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‘ ‘ ivide and conquer” can be a powerful

tool for disentangling complexity when

designing a computing system. How-

ever, some aspects of system design are

inseparable. Treating these as though they were indepen-

dent leads to one interfering with the other, and “divide

and be conquered” perhaps better characterizes the con-

sequences. For some years, we have been investigating

how to construct systems that continue functioning de-

spite component failures and attacks. A question we have

pondered is to what extent does divide and conquer

apply? Somewhat less than you might hope is, unfortu-
nately, the answer.

One could argue that attacks can be seen as just an-
other cause for component failure. The Byzantine fault
model asserts that a faulty component can exhibit arbi-
trarily malicious (so-called “Byzantine”) behavior; a
system that tolerates Byzantine faults should then be
able to handle anything. Moreover, because any com-
ponent can be viewed abstractly in terms of its state and
a set of possible next-state transitions—in short, a state
machine—fault-tolerant services can be built by assem-
bling enough state-machine copies so that outputs from
the ones exhibiting Byzantine behavior are outvoted by
the correctly functioning ones. The fault-tolerance of
the ensemble thus exceeds the fault-tolerance of any in-
dividual state machine, and a distributed fault-tolerance is
the result.

A closer look at such replicated state machines, however,
reveals problems when attacks are possible. Specific diffi-
culties with the approach and how we can overcome
these are described later in this article, but the overall vi-
sion remains compelling: place more trustin an ensemble
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than in any of its
individual compo-

nents. In analogy with distributed fault-tolerance, then,
we are seeking ways to implement distributed trust.

The state-machine approach

The details for using replicated state machines and imple-
menting a Byzantine fault-tolerant service'* are well
known:

1. Start with a server, structured as a deterministic state
machine, that reads and processes clients’ requests,
which are the sole means to change the server’s state
or cause it to produce an output.

2. Run replicas of that server on distinct hosts. These
hosts communicate through narrow-bandwidth
channels, thus forming a distributed system.

3. Employ a replica-coordination protocol to ensure
that all non-faulty server replicas process identical se-
quences of requests.

Correctly operating server replicas will produce
identical outputs for each given client request. More-
over, the majority of the outputs produced for each re-
quest will come from correct replicas provided that at
most ¢ server replicas are faulty and that the service
comprises at least 2¢ + 1 server replicas. So, we succeed
in implementing availability and integrity for a service
that tolerates at most ¢ faulty replicas by defining the
service’s output to be any response produced by a ma-
jority of the server replicas.

Implicit in the approach are two assumptions. First,
we assume that a replica-coordination protocol exists.

IEEE SECURITY & PRIVACY



Second, we assume processor independence—that the indi-
vidual state-machine replicas do not influence each other
if executed on separate hosts in a distributed system. That
1s, the probability Pr,

m

of m replicas exhibiting Byzantine
behavior is approximately (Pr;)", where Pr; is the proba-
bility of a single replica exhibiting Byzantine behavior.

A trustworthy service must tolerate attacks as well as
failures. Availability, integrity, and confidentiality are typ-
ically of concern. The approach outlined earlier is thus
seriously deficient because

* Confidentiality is not just ignored, but n-fold replica-
tion actually increases the number of sites that must re-
sist attack because they store copies of confidential
information. Even services that do not operate on con-
fidential data per se are likely to store cryptographic
keys (so responses can be authenticated). Because these
keys must be kept secret, support for confidentiality is
needed even for implementing integrity.

* Any vulnerability in one replica is likely present in all,

enabling attacks that succeed at one replica to succeed

atall. The independence assumption, manifestly plausi-
ble for hardware failures and many kinds of software
failures (such as Heisenbugs), is thus unlikely to be satis-
fied once vulnerabilities and attacks are taken into ac-
count. So the probability that more than f servers are
compromised is now approximately Pry rather than

(Pry)"; therefore, replication does not improve the ser-

vice’s trustworthiness.

Replica-coordination protocols are typically designed

assuming the synchronous model of distributed compu-

tation. This is problematic because denial-of-service
(DoS) attacks can invalidate such timing assumptions.
Once an attacker has invalidated an assumption on
which the system depends, correct system operation is
no longer guaranteed.

Using cryptography or algorithms for coordination can
remedy a few of these deficiencies; other deficiencies drive
current research. This article’s goal is to provide a princi-
pled account of that landscape: instead of dwelling on indi-
vidual features, we show how each contributes to
implementing trustworthy services with replicated state
machines. Each of the landscape’s individual features is well
understood in one or another research community, and
some of the connections are as well, but what is involved in
putting them together is not widely documented nor
broadly understood. Space limitations, however, allow
only a superficial survey of the related literature, so view
this article as a starting point and consult the articles we cite
(and their reference lists) for a more in-depth study.
Finally, it's worth emphasizing that the replication-
based approaches we discuss only address how to imple-
ment a more trustworthy version of some service whose
semantics are defined by a single state machine. We thus

do not address vulnerabilities intrinsic in what that single
state machine does. To solve the entire trustworthiness
problem requires determining that a state machine’s se-
mantics cannot be abused; unfortunately, this is still an
open research problem.

Compromise and
proactive recovery

Two general components are involved in building trust-
worthy services: processors and channels. Processors
serve as hosts; channels enable hosts to communicate.

A correct component only exhibits intended behavior;
a compromised component can exhibit other behavior.
Component compromise is caused by failures or attacks.
We make no assumption about the behavior of compro-
mised components, but we do conservatively assume that
a component C compromised by a successful attack is
then controlled by the adversary, with any secrets C'stores
then becoming known to the adversary.

Secrets the adversary learns by compromising one
component might subsequently lead to the compromise
of other components. For example, a correct channel
protects the confidentiality, integrity, and authenticity of
messages it carries. This channel functionality 1s typically
implemented cryptographically, with keys stored at
those hosts serving as the channel’s endpoints. An attack
that compromises a host thus yields secrets that then
allow the adversary to compromise all channels attached
to the host.

Because channel compromise is caused by host com-
promise, a service’s trustworthiness is often specified
solely in terms of which or how many host compromises
it can tolerate; the possibility of channel compromise dis-
tinct from host compromise is ignored in such a specifica-
tion. This simplification—also adopted in this article—is
most defensible when the network topology provides
several physically independent paths to each host, because
then the channel connecting a host is unlikely to fail inde-
pendent of that host.

The system builder has little control over how and
when a component transitions from being correct to
being compromised. A recovery protocol provides the means
to reverse such transitions. For a faulty component, the
recovery protocol might involve replacing or repairing
hardware. For a component that has been attacked, the
recovery protocol must

evict the adversary, perhaps by restoring code from
clean media (ideally with the recently exploited vulner-
abilities patched);

reconstitute state, perhaps from other servers; and

e replace any secret keys the adversary might have
learned.

The reason that a component should execute a re-
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covery protocol after detecting a failure or attack is ob-
vious. Less obvious are benefits that accrue from a com-
ponent executing a recovery protocol periodically, even
though no compromise has been detected.” To wit,

The adversary that cannot

compromise t + 1 hosts within a

window of vulnerability is foiled and

forced to begin anew.

36

such proactive recovery defends against undetected attacks
and failures by transforming a service that tolerates ¢
compromised hosts over its lifetime into a system that
tolerates up to f compromised hosts during each window
of vulnerability delimited by successive executions of the
recovery protocol. The adversary that cannot compro-
mise f + 1 hosts within a window of vulnerability is
foiled and forced to begin anew on a system with all de-
tenses restored to full strength.

DoS attacks slow execution, thereby lengthening the
window of vulnerability and increasing the interval
available to perpetrate an attack. Whether such a
lengthened window of vulnerability 1s significant will
depend on whether the adversary can compromise
more than t servers during the window. But whatever
the adversary, systems with proactive recovery can, in
principle, be more resilient than those without it, sim-
ply because proactive recovery (if implemented cor-
rectly) affords an opportunity for servers to recover from
past compromises—including some compromises that
haven’t been detected.

Service key refresh and scalability

‘With the state-machine approach, a client, after making a
request, awaits responses from servers. When the com-
promise of up to fservers must be tolerated, the same re-
sponse received from fewer than f servers cannot be
considered correct. But if the response is received from ¢
+ 1 or more servers, then that response was necessarily
produced by a correct server. So sets of f + 1 servers to-
gether “speak for” the service, and clients require some
means to identify when equivalent responses have come
from ¢+ 1 distinct server replicas.

One way to ascertain the origin of responses from
correct servers is to employ digital signatures. Each
server’s response 1s digitally signed using a private key
known only to that server; the receiver validates a re-
sponse’s origin by checking the signature using that
server’s public key. A server’s private key thus speaks for
that server. Less expensive schemes, involving message
authentication codes (MAC) and shared secrets, have also
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been developed; such schemes contribute to the perfor-
mance reported for toolkits (for example, BFT men-
tioned in Table 2) that have recently become available to
system builders.

Service private keys

The use of secrets—be it private keys or shared secret
keys—for authenticating server replicas to clients impacts
the scalability of a service that employs proactive recov-
ery. This is because servers must select new secrets at the
start of each window of vulnerability, and clients must
then be notified of the changes. If the number of clients is
large, then performing the notifications will be expen-
sive, and the resulting service ceases to be scalable.

To build a scalable service, we seek a scheme whereby
clients don’t need to be informed of periodic changes to
server keys. Because sets of f + 1 or more servers speak for
the service, a client could identify a correct response from
the service if the service has a way to digitally sign re-
sponses if and only if a set of servers that speak for the ser-
vice agree on that response:

* TC1: Anyset of t + 1 or more server replicas can coop-
erate and digitally sign a message on behalf of the ser-
vice.

» TC2: Noset of f or fewer server replicas can contrive to
digitally sign a message on behalf of the service.

TC1 implies that information held by £ + 1 or more servers
enables them to together construct a digital signature for a
message (namely, for the service’s response to a request),
whereas TC2 implies that no coalition of t or fewer servers
has enough information to construct such a digital signa-
ture. In effect, TC1 and TC2 characterize a new form of
private key for digital signatures—a key associated with the
service rather than with the individual servers. This private
key speaks for the service but is never entirely materialized
atindividual servers comprising the service.

A private key satistying TC1 and TC2 can be imple-
mented using secret sharing.*> An (n, t + 1) secret sharing
for a secret s is a set of n random shares such that: s can be
recovered with knowledge of f + 1 shares, and no infor-
mation about s can be derived from ¢ or fewer shares. Not
only do protocols exist to construct (1, t + 1) secret shar-
ings, but threshold digital signature protocols® exist that
allow construction of a digital signature for a message
from ¢ + 1 partial signatures, where each partial signature is
computed using as inputs the message along with a single
share of the private key. Thus, a system can implement
TC1and TC2 using (n, t + 1) secret sharing and dividing
the service private key among the server replicas—one
share per replica—and then having servers use threshold
digital signatures to collaborate in signing responses.

If the shares are fixed then, over time, an attacker might
compromise f + 1 servers, obtain ¢ + 1 shares, and thus be



able to speak for the service, generating correctly signed
yet bogus service responses. Such an attacker is known as a
mobile adversary,® because it attacks and controls one server
for a limited time before moving to the next. The defense
against mobile adversary attacks 1s, as part of proactive re-
covery, for servers periodically to create a new and inde-
pendent secret sharing for the service’s private key, and
then delete the old shares, replacing them with new ones.
Because the new and old secret sharings are independent,
the mobile adversary can’t combine new and old shares to
obtain the service’s signing key. And because old shares are
deleted when replaced by new shares, a mobile adversary
must compromise more than servers within a single win-

dow of vulnerability to succeed.

Proactive secret sharing

Protocols to create new, independent sharings of a secret
are called proactive secret sharing protocols and have been
developed for the synchronous model® as well as for the
asynchronous model, which makes no assumptions about
process execution speeds and message delivery delays.”'”
Proactive secret sharing protocols are tricky to design.
First, the new sharing must be computed without ever
materializing the shared secret at any server. (A server that
materialized the shared secret, if compromised, could re-
veal the service’s signing key to the adversary.) And, sec-
ond, the protocol must work correctly in the presence of
as many as t compromised servers, which might provide
bogus shares to the protocol.

Server key refresh

Secure communication channels between servers are re-
quired for proactive secret sharing and for various other
protocols that servers execute. Because a host stores the
keys used to implement the secure channels with which it
communicates, we conclude that, not withstanding the
use of secret sharing and threshold cryptography for ser-
vice private keys, there will be other cryptographic keys
stored at servers. If these other keys can be compromised,
then they too must be refreshed during proactive recov-
ery. Three classes of solutions for server key refresh have
been proposed.

Trusted hardware

Although not in widespread use today, special-purpose
cryptographic hardware that stores keys and performs
cryptographic operations (encryption, decryption, and
digital signing) does exist. This hardware 1s designed so
that, if correctly installed, it will not divulge keys or other
secret parameters, even if the software on the attached
host has been compromised. When keys stored by a
server cannot be revealed, there is no reason to refresh
them. So, storing server keys in this hardware eliminates
the need to refresh server keys as part of proactive recov-
ery for as long as that hardware can be trusted.

However, using special-purpose cryptographic hard-
ware for all cryptographic operations doesn’t prevent a
compromised server from performing cryptographic
operations for the adversary. The adversary might, for
example, cause the server to generate signed or en-
crypted messages for later use in attacks. A defense
against such attacks is to maintain an integer counter in
stable memory (so that the counter’s value will persist
across failures and restarts) that’s part of the special-
purpose cryptographic hardware. This counter is incre-
mented every time a new window of vulnerability starts,
and the current counter value is included in every mes-
sage that is encrypted or signed using the tamper-proof
hardware. A server can now ignore any message it re-
ceives that has a counter value too low for the current
window of vulnerability.

The need for special-purpose hardware would seem to
limit adoption of this approach. However, recent an-
nouncements from industry groups like the Trusted Com-
puting Group (https://www.trustedcomputinggroup.
org/home) and hardware manufacturers like IBM and
Intel imply that standard PC computing systems soon will
support reasonable approximations to this hardware func-
tionality, at least for threats common on the Internet today.

Offline keys

In this approach to server key refresh, new keys are dis-
tributed using a separate secure communications channel
that the adversary cannot compromise. This channel typ-
ically is implemented cryptographically by using secrets
that are stored and used in an offline stand-alone com-
puter, thereby ensuring inaccessibility to a network-
borne adversary. For example, an administrative
public-private key pair could be associated with each
server H. The administrative public key K, is stored in
ROM on all servers; the associated private key &, is stored
offline and is known only to H’s administrator. Each new
server private key k4 for a host A would be generated off-
line. The corresponding public key K, would then be
distributed to all servers by including K4 in a certificate
signed using the administrative private key k4 ofserver A.

Attack awareness
Instead of relying on a full-fledged tamper-proof co-
processor, a scheme suggested by Ran Canetti and Amir
Herzberg'' uses nonmodifiable storage (such as ROM) to
store a special service-wide public key whose correspond-
ing private key is shared among servers using an (n, t + 1)
secretsharing. To refresh its server key pair, a server H gen-
erates its new private-public key pair, signs the new public
key using the old private key, and then requests that the
service endorse the new public key. A certificate thatassoci-
ates the new public key with server H, signed using the
special service private key, represents the endorsement.
The service private key is refreshed periodically using
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proactive secret sharing, thereby guaranteeing that an at-
tacker cannot learn the service private key, provided the
attacker cannot compromise more than ¢ servers in a win-
dow of vulnerability. Therefore, an attacker cannot fabri-
cate a valid endorsement because servers can detect bogus
certificates using the service public key stored in their
ROM. A server becomes aware of an attack if it doesn’t
receive a valid certificate for its new public key within a
reasonable amount of time or if it receives two conflicting
requests that are both signed by the same server’s private
key during the same window of vulnerability. In either
case, system administrators should implement actions in
order to re-introduce the server into the system and re-
move the possible imposter.

Processor independence

‘We approximate the processor independence assumption
to the extent that a single attack or host failure cannot
compromise multiple hosts. Independence is reduced,
for example, when hosts

* employ common software (and thus have the same vul-
nerabilities),

are operated by the same organization (because a single
maleficent operator could then access and compromise
more than a single host), or

¢ rely on a common infrastructure, such as name servers
or routers used to support communications; compro-
mising that infrastructure violates an assumption that
hosts need to function.

One general way to characterize a service’s trustwor-
thiness is by describing which sets of components could
together be compromised without disrupting the ser-
vice’s correct operation. Each vulnerability 17 partitions
server replicas into groups, in which replicas in a given
group share that vulnerability. For instance, attacks exist
that compromise server replicas running Linux but not
those running Windows (and vice versa), which leads to
a partitioning according to the OS; the effects of a malef-
icent operator are likely localized to server replicas under
that operator’s control, which leads to a partitioning ac-
cording to system operator.

Sets of a system’s servers whose compromise must be
tolerated for the correct operation of the service can be
specified using an adversary structure.'>' This is a set A
={S,, ..., S,}, whose elements are sets of system servers
that we assume the adversary can compromise during
the same window of vulnerability. A trustworthy ser-
vice is then expected to continue operating as long as
the set of compromised servers is an element of A.
Thus, the adversary structure A for a system intended
to tolerate attacks on the OS would contain sets S,
whose elements are servers all running the same OS.

When there are n server replicas and A contains all
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sets of servers of size at most f, the result is known as an
(n, 1) threshold adversary structure.” The basic state-
machine approach described earlier involves a threshold
adversary structure, as does much of the discussion
throughout this article. Threshold adversary structures
correspond to systems in which server replicas are as-
sumed to be independent and equally vulnerable. They
are, at best, approximations of reality. The price of em-
bracing such approximations is that single events might
actually compromise all of the servers in some set thatisn’t
an element of the adversary structure—the service would
then be compromised.

Protocols designed for threshold adversary struc-
tures frequently have straightforward generalizations to
arbitrary adversary structures. What is less well under-
stood is how to identify an appropriate adversary struc-
ture for a system, because doing so requires identifying
all common vulnerabilities. Today’s systems often em-
ploy commercial oft-the-shelf (COTS) components,
so access to their internal details is restricted. Yet those
internal details are what is needed in identifying com-
mon vulnerabilities.

Independence by avoiding

common vulnerabilities

Eliminating software bugs eliminates vulnerabilities that
would impinge on replica independence. Constructing
bug-free software is quite difficult, however. So instead,
we turn to another means of increasing replica indepen-
dence: diversity. In particular, the state-machine approach
doesn’t require that server replicas be identical in either
their design or their implementation—only that different
replicas produce equivalent responses for each given re-
quest. Such diversity can be obtained in three ways.

Develop multiple serverimplementations. This, unfor-
tunately, can be expensive. The cost of all facets of system
development is multiplied, because each replica now hasits
own design, implementation, and testing costs. In addition,
interoperation of diverse components is typically more dif-
ficult to orchestrate, not withstanding the adoption of stan-
dards. Moreover, experiments have shown that distinct
development groups working from a common specifica-
tion will produce software that has the same bugs.'*

Employ pre-existing diverse components. Here, sys-
tem developers use pre-existing diverse components that
have similar functionality and then write software wrap-
persso thatall implement the same interface and the same
state-machine behavior. > One difficulty is in procuring
diverse components that do have the requisite similar
functionality. Some OSs have multiple, diverse imple-
mentations (for example, BSD Unix versus Linux), but
other OSs do not; application components used in build-
ing a service are unlikely to have multiple diverse realiza-



Table 1. Systems that employ elements of distributed trust.

SYSTEM DESCRIPTION

BFS% An NFS file system implementation built using the BFT toolkit (see Table 2 for a description of the toolkit).

Cornell Online

Distributed Trust

COCA is a trustworthy distributed certification authority. It avoids consensus protocols by using a Byzantine quorum

Certificate system, which employs threshold cryptography to produce certificates signed by the service, using proactive recovery

Authority (COCA)?* |  conjunction with offline administrator keys for maintaining authenticated communication links. COCA assumes the

asynchronous model.

Cornell Data CODEX is a robust and secure distribution system for confidential data. It stores private keys using secret sharing
Exchange with proactive refresh, uses threshold cryptography, and employs a distributed blinding protocol to send confidential
(CODEX)* information from the service to a client or another distributed service. CODEX assumes the asynchronous model.
E-Vault®* A secure distributed storage system, E-Vault employs threshold cryptography to maintain private keys, uses blinding

tions. A second difficulty arises when components don’t
provide access to internal nondeterministic choices they
make during execution (such as creating a “handle” that
will be returned to a client), which makes writing the
wrapper quite difficult.'® And, finally, there still remains a
chance that the diverse components will share vulnerabil-
ities because they are written to the same specification
(exhibiting a phenomenon like that reported in John
Knight and Nancy G. Leveson’s work®") or because they
are built using some of the same components or tools.

Introduce diversity automatically during compilation,
loading, or in the runtime environment.'*"” Code can
typically be generated and storage allocated in several ways
fora given high-level language program; making choices in
producing different executables introduces diversity. Dif-
ferent executables for the same high-level language pro-
gram are still implementations of the same algorithms,
though, so executables obtained in this manner will con-
tinue to share any flaws in those algorithms.

Replica coordination

In the state-machine approach, not only must state-
machine replicas exhibit independence, but all correct
replicas must reach consensus about the contents and or-
dering of client requests. Therefore, the replica-coordi-
nation protocol must include some sort of consensuis
protocol'® to ensure that

¢ all correct state-machine replicas agree on each client’s
request, and

* ifthe client sends the same request R to all replicas, then
R is the consensus they reach for that request.

This specification involves both a safety property and a
liveness property. The safety property prohibits different
replicas from agreeing on different values or orderings for
any given request; the liveness property stipulates that an
agreement is always reached.

Consensus protocols exist only for systems that sat-
isfy certain assumptions.'” In particular, deterministic
consensus protocols don’t exist for systems with un-
boundedly slow message delivery or process execution
speeds—that is, systems satisfying the asynchronous
model. This limitation arises because, to reach consen-
sus in such a system, participating state-machine repli-
cas must distinguish between those replicas that have
halted (due to failures) and thus should be ignored, and
those replicas that, although correct, are executing very
slowly and thus cannot be ignored.

The impossibility of implementing a deterministic
consensus protocol in the asynchronous model leaves
three options.

Option I: Abandon consensus

Instead of arranging that every state-machine replica re-
ceive every request, we might instead employ servers that
are not as tightly coordinated. One well-known example
is the use of a quorum system to implement a storage service
from individual storage servers, each of which supports local
read and write operations. Various robust storage sys-
tems>" 2 have been structured in this way, as have richer
services such as the Cornell online certification authority
(COCA,; detailed in Table 1), which implements opera-
tions involving both reading and writing service state.

To constitute a quorum systeni, servers are associated
with groups (where each operation is executed on all
servers in some group). Moreover, these groups are de-
fined so that pairs of groups intersect in one or more
servers—one operation’s effect can thus be seen by any
subsequent operation. Various quorum schemes differ in
the size of the intersection of two quorums. For example,
if faulty processors simply halt, then as many as ¢ faulty
processors can be tolerated by having 2¢ + 1 processors in
each group and ¢ + 1 in the intersection. If faulty proces-
sors can exhibit arbitrary behavior, then a Byzantine
quorum System,]3
tersection, is required.

involving larger groups and a larger in-
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A second example of abandoning consensus replica-
tion can be seen in the Asynchronous Proactive Secret
Sharing (APSS) protocol."” Here, each participating
server computes a new sharing of some secret; a con-
sensus protocol would seem the obvious way for all
correct servers to agree on which new sharing to adopt.
But instead, in APSS, each server embraces all of the
new sharings; a consensus protocol for the asynchro-
nous model is then not needed. Clients of APSS refer
to individual shares by using names that tell a server
which sharing is involved. So here, establishing con-
sensus turns out to be unnecessary after the problem
specification is changed slightly—APSS creates at most
n new and independent sharings of a secret and is
started with n sharings, rather than creating a single
new sharing from a single sharing.

Certain service specifications cannot be imple-
mented without solving a consensus problem, so aban-
doning consensus is not always an option. But it
sometimes can be an option, albeit one that is too rarely
considered.

Option II: Employ randomization

Mike Fischer and colleagues’ impossibility result'’
doesn’t rule out protocols that use randomization, and
practical randomized asynchronous Byzantine agree-
ment protocols have been developed. One example is
Cristian Cachin and colleagues’ consensus protocol,**
which builds on some new cryptographic primitives,
including a noninteractive threshold signature scheme
and a threshold coin-tossing scheme; the protocol is
part of the Secure Intrusion-Tolerant Replication Ar-
chitecture (Sintra) toolkit® developed at the IBM
Zurich Research Center. Sintra supports a variety of
broadcast primitives needed for coordination in repli-
cated systems.

Option IlI: Sacrifice

liveness (temporarily)

A service cannot be very responsive when processes and
message delivery have become glacially slow, so a con-
sensus protocol’s liveness property might temporarily be
relaxed in those circumstances. After all, there are no
real-time guarantees in the asynchronous model. The
crux of this option, then, is to employ a consensus pro-
tocol that satisfies its liveness property only while the
system satisfies assumptions somewhat stronger than
found in the asynchronous model but that always satis-
fies its safety property (so that different state-machine
replicas still agree on the requests they process). Leslie
Lamport’s Paxos protocol®® is a well-known example of
trading liveness for the weaker assumptions of the asyn-
chronous model. Other examples include Gregory
Chockler, Dahlia Malkhi, and Mike Reiter’s plrotocol27
and BFT.*®
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Computing with

server confidential data

Some services involve data that must be kept confiden-
tial. Unlike secrets used in connection with cryptogra-
phy (namely keys), such server data cannot be changed
periodically as part of proactive recovery; values now
have significance beyond just being secret, and they
could be part of computations that support the ser-
vices® semantics.

Adversaries can gain access to information stored un-
encrypted on a server if that server is compromised.
Thus, confidential service data must always be stored in
some sort of encrypted form—either replicated or parti-
tioned among the servers. Unfortunately, few algo-
rithms have been found that perform interesting
computations on encrypted data (although some limited
search operations are now supported””). Even temporar-
ily decrypting the data on a server replica or storing it on
a backup in unencrypted form risks disclosing secrets to
the adversary.

One promising approach is to employ secure multi-
party computations.” Much is known about what can and
cannot be done as a secure multiparty computation; less
1s known about what is practical, and the prognosis is
not good for efficiently supporting arbitrary computa-
tions (beyond cryptographic operations like decryption
and signing).

It’s not difficult to implement a service that simply
stores confidential data for subsequent retrieval by
clients. An obvious scheme has the client encrypt the
confidential data and forward that encrypted data to a
storage service for subsequent retrieval. Only the client
and other principals with knowledge of the decryption
key would then be able to make sense of the data they
retrieve. Note that the service here has no way to con-
trol which principals are able to access unencrypted
confidential data.

In cases in which we desire the service—and not the
client that initially stores the confidential data—to imple-
ment access control, then simply having a client encrypt
the confidential data no longer works. The key elements
of the solution to this problem have already been de-
scribed, though:

* The confidential data (or a secret key to encrypt the
data) is encrypted using a service public key.

* The corresponding private key is shared among replicas
using an (n, t + 1) secret sharing scheme and refreshed
periodically using proactive secret sharing.

* A copy of the encrypted data is stored on every replica
to preserve its integrity and availability in the face of
server compromises and failures.

Two schemes have been proposed for clients to retrieve
encrypted data:
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Table 2. Toolkits for implementing distributed trust.

SYSTEM

BFT

Intrusion Tolerance
via Threshold
Cryptography (ITTC)*
Phalanx?'

Proactive security
toolkit (IBM)3¢

Secure INtrusion-
Tolerant Replication
Architecture
(Sintra)?®

DESCRIPTION

BFT is a toolkit for implementing replicated state machines in the asynchronous model. Services tolerate Byzantine
failures and use a proactive recovery mechanism for periodically re-establishing secure links among replicas and
restoring each replica’s code and state. BFT employs consensus protocols and sacrifices liveness to circumvent the
impossibility result for consensus in the asynchronous model. For proactive recovery, BFT assumes a secure
cryptographic coprocessor and a watchdog timer. BFT doesn’t provide support for storing confidential information
or for maintaining a service private key that is required for scalability.

The ITTC toolkit includes a threshold RSA implementation with distributed key generation and share refreshing,
which is done when instructed by an administrator. No clear system model is provided, but the protocols seem to
be suitable for use in the asynchronous model.

Phalanx is middleware for implementing scalable persistent survivable distributed object repositories. In Phalanx, a
Byzantine quorum system allows Byzantine failures to be tolerated, even in the asynchronous model. Randomized
protocols are used to circumvent the impossibility result for consensus in the asynchronous model. Phalanx does
not provide support for storing confidential information or for maintaining confidential service keys; it also does
not implement proactive recovery.

This is a toolkit for maintaining proactively secure communication links, private keys, and data storage in
synchronous systems. The design employs the attack-awareness approach (with ROM) for refreshing the servers’
public—private key pairs.

Sintra is a toolkit that provides a set of group communication primitives for implementing a replicated state
machine in the asynchronous model, where servers can exhibit Byzantine failures. Randomized protocols are used
to circumvent the impossibility result for consensus in the asynchronous model. Sintra does not provide support
for storing confidential information or for maintaining a service private key that is required for scalability, although

Re-encryption. A re-encryption protocol produces a ci-
phertext encrypted under one key from a ciphertext
encrypted under another and does so without the
plaintext becoming available during intermediate steps.
Such protocols exist for public-key cryptosystems in
which the private key is shared among a set of servers.”!
To retrieve a piece of encrypted data, the service exe-
cutes a re-encryption protocol on data encrypted under
the service public key; the resultis data encrypted under
the public key of an authorized client.

Blinding. A client chooses a random blinding factor, en-
crypts it using the service public key, and sends that to
the service. If the service deems that client authorized
for access, then the service multiplies the encrypted
data by this blinding factor and then employs threshold
decryption to compute unencrypted but blinded data,
which is then sent back to the client. The client, know-
ing the blinding factor, can then recover the data from
that blinded data.

Blinding can be considered a special case of re-
encryption, because it’s essentially encryption with a
one-time pad (the random blinding factor). Unlike the
re-encryption scheme in Marcus Jakobsson’s work,”
which demands no involvement of the client and pro-
duces a ciphertext for a different key in the same encryp-
tion scheme, our use of blinding requires client

the design of an asynchronous proactive secret sharing protocol is documented elsewhere.

participation and yields a ciphertext under a different en-
cryption scheme. So, re-encryption can be used directly
for cases in which a client itself is a distributed service
with a service public key, whereas the blinding-based
scheme cannot be used without further modification. In
fact, are-encryption scheme based on blinding appears in
other work;*? in it, ciphertext encrypted under the ser-
vice public key is transformed into ciphertext encrypted
under the client public key (as with the re-encryption
scheme in Jakobsson’s work), thereby allowing a flexible
partition of work between client and service.

ables 1 and 2 summarize the various systems that have

been built using the elements we’ve just outlined.
Clearly, there’s much to be learned about how to engi-
neer systems based on these elements, and only a small
part of the landscape has been explored.

A system’s trustworthiness is ultimately tied to a set of
assumptions about the environment in which that system
must function. Systems users should prefer weaker as-
sumptions, because then there is less risk that these as-
sumptions will be violated by natural events or attacks.
However, adopting this view renders irrelevant much
prior work in fault-tolerance and distributed algorithms.

Until recently, the synchronous model of computation
has generally been assumed, but there are good reasons to
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investigate algorithms and system architectures for asyn-
chronous models of computation: specifically, concern
about DoS attacks and interest in distributed computations
that span wide-area networks. Also, most of the prior work

Our growing dependence on

networked computers makes us

hostage not only to failures but

also to attacks.
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on replication has ignored confidentiality, yet confidential-
ity is not orthogonal to replication and poses a new set of
challenges, so it cannot be ignored. Moreover, because
confidentiality is not a property of an individual compo-
nent’ state or state transitions, usual approaches to specifi-
cation and system refinement, which are concerned with
what actions components perform, are not germane.

The system design approach outlined in this article has
been referred to as implementing distributed trust’’ be-
cause it allows a higher level of trust to be placed in an en-
semble than could be placed in a component. There is no
magic here. Distributed trust requires that component
compromise be independent. To date, only a few sources
of diversity have been investigated, and only a subset of
those has enjoyed practical deployment. Reeal diversity is
messy and often brought about by random and unpre-
dictable natural processes, in contrast to how most com-
putations are envisaged (as a preconceived sequence of
state transitions). Think about how epidemics spread
(from random, hence diverse, contacts between individ-
uals) to wipe out a population (a form of “reliable broad-
cast”); think about how individuality permits a species to
survive or how diverse collections of species allow an
ecosystem to last.

Finally, if cryptographic building blocks, like secret
sharing and threshold cryptography, seem a bit arcane
today, it is perhaps worth recalling that 20 years ago, re-
search in consensus protocols was considered a niche
concern that most systems builders ignored as impracti-
cal. Today, systems designers understand and regularly use
such protocols to implement systems that can tolerate
various kinds of failures even though hardware is more re-
liable than ever. The promising technologies for trust-
worthiness, such as secret sharing and threshold
cryptography, are also seen today as a niche concern. This
cannot persist for long, given our growing dependence
on networked computers, which, unfortunately, makes
us hostage not only to failures but also to attacks. O
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