
Shape Analysis of Low-level C with

Overlapping Structures

Jörg Kreiker, Helmut Seidl, and Vesal Vojdani⋆

Fakultät für Informatik, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

{kreiker,seidl,vojdanig}@in.tum.de

Abstract. Device drivers often keep data in multiple data structures si-
multaneously while embedding list or tree related records into the records
containing the actual data; this results in overlapping structures. Shape
analyses have traditionally relied on a graph-based representation of
memory where a node corresponds to a whole record and edges to point-
ers. As this is ill-suited for encoding overlapping structures, we propose
and formally relate two refined memory models. We demonstrate the ap-
propriateness of these models by implementing shape analyses based on
them within the TVLA framework. The implementation is exemplified
using code extracted from cache managing kernel modules.

1 Introduction

Shape analysis of heap-manipulating programs is a very active field of research;
however, the focus of most work has been devoted to Java-like data-structures,
where pointers are not as heavily manipulated and computed with as in low-
level C. While shape analyses addressing pointer arithmetic in a broad sense
have recently been designed, e.g., [3, 8–10, 16, 18, 19], we address a related and
particularly difficult problem: overlapping structures. The term was coined in [3],
where the shape analysis of such structures was stated as an open problem.

Overlap is often found in device drivers where data is kept in several data-
structures at the same time by means of embedding list or tree related records
into the records containing the actual data. An example of such code is shown
in Figure 1, where a node record (we shall consequently use the more general
term record to denote C structs) contains data as well as two list-related compo-
nents. The first, hlist node , is the record type which embeds the forward and
backward pointers of an hlist (see below) into a node; the second, list head ,
is a record type which serves both as the list head and as the record that embeds
standard cyclic doubly-linked lists into nodes.

Hlists (or pprev lists) are in themselves quite tricky data-structures. In order
to save memory while maintaining efficient implementation of insertion and dele-
tion, Linux developers use these doubly linked lists with a pointer to the next
component of the previous element rather than to the element itself. (This is

⋆ On leave from the University of Tartu; partially supported by EstSF grant 6713.

struct hlist_head { struct hlist_node * first; };
struct hlist_node { struct hlist_node * next, ** pprev; };
struct list_head { struct list_head * next, * prev; };

struct node { int data; struct hlist_node list;
struct list_head queue; };

struct hlist_head ht[512]; struct mutex hlock;
struct list_head cq;

void cleanup_task(void * arg) {
struct hlist_head garbage; struct node * pos;
lock (&hlock);
list_for_each (pos, &cq) {

hlist_del (&pos → list);
list_del (&pos →queue);
hlist_add (&pos → list, &garbage); }

unlock (&hlock);
hlist_for_each (pos, &garbage, list) {

access(pos →data);
hlist_del (&pos → list); } }

Fig. 1: Overlapping data-structures from the Linux kernel.

visualized in a memory snapshot in Figure 2, where the edges from pprev boxes
end at the smallest boxes rather than at the medium-sized ones as is the case
for edges originating in prev boxes.) Hlists are used in hash-tables where having
only a single pointer in the list head can be a significant gain.

The code given in Figure 1 shall serve as a basis for our case study. We use a
syntax close to the original code, but abbreviate function names and eliminate
some of the parameters to the list-traversal macros. These macros expand into
for-loops and use pointer-arithmetic to move from a record embedded within a
node to the containing record. The example is based on code for maintaining a
cache where the least recently used items are tagged and added to the cleanup
queue. This queue is processed asynchronously by a cleanup task whose code
is given in the figure. As this task may be executing concurrently with code
that accesses the cache, elements in the queue are moved to the thread-local list
garbage for statistical processing before being deallocated. This minimizes the
time that the cleanup task must keep the lock on the cache.

When an object is removed from all thread-shared data-structures, the sub-
sequent post-processing of the privatized object no longer requires protection
through the acquisition of locks. However, if an element resides in two lists si-
multaneously, traversing these distinct lists may cause a race when accessing the
data of the shared element. To prove absence of races in the example, we must
infer that an element is in the queue but no longer in the list, although both
queue- and list-related records are embedded into the same node .

data

list

pprev next

queue

prev next

data

list

pprev next

queue

prev next

data

list

pprev next

queue

prev next

ht[i]
head

head

head

...

...
cq

next prev

Fig. 2: Overlapping Structures.

Shape analyses often rely on graph-based representations of memory where
a node corresponds to a whole record and edges to pointers. For these, it is not
immediate how to encode pointers between components. Therefore, we propose
two refined memory models which exhibit the low-level details required to reason
about overlapping structures. Both memory models are formulated in terms of
the TVLA framework [27]. Using the TVLA framework is not necessary but al-
lows for a quick prototype implementation. Since our refinement is conservative,
we can also benefit from knowledge and developments in the TVLA realm.

The model of Section 3 uses a one-node-per-component approach, i.e., each
box of Figure 2 becomes a single node in the shape graph, and the hierarchy
induced by the box nesting is translated into a tree structure. We design a
program analysis based on this model and demonstrate its potential on a list
element deletion procedure that uses unorthodox pointer manipulations.

Alternatively in Section 4, we propose a coarser and possibly more efficient
model that employs a one-node-per-outermost-record paradigm. This approach
annotates edge dereferences with access paths into the finer structure of the
records, making sources and targets of dereferencing explicit. We exemplify shape
analyses based on this coarser semantics by verifying deletion from an hlist. In
Section 5, we characterize the relationship between the two models.

In Section 6, we revisit our motivating example of Figure 1. The analysis
is conducted w.r.t. the coarse-grained semantics and enables us to verify race
detection properties for it. Sections 7 and 8 present related work and conclude.

2 Preliminaries

We begin by introducing the syntax of the C subset under consideration. Our
aim is to cover the part of the C language crucial to most low-level programs
like kernel code and drivers. We support arbitrarily nested named records and
pointers to named types only; integers are not considered. This implies that we
have both records and pointers as values. We use the domain Id of variables

ranged over by x, y, and z, and the domain Sel of component selectors ranged
over by s. Type names are ranged over by t. We consider the following languages
of types τ and pointer expressions e:

τ ::= struct t {τ1 s1, . . . , τk sk} | τ ∗
e ::= 0 | x | ∗e | &e | e→ s | malloc(t) | up(x, t, s)

We omit arbitrary pointer arithmetic, unions, and type-casts; rather, we restrict
pointer manipulation to component selection and the expression up(x, t, s) used
as a primitive to model the container of macro which computes the address
of a record of type t from a pointer x to its s component. Since recent versions
of the Linux kernel rely on built-in support by the compiler to implement this
macro, a primitive treatment of the container-of idiom is sensible.

In the presence of overlap the up()-operator is crucial to change views. For
instance, in the example of Figure 1 one could traverse the cleanup queue, use
the operator up() to jump to the data component of a node, and then continue
traversing the list components.

As for statements we only consider assignments between pointer expressions.
We assume that programs are compiled into a control-flow graph where assign-
ments are attached to edges and where pointer comparisons may serve as guards.
Two different semantics will be provided in Sections 3 and 4 in the framework of
the Three-valued Logic Based Shape Analysis (TVLA) [27]. We therefore briefly
recapitulate the basics of the TVLA approach in order to have the necessary
notation at hand.

TVLA builds on the notion of logical structures over a certain signature P .
A logical structure S = (U, ι) is a pair of a set of individuals U ranged over by
u and an interpretation, ι. Each predicate symbol p/k ∈ P of arity k is mapped
by ι to a boolean-valued function ι(p/k) : Uk → B. The set of all structures over
a P is written S[P]. We evaluate formulas of first-order logic with transitive
closure, FO(TC), on logical structures. Formulas are defined by:

ϕ = 0 | p(v1, . . . , vk) | ¬ϕ | ϕ ∧ ϕ | ∃v : ϕ | TC(v1, v2 : ϕ)(v′
1
, v′

2
)

where v ∈ Var is a logical variable. The transitive closure operator, TC(v1, v2 :
ϕ)(v′1, v

′

2) defines a binary relation by ϕ using free variables v1 and v2. The
transitive closure of this relation is then evaluated on v′

1
and v′

2
. The evaluation

of a formula ϕ in structure S and assignment Z (of free variables to individuals)
is written [[ϕ]]S(Z).

Logical structures are used to encode heap graphs. Traditionally, an individ-
ual corresponds to a record and a binary predicate s holds of individuals u and
u′, if there is a pointer-valued component s of the record modeled by u which
points to (the head of) the record modeled by u′. The predicates used to encode
a heap are essentially the binary selectors, Sel, and the unary program vari-
ables, Id, that hold of records pointed to by the corresponding variables. These
predicates are called core predicates, the set of which is denoted by C.

The semantics of an assignment st is a mapping [[st]] : S[C] → S[C] This is
given in terms of predicate update formulas that update the value of predicates

affected by the statement. Given for each k-ary predicate p ∈ C an update
formula ϕst

p with free variables v1, . . . , vk, the semantics of st is defined as

[[st]](S) = (U ′, λp.λu1, . . . , uk.[[ϕ
st
p]]S(Z)) where Z = [v1 7→ u1, . . . , vk 7→ uk] and

the universe U ′ is either the same as before or (in the case of memory allocation)
extended with fresh individuals.

Abstract states in the TVLA framework are three-valued logical structures
based on Kleene’s three-valued logic. Abstract states are obtained by canonical
abstraction, an abstraction that summarizes individuals that are indistinguish-
able under a set of abstraction predicates to summary nodes. Due to summa-
rization, knowledge about certain predicates may become indefinite, in which
case the logical value 1/2 is introduced. To avoid serious loss of precision, in-
strumentation predicates are employed; these are additional predicates defined
through formulas of FO(TC) using the core predicates C. Instrumentation pred-
icates allow to better distinguish abstract nodes by annotating logical structures
with additional information such as reachability, sharing, or cyclicity. Update
formulas for instrumentation predicates can be automatically inferred using dif-
ferencing [25].

As abstract states are still logical structures, the concrete semantics in terms
of predicate update formulas is easily lifted to three-valued logical structures,
too. As a consequence, it is sufficient to specify predicate update formulas and
a set of instrumentation predicates to define a program analysis in the TVLA
framework. Soundness then is immediate.

3 Fine-grained Semantics and Analysis

We now present our first refinement of the one-node-per-record paradigm by
adopting a one-node-per-component representation. More precisely, a record of
type struct t {τ1 ∗ s1, . . . , τk ∗ sk} is represented by k + 1 nodes, one be-
ing the head and one for each pointer component. If the component types are
records again, additional nodes for the subcomponents are introduced, until fi-
nally pointer types are reached. This corresponds to transforming the hierarchy
of boxes in Figure 2 into a tree.

This memory model is both more explicit and more abstract than that of
real C. While in C the address of a record and the address of its first component
coincide, they are considered as different here. On the other hand, we do not
model the order of components or padding between each two of them. In our
model, the operation up() amounts to moving from a component node to the
head of its enclosing record.

Since we rely on the TVLA framework, we aim at encoding a state as a logical
structure. Here we use the signature

C = {x/1 | x ∈ Id} ∪ {s/2 | s ∈ Sel} ∪ {∗/2}

In order to reason about expressions of the form &x, the corresponding predicate
x holds of an individual representing the stack location where x’s value is stored.
In standard TVLA the predicate x holds of the element pointed to by x.

st ϕst

∗ (v1, v2) =

x = 0 ∗(v1, v2) ∧ ¬x(v1)
∗x = 0 ∗(v1, v2) ∧ ¬∃ v′ : x(v′) ∧ ∗(v′, v1)
x → s = 0 ∗(v1, v2) ∧ ¬∃ v′, v′′ : x(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v1)

x = y ∗(v1, v2) ∨ x(v1) ∧ ∃ v′ : y(v′) ∧ ∗(v′, v2)
x = ∗y ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ ∗(v′′, v2)
x = &y ∗(v1, v2) ∨ x(v1) ∧ y(v2)
x = &y → s ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v2)
x = y → s ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′, v′′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v′′′) ∧ ∗(v′′′, v2)
x = up(y, t, s) ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v2, v

′′)
∗x = y ∗(v1, v2) ∨ ∃ v′, v′′ : x(v′) ∧ ∗(v′, v1) ∧ y(v′′) ∧ ∗(v′′, v2)
x → s = y ∗(v1, v2) ∨ ∃ v′, v′′, v′′′ : x(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v1) ∧ y(v′′′) ∧ ∗(v′′′, v2)

Table 1: Predicate update formulas for nullification and assignments. The latter assume
that ∗x, x, and x → s have been nullified.

The key predicate in our formulation is the binary ∗ for dereferencing. In
particular, it holds between the location of a pointer variable and the value the
variable points to. An interesting feature of our model is that the only predicate
that is affected by assignments is the ∗ predicate: once allocated, the nodes
representing a record and its components do not change and neither does the
location of a variable.

We now formalize the semantics of our programming language. Each basic
statement gives rise to an update formula. The update formulas, except for alloca-
tion, are given in Table 1. As is often done, we consider only one pointer operation
per assignment, and we assume that pointers which are assigned to are always
explicitly nullified before-hand, so that updates for assignments only introduce
a single new points-to relationship. For example, in the case of x = up(y, t, s),
we have that ∗(u1, u2) holds after the assignment if it either held before, or if u1

is the individual hosting x and u2 has an s-component which is pointed to by
the individual hosting y.

As for memory allocation, we expand the universe by a set of new individuals
depending on the type of the record to be allocated. Recall that we require
one individual per (sub)component of each non-pointer type. To this end, we
introduce the notion of an access path. Such paths are not to be confused with
access paths found in storeless semantics [15, 20]. Here, they merely reflect the
static structure of a (possibly nested) record. Intuitively, there is a path for each
component of a record. Formally, we define the set Π of access paths to be a
union over all record types t occurring in the program, Π =

⋃

tΠ(t), where

Π(τ ∗) = {ε}

Π(struct t {τ1 s1, . . . , τk sk}) =
⋃k

i=1
{si}.Π(τi) ∪ {si}

As t ranges over record types, ε 6∈ Π ; we write Πε = Π ∪ {ε}.

lnodep

r[lpp]
r[x]

ptr [lpp]

r[lpp]lpp

hasn

lnode

r[x]

ptr [x]

r[x]

x

hasn

lnode

r[lpp]
r[x]

lnodep

r[lpp]
r[x]

hasn

lnode

r[lpp]
r[t], r[x]

ptr [t]

r[t]

t

lnodep

r[lpp]
r[t], r[x]

hasn

lnode

r[lpp]
r[t], [x]

∗

n

∗

∗

∗

n

∗

∗

∗

n

n

∗

Fig. 3: Shape graph during list traversal with indirect pointer. Double lines indicate
summary nodes, solid arrows indicate definite edges, and dotted ones 1/2-edges. Pred-
icates within a node do hold for this node.

Using the access paths from Π , we define the semantics of malloc as [[x =
malloc(t)]](U, ι) = (U ′, ι′) where U ′ = U ·∪ {uπ | π ∈ Πε(t)} and

ι′(s)(u1, u2) =











ι(s)(u1, u2) if u1, u2 ∈ U

1 if u1 = uπ ∧ u2 = uπ.s

0 otherwise

ι′(∗)(u1, u2) =











ι(∗)(u1, u2) if u1, u2 ∈ U

1 if ι(x)(u1) ∧ u2 = uε

0 otherwise

Analysis. As first example which goes beyond the one-node-per-record memory
model, we consider a program which iterates over a singly-linked list pointed to
by x using a pointer, lpp , to the next component of list elements, rather than
to the elements themselves. The iteration is driven by the loop

for (lpp = &x; * lpp != NULL; lpp = &(* lpp) →next)

In the beginning lpp points to the address of x . It is advanced by dereferencing
and taking the address of the next component of the next element. Once an
element to be deleted is found, the assignment * lpp = (* lpp) →next removes
it from the list. This routine is quite elegant in that it needs only one iterator
and no check whether the iterator points to the first element or not. Also it uses
pointers to components of records.

We implemented the creation of a fine-grained singly-linked list, the itera-
tion over it, and the deletion of an element from it as outlined above in TVLA.1

1 All our TVLA analysis specification files are provided online at http://www7.in.
tum.de/ ˜ joba/overlap.tgz . These files also contain the precise definitions of
instrumentation predicates and integrity constraints.

The encoding of the fine-grained model into TVLA amounted in representing
the ∗ predicate together with its update formulas for the basic statements.
Through this encoding, we could re-use instrumentation predicates like shar-
ing and reachability (r[z] : reachability from program variable z) to make the
analysis go through and prove memory safety and well-formedness. Essentially,
these come for free from TVLA. Additional instrumentation that we had to
provide concerned type information (lnode , lnodep), the location to which
pointer variables point (ptr[z]), and the fact that each record always has a
next component (hasn).

In Figure 3, we show a sample shape graph, where summary nodes are de-
noted by double lines, definite edges by solid arrows, and 1/2 edges, which may
or may not be there, by dotted arrows. Variable t points to an element in the
middle of the list and is to be deleted using the code above. The snapshot is
taken after the first iteration of the loop, where lpp was advanced once. The
two pairs of summary nodes (double circles) represent any number (at least 1)
of list elements before and after t . Each pair would be a single node in the
standard TVLA memory model. Also observe, that lpp indeed points to the n
component of the list element pointed to by x .

4 Coarse-grained Semantics and Analysis

The fine-grained model from the last section has a very explicit view of the
heap and allows for very detailed modelling. The number of individuals, though,
in a logical structure is a multiple of the number occurring in standard TVLA
based analyses because each component of a record is modeled by a separate
individual. On top of that, care must be taken that individuals belonging to the
same record — encoded as the outermost boxes in Figure 2 — are kept together,
something not supported by standard TVLA.

Fortunately, we can atone for these drawbacks by exploiting the fact that
the structure of a record is completely static. Once allocated, the interpretation
of predicates in Sel never changes, only the ∗ predicate does. This observation
suggests an encoding of records as single nodes after all, rather than representing
them explicitly through a linked set of nodes — as in the one-node-per-record
paradigm. Still, pointers to the head of a record need be distinguished from
pointers to components. We do so by parameterizing the ∗ predicate. For exam-
ple, if ∗[p, n] is true of two individuals u and u′, it means that the p-component of
the record modeled by u holds a pointer to the n-component of the record mod-
eled by u′. Analogously, we parameterize the unary predicates encoding pointer
variables: if x[n] holds of individual u, it means that x holds a pointer to the
n-component of the record modeled by u. In the special case (which in practice
is the most common) of a pointer to the head of a record, we write x[ε].

Addresses of variables can be handled by adding one individual per variable
exactly like in the fine-grained model. In order to simplify the presentation,
though, we here omit addresses of pointer variables. Unlike in the fine-grained
semantics, the unary predicate x[ε] now holds for the individual pointed to by

st ϕst

p

x = 0 ϕst

x[π](v) = 0

∗x = 0 ϕst

∗[π,π′](v1, v2) = ∗[π, π′](v1, v2) ∧ ¬x[π](v1)

x → s = 0 ϕst

∗[π.s,π′](v1, v2) = ∗[π.s, π′](v1, v2) ∧ ¬x[π](v1)

x = y ϕst

x[π](v) = y[π](v)

x = ∗y ϕst

x[π](v) = ∃ v′ :
W

π′∈Π
y[π′](v′) ∧ ∗[π′, π](v′, v)

x = &y not supported
x = &y → s ϕst

x[π.s](v) = y[π](v)

x = y → s ϕst

x[π](v) = ∃ v′ :
W

π′∈Π
y[π′](v′) ∧ ∗[π′.s, π](v′, v)

x = up(y, t, s) ϕst

x[π](v) = y[π.s](v)

∗x = y ϕst

∗[π,π′](v1, v2) = ∗[π, π′](v1, v2) ∨ x[π](v1) ∧ y[π′](v2)

x → s = y ϕst

∗[π.s,π′](v1, v2) = ∗[π.s, π′](v1, v2) ∨ x[π](v1) ∧ y[π′](v2)

Table 2: Predicate update formulas. Here, ϕx[π] and ϕ∗[π,π′] denote rule schemes and
stand for one rule per instance of π.

the pointer x, rather than for the location of x itself. Thus, the standard TVLA
model is obtained from this version of the coarse-grained model by restricting
predicates to the forms ∗[s, ε] and x[ε], i.e., all pointers point to the heads of
records.

Recall the notion of an access path of the previous section. Using access
paths, we define coarse-grained states as logical structures over the following
signature, D, serving as our set of core predicates.

D = {x[π]/1 | x ∈ Id, π ∈ Πε} ∪ {∗[π1, π2]/2 | π1 ∈ Π,π2 ∈ Πε}

In order to complete the coarse-grained semantics, we provide the predicate
update formulas for the predicates in D. The update formulas shown in Table 2
constitute the state transformers both for the concrete and for the abstract
semantics. These formulas are more concise than those of the fine-grained model.
The update for the up() operation, e.g., only requires updating the predicates
x[π] to be true whenever the corresponding y[π.s] used to be true. In the case
of memory allocation, the effect of x = malloc(t) is to extend the universe with
one fresh individual for which only the predicate x[ε] holds.

Analysis. As for the fine-grained semantics, we implemented the coarse-grained
transformers inside TVLA. As an example, we analyzed a program that first
generates an hlist using the expanded hlist add macro, which was already
used in Figure 1, then iterates to some arbitrary point, and then deletes the
element there using the hlist del macro. The concrete C code of these macros
is available from the list.h file of the current Linux distribution.

Being able to handle hlists is mandatory for verifying absence of races in
programs such as in Figure 1. In our TVLA implementation, we parameter-
ized the ∗ predicate with source and target components as described in the
semantics. Other than that, we could migrate existing analysis specifications for

doubly-linked lists to hlists. The analysis of doubly linked lists uses, e.g., the in-
strumentation predicate which says that first following the pointers n and then
p yields the same element. This predicate now is migrated to a predicate c[n, p]
stating that following ∗[n, ε] and then ∗[p, n] results in the same individual.

c[n, p], c[p, n]
rl [t], rl [x], rr [x]

head

x[ε]
c[n, p], c[p, n]
rl [t], rr [x]

node

c[n, p], c[p, n]
rl [t], rr [t], rr [x]

node

t[ε]t[ε]

c[n, p], c[p, n]
rr [t], rr [x]

node

∗[first , ε] ∗[n, ε] ∗[n, ε]

∗[p, n]∗[p, n]∗[p, first]

∗[n, ε]

∗[p, n]

∗[n, ε]

∗[p, n]

Fig. 4: Shape graph obtained during hlist traversal.

The sample shape of Figure 4 shows a situation where t points to the middle
of an hlist. Note that there are two sorts of reachability: forward (tr , rr[z])
and backward (tl and rl[z]). This shows that t is indeed in the middle,
well-formedness follows from the c[] predicates. Finally, observe that the back
pointers either point to the first component of the head x , * [p,first] , or
to the n component of a predecessor element (* [p,n]). In contrast, the forward
pointer always points to the head of a record (* [n, ε]).

We successfully verified well-formedness and memory safety for the hlist ex-
ample. Before we proceed to the example program of Figure 1, we investigate the
formal relation between the fine-grained and the coarse-grained model in terms
of expressiveness.

5 Fine-grained versus Coarse-grained

Since the fine-grained model is more detailed, it is able to simulate the coarser
one in a sense to be made explicit now.

We start by defining a mapping g from a coarse-grained structure Sc =
(Uc, ιc) into a fine-grained structure g(Sc) = (Uf , ιf). The set of individuals of
g(Sc) is given by

Uf = Id ∪ {uπ | u ∈ Uc, π ∈ Πε(type(u))}

The interpretation function ιf then is given by:

ιf (∗)(uπ, u
′

π′) iff ιc(∗[π, π
′])(u, u′)

ιf (∗)(x, uπ) iff ιc(x[π])(u)
ιf (x)(v) iff v = x

ιf (s)(v, v′) iff ∃uπ.s ∈ Uf . v = uπ ∧ v′ = uπ.s

where type(u) = t if u was created by malloc(t). Also we assume that Sc

respects types, i.e., there are no pointers from or to a π component of node u if
π 6∈ Π(type(u)).

Since we deal with two different vocabularies, C and D, on top of the mapping
g between structures, a mapping T is required which translates formulas. Let
ϕ be a FO(TC) formula over D. The translation T commutes with boolean
connectives and additionally is defined by:

T (∗[π1, π2](v1, v2)) = ∃v′
1
, v′

2
, v : π1(v1, v

′

1
) ∧ π2(v2, v

′

2
) ∧ ∗(v′

1
, v′

2
)

T (x[π](v)) = ∃v′, v′′ : x(v′) ∧ π(v, v′′) ∧ ∗(v′, v′′)

T (∃v : ϕ) = ∃v : head(v) ∧ T (ϕ)

T ((TC v1, v2 : ϕ)(v3, v4)) = (TC v1, v2 : head(v1) ∧ head(v2) ∧ T (ϕ))(v3, v4)

where for π = s1. · · · .sk ∈ Π , the formula π(v0, vk) is given by

∃v1, . . . , vk−1 : s1(v0, v1) ∧ . . . ∧ sk(vk−1, vk)

and where head holds for heads of records in a fine-grained structure only. A
node is a head, if it is not the location of a variable and if it has no incoming Sel

edge. The following theorem states that this translation preserves the valuation
of formulas and that it commutes with state transformers, i.e., with predicate
update formulas.

Theorem 1. Let Sc be a type-respecting, coarse-grained logical structure and
Sf = g(Sc) the corresponding fine-grained structure. Then we have:

1. For every closed FO(TC) formula ϕ over D, [[ϕ]]Sc = [[T (ϕ)]]Sf .
2. For every basic statement st, g([[st]]c(Sc)) = [[st]]f (Sf).

Proof. For an induction argument, we prove the statement for open formulas.
Let Zc : Var → Uc be an assignment of logical variables to individuals in the
coarse-grained universe; we define Zf = g(Zc) : Var → Uf as an assignment
selecting the head uε for each record u. We show [[ϕ]]Sc(Zc) = [[T (ϕ)]]Sf (Zf) by
induction on ϕ. For the core predicates, we compute for u = Zc(v):

[[x[π](v)]]Sc (Zc) = ιc(x[π])(u) = ιf (∗)(x, uπ)

= ∃u′ ∈ Uf : π(uε, u
′) ∧ ιf (∗)(x, u′)

= [[T (x[π](v))]]Sf (Zf)

And analogously for the binary predicates. We need to further consider cases for
∧, ∃, ¬, and TC (as the rest follows from DeMorgan’s Laws). Conjunction and
negation are obvious, while existential quantification and transitive closure rely
on the restriction of quantification to heads of records. We consider existential
quantification, for which we observe:

[[∃v : ϕ]]Sc(Zc) = ∃u ∈ Uc : [[ϕ]]Sc(Zc[v 7→ u]) = ∃u ∈ Uc : [[T (ϕ)]]Sf (Zf [v 7→ uε])

= ∃u′ ∈ Uf : head(u′) ∧ [[T (ϕ)]]Sf (Zf [v 7→ u′])

= [[∃v : head(v) ∧ T (ϕ)]]Sf (Zf) = [[T (∃v : ϕ)]]Sf (Zf)

This completes the proof of the first statement. For the second statement, let
Sc = (Uc, ιc) denote a coarse-grained logical structure. We do a case distinction
on the form of basic statements.

Consider, e.g., the statement st given by x = up(y, t, s). If it exists, let u ∈ Uc

denote the unique individual for which ιc(y[π.s]) holds for some access path π.
Then [[st]]c(Sc) = S′

c = (U ′

c, ι
′

c) where U ′

c = Uc and ι′c equals ιc up to the predicate
x[π], which is updated such that ι′c(x[π])(u′) holds iff u′ = u. Let Sf = g(Sc)
denote the fine-grained structure corresponding to Sc. This generates for u ∈ Uc

the head uε ∈ Uf as well as its components, including uπ and uπ.s. Since we
assumed that ιc(y[π.s])(u) is true in Sc, we know that ιf (∗)(y, uπ.s) must hold
in Sf . Thus, [[st]]f (Sf) = S′

f = (U ′

f , ι
′

f) where the set of individuals are the same
as Sf and ι′f equals ιf up to the predicate ∗ which now additionally holds for the
pair (x, uπ). Ultimately, the only change to Sf and Sc is that ι′c(x[π])(u) holds
in S′

c and ι′f (∗)(u, uπ) holds in S′

f . As this is in accord with the definition of g,
we conclude that g(S′

c) = S′

f . This holds also if ιc(y[π.s]) is false everywhere, in
which case S′

c = Sc and S′

f = Sf . ⊓⊔

The theorem effectively constitutes a simulation result between fine-grained
and coarse-grained semantics. Notice that the restriction of quantified variables
to heads of records in the translation T is an important one. It also demonstrates
exactly how fine-grained structures are finer: they can talk about record compo-
nents explicitly and quantify over them, while components occur only implicitly
in the coarse-grained model.

Part 1 of Theorem 1 can be lifted to abstract states as well. Assume an
abstract, three-valued coarse-grained structure S3

c and any two-valued coarse-
grained structure S2

c such that S2

c ⊑ S3

c using the embedding order of [27]. Then
any formula ψ of FO(TC) that holds for S3

c also holds for S2

c by the Embedding
Theorem. By Theorem 1, T (ψ) holds in Sf = g(S2

c). If S3
c was obtained by the

set A of abstraction predicates, then ψ will also hold in the canonical abstraction
of Sf using T (A) as abstraction predicates. Lifting part 2 of Theorem 1 is far
more involved, because it needs to take materialization strategies into account.

6 Application

Let us finally consider the motivating program from the Introduction. Its code
is shown in Figure 1 and a typical memory configuration in Figure 2. In order
to argue about data races in the presence of privatization, reachability informa-
tion is crucial. In particular, one must reason about reachability along different
embedded lists. For instance, in Figure 2, only the first and the third node are
in the queue, whereas all three are in the list.

The TVLA tool does not natively support computations on predicates as
necessary to conveniently express the string manipulation on access paths as used
in the update formulas of Table 2. This makes the implementation cumbersome
and look clumsy in places. Also, it introduces a lot of superfluous predicates
and coercion constraints greatly slowing down the tool. This, however, is not a

principal restriction of our memory model but the lack of tool support. Therefore,
we had to settle for a proof of concept implementation where the cleanup queue
is actually a singly-linked list.

r[hash]
rl [hash]
rr [hash]

hash[ε]

r[cq]
rl [cq]
rr [cq]

cq [ε]

rr [hash]
node

r[cq]
rr [hash]

node

∗[list .pprev ,first]

∗[first , list]∗[list .pprev ,first]

∗[next , queue] ∗[queue .next , queue]
∗[list .pprev , list .next]
∗[list .next , list]

∗[queue .next , queue]
∗[list .pprev , list .next]
∗[list .next , list]

∗[queue .next , queue]
∗[list .pprev , list .next]
∗[list .next , list]

Fig. 5: Shape graph obtained while analyzing overlapping data-structure.

First, we analyzed a program creating a structure like that of Figure 2 from
scratch. This amounts to iterating the code

n = malloc(sizeof(node));

hlist_add_head(&n →list,&hash);

if (?) list_add (&n →queue, &cq);

After this loop, four shapes are obtained, the most general of which is shown in
Figure 5. It shows that (i) all nodes are reachable from hash , which is the head
of the hlist component, a fact indicated by rr[hash] ; and (ii) only some nodes
are reachable from cq , indicated by r[cq] . This is the arbitrary subset of nodes
added to the cleanup queue. Also it shows the ∗ predicates with parameters like
list.pprev , denoting the pprev component of the hlist component of a node.
Recall that rr[x] (rl[x]) means reachability from x along forward (backward)
pointers in a doubly-linked list, while r[x] is just singly-linked list reachability
— which is how we implement the cleanup queue. The precise definitions can be
found at http://www7.in.tum.de/ ˜ joba/overlap.tgz .

Subsequently, the elements of the queue are to be removed from the hlist
component using

list_for_each_entry(n, &cq, queue) { hlist_del (&n →list); }

Here, the challenge for the analysis is the change of views implied by traversing
the queue and then removing from the hlist. A lot of reachability information
is lost; in fact, properties like absence of memory leaks cannot be guaranteed
by this analysis. Still, we are able to prove that an element is deleted from the
queue using the very same routine that was used in a non-embedded record in

Section 4. Thus, we can infer that the element is no longer reachable from the
thread-shared data.

Again, the analysis specifications are available online. Even in this most com-
plicated scenario, the analysis time was just a few seconds.

7 Related Work

The body of work on shape analysis is too large to do equal justice to all tech-
niques. Approaches based on regular model checking [5], symbolic backwards
reachability analysis [1], or decision procedures such as [6] seem not to have
dealt with the analysis of low-level system code, much less with overlapping
records. There are a number of approaches that make use of numeric reasoning
to deal with pointer arithmetic. While pioneered by Deutsch [15], who used nu-
meric domains to constrain access paths, Gulwani and Tiwari [19] provide a C
semantics which perhaps is even more explicit about blocks and offsets as ours.
However, it is unable to deal with structures such as doubly-linked lists. Recent
work [18] combines numeric and shape domains. It is focused on tracking parti-
tion sizes to prove memory safety and sometimes even termination in presence
of arrays of dynamically allocated structures. So far, however, none of the above
treats overlapping records.

More direct approaches to shape analysis are based on either TVLA [27] or
separation logic [26]. As stated before, most work in the TVLA setting focuses on
higher-level programming languages; however, Dor’s thesis [16] and subsequent
work provided a semantics of low-level C similar to our fine-grained semantics
and program analyses based on this semantics. These analyses are mostly con-
cerned with string manipulations.

As for separation logic based approaches which deal with a low-level C seman-
tics and with pointer arithmetic, one early work is [8], which however specifically
targets the data-structure of multiword lists. Berdine et al. [3] present a shape
analysis of composite data-structures which can reason about lists of lists. They
explicitly identify shape analysis of overlapping or embedded structures as pre-
sented here as a limitation to their approach. Also, Chang and Rival [9] present a
shape analysis based on separation logic and user-specified data-structure spec-
ifications called checkers. It also treats combinations of numerical and shape
domains, but overlapping records are not considered. Despite some impressive
improvements recently [7, 31], in particular concerning scalable shape analyses
of real code, a formal treatment of overlapping records has yet to be reported.
In addition, most of that work focuses exclusively on memory safety rather than
on subtle reachability problems as we face.

Separation logic is also used in the broader context of modular verification
and extended static checking. There, one relies on specifications of components,
and the analysis operates under the assumption that other components behave
as specified [2,14,17]. The fine-grained memory model we use for shape analysis
is also used by the VCC C verifier [12]; in particular, it uses an implicit type-
system to verify that distinct pointers do not reference overlapping objects [13].

In the Havoc verifier [10], a particular reachability predicate is employed which
also works on a semantics resembling ours, but is much more numeric in nature,
focused on pointer arithmetic. Other techniques exist for dealing with the heap
in modular verification, including ownership [11], which is used by Spec# and
Java/JML; dynamic frames [21,29], which is used by VeriCool 1 and Dafny; and
implicit dynamic frames [30], which are used in VeriCool 3 and Chalice.

Our interest in shape analysis of overlapping records is derived from attempts
to verify absence of data races in low-level C. In static race detection, dynamic
memory is treated at a fairly superficial level by blobbing together objects into
static allocation sites. There are techniques for verifying mutually exclusive ac-
cess to heap objects when each record contains its own dedicated lock [24];
and analyses relying on reachability information, such as disjoint reachability
analysis [23] and region analysis [28], have been employed to ensure correct
synchronization of accesses to disjoint regions of dynamically allocated memory.
These analyses, however, cannot deal with object privatization and overlapping
structures as occur in our example. On the other hand, by virtue of not tracking
the state of the heap at each program point, such analyses can be directly used
in a concurrent setting, while our approach requires adaptations of the TVLA
approach to handle concurrency [4, 22].

8 Conclusion

We presented a shape analysis for overlapping data-structures, which are ubiq-
uitous in low-level systems code. Using our prototype implementation we were
able to establish subtle reachability properties as required, e.g., for reasoning
about data races in system code with overlapping records.

For that, we introduced two refinements of existing memory models. This
enabled us to implement both approaches within the TVLA framework. Accord-
ingly, our analysis will benefit from any future improvements of the TVLA tool.
However, as dynamic manipulation of predicates is not natively supported by the
TVLA tool, a new front-end and/or tool extension is desirable as future work.

The step from fine-grained to coarse-grained semantics is essentially a tech-
nique of encoding statically known parts of graph structures like the internal
structure of records into syntax. Somehow similar, separation logic based ap-
proaches rely on inductively defined predicates capturing data-structures. This
connection might be exploited to enable the use of different formalisms for dif-
ferent parts of the heap in a common setting.

References

1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic
abstraction for programs with dynamic memory heaps. In: CAV’08. LNCS, vol.
5123, pp. 341–354. Springer (2008)

2. Barnett, M., Chang, B., DeLine, R., Jacobs, B., Leino, K.: Boogie: A modular
reusable verifier for Object-Oriented programs. In: FMCO’06. LNCS, vol. 4111,
pp. 364–387. Springer (2006)

3. Berdine, J., Calcagno, C., Cook, B., Distefano, D., OHearn, P., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: CAV’07. LNCS, vol. 4590,
pp. 178–192. Springer (2007)

4. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread quan-
tification for concurrent shape analysis. In: CAV’08. LNCS, vol. 5123, pp. 399–413.
Springer (2008)

5. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
CAV’00. LNCS, vol. 1855, pp. 403–418. Springer (2000)

6. Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.C.: Using first-order
theorem provers in the Jahob data structure verification system. In: VMCAI’07.
LNCS, vol. 4349, pp. 74–88. Springer (2007)

7. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL’09. pp. 289–300. ACM Press (2009)

8. Calcagno, C., Distefano, D., OHearn, P., Yang, H.: Beyond reachability: Shape
abstraction in the presence of pointer arithmetic. In: SAS’06. LNCS, vol. 4134, pp.
182–203. Springer (2006)

9. Chang, B.Y.E., Rival, X.: Relational inductive shape analysis. In: POPL’08. pp.
247–260. ACM Press (2008)

10. Chatterjee, S., Lahiri, S., Qadeer, S., Rakamarić, Z.: A low-level memory model
and an accompanying reachability predicate. Int J Softw Tools Technol Transfer
11(2), 105–116 (2009)

11. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA’98. pp. 48–64. ACM Press (1998)

12. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
TPHOL’09. LNCS, vol. 5674, pp. 23–42. Springer (2009)

13. Cohen, E., Moskal, M., Tobies, S., Schulte, W.: A precise yet efficient memory
model for C. In: SSV’09. ENTCS, vol. 254, pp. 85–103. Elsevier (2009)

14. Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and prop-
erty checking for low-level code. In: POPL’09. pp. 302–314. ACM Press (2009)

15. Deutsch, A.: Interprocedural may-alias analysis for pointers: beyond k-limiting. In:
PLDI’94. pp. 230–241. ACM Press (1994)

16. Dor, N.: Automatic Verfication of Program Cleanness. Master’s thesis, Tel Aviv
University (2003)

17. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: PLDI’02. pp. 234–245. ACM Press (2002)

18. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking par-
tition sizes. In: POPL’09. pp. 239–251. ACM Press (2009)

19. Gulwani, S., Tiwari, A.: An abstract domain for analyzing heap-manipulating low-
level software. In: CAV’07. LNCS, vol. 4590, pp. 379–392. Springer (2007)

20. Jonkers, H.B.M.: Abstract storage structures. In: Algorithmic Languages. pp. 321–
343. IFIP (1981)

21. Kassios, I.: Dynamic frames: Support for framing, dependencies and sharing with-
out restrictions. In: FM’06. LNCS, vol. 4085, pp. 268–283. Springer (2006)

22. Manevich, R., Lev-Ami, T., Sagiv, M., Ramalingam, G., Berdine, J.: Heap decom-
position for concurrent shape analysis. In: SAS’08. LNCS, vol. 5079, pp. 363–377.
Springer (2008)

23. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In:
POPL’07. pp. 327–338. ACM Press (2007)

24. Pratikakis, P., Foster, J.S., Hicks, M.: Existential label flow inference via CFL
reachability. In: SAS’06. LNCS, vol. 4134, pp. 88–06. Springer (2006)

25. Reps, T.W., Sagiv, S., Loginov, A.: Finite differencing of logical formulas for static
analysis. In: ESOP’03. LNCS, vol. 2618, pp. 380–398. Springer (2003)

26. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS’02. pp. 55–74. IEEE Press (2002)

27. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
TOPLAS 24(3), 217–298 (2002)

28. Seidl, H., Vojdani, V.: Region analysis for race detection. In: SAS’09. LNCS, vol.
5673, pp. 171–187. Springer (2009)

29. Smans, J., Jacobs, B., Piessens, F.: VeriCool: an automatic verifier for a concur-
rent Object-Oriented language. In: FMOODS’08. LNCS, vol. 5051, pp. 220–239.
Springer (2008)

30. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dynamic
frames and separation logic. In: ECCOP’09. LNCS, vol. 5653, pp. 148–172. Springer
(2009)

31. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,
P.: Scalable shape analysis for systems code. In: CAV’08. LNCS, vol. 5123, pp.
385–398. Springer (2008)

