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Nash Dominance with Applications to
Equilibrium Problems with Equilibrium
Constraints

Andrew Koh

Abstract We examine a novel idea for the detection of Nash Equilibrium devel-
oped in [14] and apply it to Equilibrium Problems with Equilibrium Constraints
(EPECs). EPECs are Nash games which uniquely feature players constrained by a
condition governing equilibrium of a parametric system. By redefining the selec-
tion criteria used in evolutionary methods, EPECs can be solved using Evolutionary
Multiobjective Optimization algorithms. We give a proposed algorithm (NDEMO)
and illustrate it with numerical examples.

1 Introduction

A major trend in the provision of transportation services and facilities has been
deregulation coupled with the private sector playing a larger role. When it occurs in
highway [30] or transit [31], entities providing such services face competition from
others with similar offerings. It is of interest to regulators to understand how such
organizations make decisions on their service levels in this deregulated environment.

In this environment, the service levels provided are an outcome of a non-
cooperative Nash game [17] amongst the players. However in transportation, this
game possesses a feature that distinguishes it from the classic Nash game: The play-
ers’ actions are constrained by a condition defining equilibrium in the transporta-
tion system [5]. In particular, the route choice decisions of users of a transportation
network, which satisfy Wardrop’s Equilibrium Principle [28], are parameterized in
the decision variables of these firms. Therefore this is a hierarchical (i.e. leader-
follower) game with the firms as leaders at the upper level engaged in a Nash game
and travelers as followers at the lower level obeying an equilibrium condition. Thus,
in this context, the terms “firms”, “leaders” and “players” are synonymous.
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2 Andrew Koh

The game described in the foregoing is an instance of a broader class of Equi-
librium Problems with Equilibrium Constraints (or EPECs) ([15],[16]). EPECs have
emerged as an area of research ([1],[27]) in mathematics applicable to transportation
systems management and other disciplines ([8],[16]). This paper focuses on the de-
termination of strategic variables for each profit maximizing leader when in compe-
tition with others. To avoid cumbersome notation, we implicitly assume henceforth
that the equilibrium of the system acts as a binding constraint on the leaders.

In this paper, we are concerned with games where the payoffs to the players are
continuous and the strategic decision variables are subsets of the real line (see e.g.
Chapter 6 of [29]). Much of the game theory literature deals with games that are ei-
ther zero sum (e.g. Tic-Tac-Toe [29] ) or where the actions of players are constrained
to be in a discrete set (e.g. Prisoner’s Dilemma [29] ) and thus solution algorithms
proposed for these are generally not applicable to EPECs. Our contribution is in the
application of an evolutionary algorithm based on the proximity of solutions to a
Nash Equilibrium (NE) to the EPEC.

This paper is organized as follows. In the next section, the notions associated with
the Nash game underlying the behavior of the leaders in the EPEC are introduced.
Section 3 reviews deterministic (i.e. gradient based) and evolutionary approaches
for computing NE in EPECs. Section 4 elucidates the Nash Domination criteria de-
veloped in [14] and provides an algorithm. Section 5 presents numerical examples
of the solution of EPECs utilizing the concept of Nash Domination. Section 6 con-
cludes the paper with a summary and directions for further research.

2 Nash Equilibrium

The leaders’ problem in the EPEC is a single shot normal form game with a set of N
players indexed by i ∈ {1,2, ...,n} and each player can play a strategy s i ∈ Si which

all players are assumed to announce simultaneously. S =
n
∏
i=1

Si is the collective ac-

tion space for all players. It is convenient to denote s−i as the combined strategies of
all players in the game excluding that of player i i.e. s−i ≡ (s1 , ...,s(i−1) ,s(i+1) , ...,sn) .
So we have that s≡ (si,s−i) and we call s a strategy profile of all players in the game.
Let Ui(s) be the payoff to player i, i ∈ N if s is played. Then a combined strategy
profile s∗ = (s∗

1
,s∗

2
, ...,s∗n) ∈ S is a Nash Equilibrium for the game if the following

holds:

Ui(s∗i ,s
∗
−i)≥Ui(si,s

∗
−i) ∀si ∈ Si ,∀i ∈ {1,2, ...,N} (1)

At a Nash Equilibrium no player can benefit (increase individual payoffs) by
unilaterally deviating from her current strategy. As players do not cooperate, each
player is doing the best she can taking into account what her competitors are doing
[6]. Henceforth we refer to the NE problem as the determination of strategies that
satisfy Equation 1.
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3 Computation of Nash Equilibrium

3.1 Deterministic Approaches

In a game, the optimal move for a player is governed by her best response function.
If Ui(s) is continuously differentiable, then the best response function for player i

is given by dUi(si,s−i)
dsi

([6], [29]). The NE is the intersections of these best response
functions for all players which amounts to finding solutions to N simultaneous equa-
tions i.e. solving dUi(si,s−i)

dsi
= 0,∀i ∈ {1,2, ...,N}.

While useful for providing insights into the behavior of players, the analytical
method is not feasible for realistic problems and even less so for EPECs due to the
binding equilibrium condition. Thus the practical approach for finding NE is by us-
ing variants of fixed point iteration (e.g. nonlinear Gauss-Siedel) ([9],[27]) or by
formulating it as a Complementarity Problem [10]. Applications of these methods
are found in (e.g. [7], [13]). Convergence of these algorithms rely on the payoff
functions being continuously differentiable and possessing diagonally dominant Ja-
cobians ([6], Theorem 4.1, pp. 280). However, if the payoff functions of the players
are not concave, there may exist NE that satisfy Equation 1 locally but not globally.
This is known as a “local NE trap” ([26], Definition 3, pp.306). There is thus a par-
allel with the literature on multimodal function optimization where the potential for
multiple optima cannot be ignored. Thus apart from their differentiability require-
ments, another drawback of deterministic approaches is that they can fall prey to the
local NE trap, an occurrence crucially dependent on the starting point used in these
algorithms. For details of these and other deterministic methods, see [5].

3.2 Evolutionary Methods

Due to the ability of evolutionary algorithms in dealing with non-smooth and non-
differentiable functions and their reported success in escaping local optima and po-
tentially a local NE trap, evolutionary counterparts of deterministic fixed point iter-
ation methods were proposed in ([22],[23],[25]).

Another strand of research has been the exploitation of coevolution since it was
first demonstrated in tackling multi-dimensional function optimization (e.g. [19]).
Several subpopulations (one representing each problem dimension) are evolved si-
multaneously to avoid premature convergence and to widen the search of the prob-
lem space. Ideas from coevolution have been exported into algorithms designed for
the detection of NE; here each subpopulation encodes the strategies of individual
players ([3],[18],[21]). However doubts have been cast on the performance of co-
evolutionary methods. In [26], the coevolutionary algorithm had to be hybridized
with local search techniques to enable successful detection of NE. [11] developed
a coevolutionary particle swarm optimization method which attempted to detect the
NE by learning the best response functions of the players. Instead of using the co-
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evolutionary paradigm of previous works, a novel idea exploiting the concept of
Nash Dominance was proposed [14] to find NE as discussed in Section 4.

4 Nash Domination

At their most abstract level, evolutionary multiobjective (EMO) algorithms ([2],[4])
apply stochastic operators to a parent population with the aim of evolving a fitter
child population to solve vector valued optimization problems. Subsequently, in the
selection phase, a comparison is made between a chromosome x from the parent
population and a chromosome y from the child population on the basis of fitness and
the weaker of the two is discarded. Given that one of the tasks in EMO is to identify
the entire Pareto frontier [4], fitness is assigned based on Pareto Domination (PD): x
Pareto Dominates y if x is strictly no worse off than y in all objectives and x is better
than y in at least one objective ([4], Definition 2.5, pp. 28).

[14] define a concept analogous to PD called Nash Domination for the NE prob-
lem. A chromosome here represents the strategies of all N players concatenated into
a vector i.e. a strategy profile. Then instead of using PD to compare two chromo-
somes i.e. two strategy profiles, Nash Domination operates by counting the number
of players that can benefit if each player switches strategies in turn. The fewer the
number of players that can benefit by deviating from one profile compared to the
other, the closer the former is to a NE as defined in Section 2.

Consider two strategy profiles {a,b} ∈ S,(a ≡ (a1, ...,an),b ≡ (b1, ...,bn)), and
define an operator k : S×S→ N associating the cardinality of a set defined by 2:

{i ∈ {1, ...,n}|Ui(bi,a−i )≥Ui(a),bi �= ai} (2)

This set defined by (2) comprises the players that would benefit by playing b i

when everyone else plays a−i. The total number of players in this set is given by
k(a,b). A similar interpretation applies, mutatis mutandis, for k(b,a). Note that to
evaluate k(a,b) and k(b,a), the payoff to each player, individually, from deviating
has to be computed. Then in a pairwise comparison of two strategy profiles, either
one of the following must be true: ([14], Remark 4, pp. 365)

1. k(a,b) < k(b,a)→ a Nash Dominates b or
2. k(b,a) < k(a,b)→ b Nash Dominates a or
3. k(a,b) = k(b,a)→ a and b are Nash Non Dominated (NND) with respect to each

other.

From the proof ([14], Proposition 9, pp. 366) that all NND chromosomes are NE,
all that is needed is to apply this selection criteria to check for Nash Domination
instead of PD via an EMO algorithm. The method would then converge to the NE
instead of locating the Pareto Front. A proposed Nash Domination Evolutionary
Multiplayer Optimization (NDEMO) algorithm is given in Algorithm 1. NDEMO
is based on the method of [24] which relies on Differential Evolution (DE) [20].
Note that any other EMO algorithm (see e.g. [2], [4] for options) can be used.
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Algorithm 1 :Nash Domination Evolutionary Multiplayer Optimization (NDEMO)
Input: h, Maxit , ε , DE Control Parameters, payoff functions
it← 0
Randomly initialize parent strategy profiles P
Evaluate payoffs to players with P
Check convergence P
while it < Maxit or P not converged do

Apply DE operators to create child strategy profiles C :

C
DE←P

Evaluate payoffs to players with C
Perform Pairwise Nash Domination Comparison between P and C :
for j = 1 to h do

a←P it
j

b← C it
j

if k(a,b) < k(b,a) then
reject b
R← a

else if k(b,a) < k(a,b) then
reject a
R← b

else
R← a
R← b

end if
end for
if size of R > h then

Randomly cull R until h remain
P(it+1)←R

end if
Convergence Check:
Randomly choose a chromosome (t) from Pit+1

Compute norm between t and every other member in Pit+1

if norm ≤ ε then
Terminate

end if
it← it +1

end while
Output: Nash Non Dominated Solutions

NDEMO works as follows: The user specifies the maximum number of genera-
tions Maxit , the population size h, the convergence criteria, ε(> 0), control parame-
ters required in DE [20] and a procedure to compute payoffs. Initial parent strategy
profiles P are generated randomly. Then child strategy profiles C are created by
applying the DE operators via the stochastic combination of randomly chosen par-
ents as discussed in [20]. At each generation, parent and child strategy profiles are
compared one by one pairwise, following the Nash Domination procedure described
previously. Those that are NND can potentially be parents for the next generation
so if the number of NND chromosomes exceeds h, we randomly cull them (R) so
that there will always be only h parents. The algorithm is then repeated until either
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Maxit is reached or when convergence (measured by the euclidean norm between a
randomly chosen chromosome t and the rest of P) is achieved.

5 Numerical Examples

The examples presented are typical of situations when a private profit maximizing
firm competes with others in the operation of private roads. The interaction between
these firms and users of the highway network is depicted in Figure 1. To explicitly
account for the hierarchical nature of the game and that route choices of users on
the network must satisfy Wardrop’s Equilibrium Condition [28], a traffic assignment
problem is solved for a given strategy profile of the players to obtain the traffic flows
which each player’s payoffs depend on.

Fig. 1 Hierarchical Game with Equilibrium
Route Choice

Fig. 2 Highway Network with 18 one way roads
from [12] (links labeled are road numbers)

This example is taken from [12]. There are two players and each firm chooses toll
levels (one firm per road) on the network (see Figure 2) to maximize toll revenues
(given as the product of tolls and traffic flows). Assume firstly that roads 7 and 10
are the only tolled roads. This example was solved as a complementarity problem in
[12] and via a Coevolutionary Particle Swarm Algorithm in [11]. We used a popu-
lation size of 20 chromosomes, DE control parameters from [24] and terminate the
algorithm when ε ≤ 1e− 4. NDEMO took 38 minutes to converge to the tolls (in
seconds) shown in Table 1 which agrees with previous results.

Next we consider the situation when, in addition to roads 7 and 10 being tolled,
another player maximizes profits by charging tolls on road 17. The results are re-
ported in Table 2. Although NDEMO again successfully converged to the NE (as
verified by solving it as a complementarity problem following the method described
in [12]), this time NDEMO took 54 minutes to meet the same convergence criteria.
Thus with one additional player, the time taken has increased by 42% over the 2
player case. The increase in computing time stems from the domination checking
procedure combined with the hierarchical nature of the game. This translates into
the requirement to calculate the profits to each firm from deviating (so as to obtain
k(a,b) and k(b,a)) by solving a traffic assignment problem for each player in turn.
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Table 1 Tolls (seconds) in Two Player Model

Firm Road NDEMO [11] [12]

1 7 141.36 141.36 141.37
2 10 138.28 138.29 138.29

Table 2 Tolls (seconds) in Three Player Model

Firm Road NDEMO Method of [12]

1 7 140.94 140.96
2 10 137.51 137.56
3 17 711.25 712.88

6 Conclusions

In this paper, we proposed modifying an EMO algorithm for solving EPECs by ex-
tending the procedure suggested in [14]. This revised algorithm (NDEMO) enabled
us to handle Nash games where players encounter a system equilibrium constraint.
Numerical examples illustrating competition in private sector provision of highway
transportation were given to demonstrate the performance of the proposed algo-
rithm. While the examples suggest that this could be a potentially useful method
for EPECs, we stress the need, in the pairwise comparison, to compute the pay-
off to each player, one by one, from deviating. This implies that the computational
complexity of NDEMO increases significantly as the number of players increase as
evidenced by the increase in computational times required in our examples.

An area of further research would be the effects of the control parameters of
NDEMO on the speed of convergence to NND solutions since we have used param-
eters suggested in [24]. NDEMO could also be extended to other domains where
EPECs are applicable such as electricity markets (e.g. [8]). Additionally, compar-
isons with other algorithms are currently being undertaken.
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