantum algorithms
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prompts the following question: Given an algorithm A with exponential running time t, can we
transform it into an exponential iteration of a polytime algorithm B with success probability
approximately 1/t? Such a transformation would prime A for use in Grover’s algorithm and we
could reap the full benefit of its quadratic speedup in the quantum model. In this paper, we
show that our algorithm for the satisfiability of bounded-depth linear-size circuits can be sped
up quadratically in the quantum model, i.e. that our algorithm, which runs in time 2(1−δ)n with
constant success probability, can be sped up by transforming it into a probabilistic polynomial-time
algorithm that succeeds with probability at least 2−(1−δ)n.

2 Improved upper bounds for the satisfiability of bounded depth

circuits of linear size

2.1 Definitions

A literal is a variable or its negation. The inputs (outputs) of a dag are those nodes with indegree
0 (outdegree 0). A circuit F is a dag where each input is labeled with a literal, each non-input
(called a gate) is labeled AND or OR, and there is exactly 1 output. A subgate of size k of a gate
g is a gate h (not necessarily in F ) with the same label as g and with k of g’s inputs. The depth d
of F is the number of edges in a longest path in F . The ith level of F is the set of gates a distance
of i from the output, e.g. the output is at level 0 and the bottom gates are at level d− 1.

We define the savings for an algorithm A whose input φ contains n boolean variables is the
supremum of δ such that A has run time ≤ poly(|φ|)2(1−δ)n. We can think of the savings as the
fraction of variables ’saved’ over the run time of an exhaustive search algorithm.

2.2 High level description

Assume F has n variables and at most cn gates. To test whether F is satisfiable, we first reduce
the fan-in of each bottom gate to some k by branching on a k-subset of the edges coming into any
bottom gate with fan-in > k. We branch until either we’ve halved the original number of variables,
in which case we simply use exhaustive search to solve, or each bottom gate has fan-in ≤ k, in
which case we choose a random restriction of (1 − p)n variables for some p. This may leave some
bottom level gates with > 1 free variable. We clean up these gates by branching on all possible
assignments to them. By choosing k, p appropriately, w.h.p. there will still be Ω(pn) free variables,
but the bottom level gates will each have at most 1 free variable. So we can collapse the circuit to
depth d− 1 and recurse.

The random restriction technique used in this paper is a simpler version of the technique used
in [IPS97] to obtain nonlinear lower bounds of the number of edges of bounded depth threshold
circuits.

2.3 Detailed description

We describe our algorithm in several subroutines:

• The functions maind,c(F ), Ad,c(F ), A′

d,c all test the satisfiability of F when F has depth d
and at most cn gates. maind,c is a wrapper function that sets the global variable n0 to the
number of variables in the initial call. The function Ad,c is a wrapper for the function A′

d,c.
The initial invocation A′(d, 2c)(F ) from the function Ad,c is such that the ratio of gates to
variables in F is at most c, but A′ will set variables, increasing the ratio. If the ration ever
exceeds 2c, A′ will resort to exhaustive search since this means at least half of the variables
must have been set since the most recent call to Ad,c.
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• Ad,c,k(F ) will test the satisfiability of F when F has depth d, at most cn gates, and bottom
fan-in ≤ k.

• find restriction(F, p) finds a set of variables W in F whose complement has size in the interval
[12pn, pn] and such that if the variables of W are assigned, then each bottom level gate has
≤ 1 free variable.

• PPZ is the k-SAT solver (which is the same as a depth 2 circuit solver) from [PPZ99] whose
run time has savings 1/k. We also assume this algorithm handles depth 1 circuits in poly
time.

Below, the choices of k, p, c′ are unspecified, and are left for the analysis section.
If h is an AND of literals, then F |h sets those literals to true and simplifies the circuit by

removing true children of AND gates, false children of OR gates, replacing empty AND gates by
true, replacing empty OR gates by false; unless h contains contradictory literals, in which case F |h
is simply false. If h is an OR of literals, F |h removes any gate of which h is a subgate and then
performs a similar simplification. Also if h is an AND (OR) of literals, then ¬h is the OR (AND)
of the negations of those literals.

maind,c(F ) // wrapper function, F has depth d, ≤ cn gates
n0 ← |var(F )|
return Ad,c(F )

Ad,c(F ) // wrapper function, F has depth d, ≤ cn gates
return A′

d,2c(F )

A′

d,c(F )
if the gates to variables ratio is > c // solve by brute force

for each a ∈ 2var(F )

if F (a), return 1
return 0

choose k // as some function of d, c
if ∃ bottom gate g in F of fan-in > k // branch

let h be a subgate of g of size k
if A′

d,c(F |h), return 1
if A′

d,c(F |¬h), return 1
return 0

return Ad,c,k(F )

Ad,c,k(F ) // F has depth d, ≤ cn gates, bottom fan-in ≤ k
if d ≤ 2, return PPZ(F )
choose p, c′ // as functions of d, c, k
W ← find restriction(F, p)
for each a ∈ 2W

// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
if Ad−1,c′(F

′), return 1
return 0

4



find restriction(F, p) // F has n variables
B ← {bottom gates of F}
do 2n0 times

U ← random subset of var(F ) of size (1− p)n
G← {g ∈ B | |var(g)− U | > 1}
V ← var(G)
if |V | ≤ 1

2pn
return U ∪ V

die // algorithm fails

2.4 Run time analysis

Let ad,c, ad,c,k be the savings (see Section 2.1 for the definition) in the run time for Ad,c, Ad,c,k

not counting the time spent in find restriction in any subcall. We assume c ≥ 2 and ∀d ≥ 2, k ≥
4 ad,c, ad,c,k ≤ 1

4 .
First we analyze Ad,c. Let T be the call tree of the invocation A′

d,2c(F ), where leaves are either
calls to Ad,2c,k or exhaustive searches and the internal nodes are calls to A′

d,2c. Each branch either
eliminates a gate or k variables. So each path has at most cn branches of the first type and at most
r ≤ n

k of the second type, where n = |var(F )|.
The amount of time T0 spent on all the leaves that use exhaustive search is at most poly(n)2

n
2

times

≤
n
k

∑

r=0

(

cn + r

r

)

≤
n
k

∑

r=0

(

2cn

r

)

≤ 2h( 1
2ck

)2cn+1,

where h is the binary entropy function. Since ∀ε ∈ (0, 1
2 ] h(ε) ≤ ε lg( 4

ε ),

h
( 1

2ck

)

2c ≤ 1

2ck
lg(8ck)2c =

lg c + lg k + 3

k
,

which is at most 1
4 for sufficiently large c if we choose

k ≥ 5 lg c. (1)

So T0 ≤ poly(n)2
3
4
n.

The amount of time T1 spent on all the leaves that call Ad,2c,k, not counting time spent in
find restriction in any subcall, is at most poly(n) times

n
k

∑

r=0

(

cn + r

r

)

2(1−ad,2c,k)(n−kr)

≤2(1−ad,2c,k)n
2cn
∑

r=0

(

2cn

r

)

2−(1−ad,2c,k)kr.

The summation is (1 + 2−(1−ad,2c,k)k)2cn ≤ 22−
k
2 +2cn since ad,2cn,k ≤ 1

2 . We want 2−
k
2
+2c ≤ 1

2ad,2c,k,
which happens if we choose

k ≥ 2 lg
c

ad,2c,k
+ 6. (2)
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Both conditions (1),(2) are implied by

k ≥ 5 lg
c

ad,2c,k
(3)

since c ≥ 2, ad,2c,k ≤ 1
4 . So T1 ≤ poly(n)2(1− 1

2
ad,2c,k)n provided k can be chosen to satisfy (3). Since

we assume ad,2c,k ≤ 1
2 , T0 is no more than this bound, and we have the following.

Lemma 1. ∀d, c ≥ 2 if k ≥ 5 lg c
ad,2c,k

, then ad,c ≥ 1
2ad,2c,k.

Now we analyze find restriction. Let g ∈ B and X = |var(g)−U |. g has a fan-in k ′ ≤ k and so

X is hypergeometric with parameters n, k ′, pn. We claim that Pr(g ∈ G) = Pr(X ≥ 2) ≤
(k′

2

)

p2.
To see this, note that the sample points where X ≥ 2 can be partitioned according to the positions
among the k′ variables of g of the first 2 free variables (i.e., not in U), and the probability of any

of these
(

k′

2

)

events is at most p2. So

E(|V |) ≤ E(|G|)k ≤
(

k

2

)

p2|B|k ≤ 1

2
k3p2cn.

We want E(|V |) ≤ 1
4pn, and this happens if we choose

p =
1

2ck3
. (4)

By Markov’s inequality,

Pr
(

|V | > 1

2
pn

)

≤ E(|V |)
1
2pn

≤ 1

2
.

So the probability that any call to find restriction dies is at most 2−2n0 and the time spent in each
call is at most poly(n0).

Now consider the loop of Ad,c,k, which leaves f ∈ [ 12pn, pn] variables free and sets the rest. The
gates to variables ratio for F ′ is at most cn

1
2
pn

= 4c2k3. So set

c′ = 4c2k3. (5)

The running time of Ad,c,k, not counting the time spent in find restriction, is then at most poly(n)
times

2n−f+(1−ad−1,c′ )f = 2n−ad−1,c′f ≤ 2(1− 1
2
pad−1,c′ )n,

and we have the following.

Lemma 2. If we set p = 1
2ck3 , c′ = 4c2k3, then ad,c,k ≥ 1

4ck3 ad−1,4c2k3 .

Lemma 3. ∀d, c ≥ 2,

ad,c ≥ 1/O(c2d−2
−1 lg3·2d−2

−2 c),

where the constant in the big-Oh depends only on d.
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Proof: We use induction to show that for each d, k can be chosen to be O(lg c) so as to satisfy
(3) and ad,c ≥ 1/O(cf(d) lgg(d) c) for some functions f, g where the constants in the big-Ohs depend
only on d.

a2,c,k = 1
k . From lemma 1, we need to choose k such that k ≥ O(lg c

a2,2c,k
) = O(lg c + lg k). So

k = O(lg c) suffices, and we conclude that a2,c ≥ 1/O(lg c). So f(2) = 0, g(2) = 1. This completes
the base case.

From the inductive hypothesis and lemma 2,

ad,c,k ≥ 1/O(ck3(c2k3)f(d−1) lgg(d−1)(c2k3))

= 1/O(c2f(d−1)+1k3f(d−1)+3 lgg(d−1)(ck)).

To use lemma 1, we need to choose k such that

k ≥ O(lg(c2f(d−1)+2k3f(d−1)+3 lgg(d−1)(ck)))

= O(lg c + lg k).

So k = O(lg c) suffices, and we conclude that

ad,k ≥ 1/O(c2f(d−1)+1 lg3f(d−1)+3+g(d−1) c).

So we have the recurrence

f(d) = 2f(d− 1) + 1 f(2) = 0

g(d) = g(d − 1) + 3f(d− 1) + 3 g(2) = 1

which has solution f(d) = 2d−2 − 1, g(d) = 3 · 2d−2 − 2.

Theorem 1. ∀d, c ≥ 2, the savings for maind,c is at least

1/O(c2d−2
−1 lg3·2d−2

−2 c),

where the constant in the big-Oh depends only on d.

Proof: This is a corollary from the previous lemma together with the following observations.
The total time spent in find restriction is at most poly(n0) times the number of calls to Ad′,c′,k′ for
all values of d′, c′, k′, so it suffices to upper bound the time spent elsewhere. Also, from the union
bound, and since the number of these calls is at most 2n0 , the probability of dying in some call to
find restriction is at most 2−n0 .

2.5 Fully randomizing the algorithm

We now sketch how to make the algorithm run in polytime and succeed with probability ≥ 2−(1−δ)n

where δ ≥ 1/O(c2d−2
−1 lg3·2d−2

−2 c). The ’exhaustive search’ in A′

d,c should be changed to simply
choose a random assignment a and return F (a). Also, instead of calling both A ′

d,c(F |h) and
A′

d,c(F |¬h), we instead call just one of them randomly. In particular, call the one that eliminates
k variables with some probability q and the other with probability 1 − q. The iteration over all
a ∈ 2W in Ad,c,k should be changed to choose a random a ∈ 2W .

It can be shown that choosing q =
ad,c,k

4c allows us to use almost exactly the same analysis as
before, only instead of upper bounding run time, now we lower bound success probability. Details
can be found in the Appendix.
Acknowledgments: We would like to thank Mike Saks for useful discussions.
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Appendix

3 Polytime version of depth d, linear size circuit algorithm

3.1 High level description

Assume F has n variables and at most cn gates. To test whether F is satisfiable, we first reduce
the fan-in of each bottom gate to some k by repeatedly selecting a k-subset h of the edges coming
into any bottom gate g with fan-in > k and setting h to either true or false. One of these settings
will eliminate k variables and the other will eliminate a gate. The one that eliminates k variables
we choose with probability q and the other with probability 1− q.

We continue guessing until either we’ve halved the original number of variables, in which case
we simply guess an assignment to the remaining variables, or each bottom gate has fan-in at most
k, in which case we choose a random restriction of (1 − p)n variables for some p. This may leave
some bottom level gates with > 1 free variable. We clean up these gates by randomly setting all
the variables in them. By choosing k, p appropriately, with probability ≥ 1

2 there will still be Ω(pn)
free variables, but the bottom level gates will each have at most 1 free variable. So we can collapse
the circuit to depth d− 1 and recurse.

This procedure takes polynomial time and has exponentially small probability s of finding a
satisfying assignment. By iterating s−1 times, we increase the probability of success to a constant.

3.2 Detailed description

We describe our algorithm in several subroutines:

• Ad,c(F ) tests the satisfiability of F when F has depth d and at most cn gates. F initially has
gates to variables ratio of at most c, but it may set variables, increasing the ratio. If it ever
exceeds 2c, Ad,c will simply guess an assignment to the remaining variables since this means
at least half of the variables must have been set.

• Ad,c,k(F ) will test the satisfiability of F when F has depth d, at most cn gates, and bottom
fan-in at most k.

• find restriction(F, p) finds, with probability ≥ 1
2 , a set of variables W in F whose complement

has size in the interval [ 12pn, pn] and such that if the variables of W are assigned, then each
bottom level gate has at most 1 free variable.

• PPZ iterate is 1 iteration of the k-SAT solver (which is the same as a depth 2 circuit solver)
from [PPZ99] whose run time has savings 1/k - i.e., PPZ iterate takes polytime and has

success probability ≥ 2−(1− 1
k
)n. More explicitly, it chooses a random permutation of the

variables, then assigns them one at a time, in that order, uniformly randomly, unless the
current variable appears in a unit clause C, in which case it is set as C demands, and
simplifies the formula after each iteration by removing true clauses and false literals. We also
assume this algorithm handles depth 1 circuits in polytime.

Our algorithm description is not the most efficient, compromises were made to simplify the proof.
For example, it is easy to construct an equivalent algorithm containing only 2 subroutines, but
the analysis would be obtuse. Below, the choices of k, p, q, c′ are unspecified, and are left for the
analysis section.

If h is an AND of literals, then F |(h = 1) sets those literals to true and simplifies the circuit
by removing true children of AND gates, false children of OR gates, replacing empty AND gates
by true, replacing empty OR gates by false; unless h contains contradictory literals, in which case
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F |(h = 1) is simply false. If h is an OR of literals, F |(h = 1) removes any gate of which h is
a subgate and then performs a similar simplification. Also if h is an AND (OR) of literals, then
F |(h = 0) can be treated as F |(h′ = 1) where h′ is the OR (AND) of the negations of those literals.
The purpose of all these definitions is so that below, in Ad,c, the line F ← F |(h = b XOR b′) sets h
in the way that eliminates k variables with probability q and the other way with probability 1− q.

Ad,c(F ) // F has depth d, at most cn gates
choose k, q // as some function of d, c
while ∃ bottom gate g in F of fan-in > k

if the gates to variables ratio is > c // guess assignment
a← random assignment to var(F )
return F (a)

let h be a subgate of g of size k

b←
{

1 with probability 1− q

0 with probability q

b′ ←
{

1 if h is an AND gate

0 if h is an OR gate

F ← F |(h = b XOR b′)
return Ad,2c,k(F )

Ad,c,k(F ) // F has depth d, at most cn gates, bottom fan-in ≤ k
if d ≤ 2, return PPZ iterate(F )
choose p, c′ // as functions of d, c, k
W ← find restriction(F, p)
a← random assignment to W
// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
return Ad−1,c′(F

′)

find restriction(F, p) // F has n variables
B ← {bottom gates of F}
U ← random subset of var(F ) of size (1− p)n
G← {g ∈ B | |var(g) − U | > 1}
V ← var(G)
if |V | ≤ 1

2pn, return U ∪ V
else die // algorithm fails

3.3 Run time analysis

Suppose Ad,c, Ad,c,k succeed with probability ≥ 2−(1−ad,c)n, 2−(1−ad,c,k)n, respectively, given that
find restriction succeeds on each call to it – we will eliminate this assumption later. We assume
c ≥ 2 and ∀d ≥ 2, k ≥ 4 ad,c, ad,c,k ≤ 1

4 .

Lemma 4. ∀d, c ≥ 2 if k ≥ 4 lg 4c
ad,2c,k

, then ad,c ≥ 1
2ad,2c,k.

Proof: Each iteration of the while loop of Ad,c(F ) eliminates (1) a gate or (2) k variables. (1)
occurs ≤ cn times and (2) occurs r ≤ n

k times. Let a be a solution to F . Exactly one sequence of
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random choices, say with r choices of type (2), will lead Ad,c(F ) to find a. So the probability that
Ad,c(F ) finds a given that each call to find restriction succeeds, is

≥ qr(1− q)cn min{2−(1−ad,2c,k)(n−kr), 2−
n
2 }.

To lower bound qr(1−q)cn2−(1−ad,2c,k)(n−kr), take the logarithm, divide by n, and set r ′ = r
n ∈ [0, 1

k ]
to get

r′ lg q + c lg(1− q)− (1− ad,2c,k) + (1− ad,2c,k)kr′

=− (1− ad,2c,k) + c lg(1− q) + r′(lg q + (1− ad,2c,k)k)

≥− (1− ad,2c,k)− cq + r′
(

lg q +
1

2
k
) (

since ad,2c,k ≤
1

2

)

,

which is ≥ −(1− 1
2ad,2c,k) if we set q =

ad,2c,k

4c , k ≥ −2 lg q.

To lower bound qr(1− q)cn2−
n
2 , note that if we choose k ≥ −4 lg q, then

r′ lg q + c lg(1− q)− 1

2

≥1

k
lg q − cq − 1

2

≥− 1

4
− 1

4
ad,2c,k −

1

2

≥−
(

1− 1

2
ad,2c,k

)

since ad,2c,k ≤
1

4
.

Now we analyze find restriction. Let g ∈ B and X = |var(g)−U |. g has a fan-in k ′ ≤ k and so

X is hypergeometric with parameters n, k ′, pn. We claim that Pr(g ∈ G) = Pr(X ≥ 2) ≤
(k′

2

)

p2.
To see this, note that the sample points where X ≥ 2 can be partitioned according to the positions
among the k′ variables of g of the first 2 free variables (i.e., not in U), and the probability of any

of these
(

k′

2

)

events is ≤ p2. So

E(|V |) ≤ E(|G|)k ≤
(

k

2

)

p2|B|k ≤ 1

2
k3p2cn.

We want E(|V |) ≤ 1
4pn, and this happens if we choose

p =
1

2ck3
. (6)

By Markov’s inequality,

Pr
(

|V | > 1

2
pn

)

≤ E(|V |)
1
2pn

≤ 1

2
.

So the probability that any call to find restriction dies is ≤ 1
2 .

Now consider Ad,c,k(F ), which leaves f ∈ [ 12pn, pn] variables free and sets the rest. The gates
to variables ratio for F ′ is ≤ cn

1
2
pn

= 4c2k3. So set

c′ = 4c2k3. (7)

The probability that Ad,c,k(F ) finds a, assuming each call to find restriction succeeds, is then

2−(n−f+(1−ad−1,c′ )f) = 2−(n−ad−1,c′f) ≥ 2−(1− 1
2
pad−1,c′ )n,

and we have the following.
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Lemma 5. If we set p = 1
2ck3 , c′ = 4c2k3, then ad,c,k ≥ 1

4ck3 ad−1,4c2k3 .

Lemma 6. ∀d, c ≥ 2,

ad,c ≥ 1/O(c2d−2
−1 lg3·2d−2

−2 c),

where the constant in the big-Oh depends only on d.

Proof: We use induction to show that for each d, k can be chosen to be O(lg c) so as to satisfy
the hypothesis of lemma 4 and ad,c ≥ 1/O(cf(d) lgg(d) c) for some functions f, g where the constants
in the big-Ohs depend only on d.

a2,c,k = 1
k . From lemma 4, we need to choose k such that k ≥ O(lg c

a2,2c,k
) = O(lg c + lg k). So

k = O(lg c) suffices, and we conclude that a2,c ≥ 1/O(lg c). So f(2) = 0, g(2) = 1. This completes
the base case.

From the inductive hypothesis and lemma 5,

ad,c,k ≥ 1/O(ck3(c2k3)f(d−1) lgg(d−1)(c2k3))

= 1/O(c2f(d−1)+1k3f(d−1)+3 lgg(d−1)(ck)).

To use lemma 4, we need to choose k such that

k ≥ O(lg(c2f(d−1)+2k3f(d−1)+3 lgg(d−1)(ck)))

= O(lg c + lg k).

So k = O(lg c) suffices, and we conclude that

ad,k ≥ 1/O(c2f(d−1)+1 lg3f(d−1)+3+g(d−1) c).

So we have the recurrence

f(d) = 2f(d− 1) + 1 f(2) = 0

g(d) = g(d − 1) + 3f(d− 1) + 3 g(2) = 1

which has solution f(d) = 2d−2 − 1, g(d) = 3 · 2d−2 − 2.

Theorem 2. ∀d, c ≥ 2, the probability that Ad,c(F ) finds a is ≥ 2−(1−α)n where

α ≥ 1/O(c2d−2
−1 lg3·2d−2

−2 c),

where the constant in the big-Oh depends only on d.

Proof: This is a corollary from the previous lemma together with the following: find restriction is
called ≤ d times, each with success probability ≥ 1

2 , so the probability that in every call it succeeds
is ≥ 2−d, a penalty that can be absorbed into the big-Oh in the theorem statement.
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