Skip to main content

Causal Cycle Based Communication Pattern Matching

(Short Paper)

  • Conference paper
  • 767 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5935))

Abstract

A distributed system employing checkpoint and rollback-recovery as a fault tolerance mechanism, suffers from overhead attributed by the technique. Authors in [4] proposes a technique to automatically identify a checkpoint and recovery protocol based on a pre-estimated database of overhead measures. The technique depends on computation of similarity between a pair of communication patterns. The computation involves first partitioning both the communication patterns into small pieces or splices. A pair of splices, one taken from each of the two communication patterns in question, are then compared to compute a similarity measure. Splicing a communication pattern is an important step in the method since it bears heavy significance for later steps in the computation. This paper introduces a new method for splicing. Experimental results show that the technique yields better similarity measure values in comparison to results reported in [4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  2. Elnozahy, E.N., Alvisi, L., Wang, Y., Johnson, D.B.: A survey of rollbak-recovery protocols in message-passing sytems. ACM Computing Surveys 34(3), 375–408 (2002)

    Article  Google Scholar 

  3. Netzer, R.H.B., Xu, J.: Necessary and sufficient conditions for consistent global snapshots. IEEE Transactions on Parallel and Distributed Systems 6(2), 165–169 (1995)

    Article  Google Scholar 

  4. Paul, H.S., Gupta, A., Sharma, A.: Finding a suitable checkpoint and recovery protocol for a distributed application. J. Parallel and Distributed Computing 66(5), 732–749 (2006)

    Article  MATH  Google Scholar 

  5. Paul, H.S., Gupta, A., Badrinath, R.: Performance comparison of checkpoint and recovery protocols. Concurrency and Computation: Practice and Experience 15(15), 1363–1386 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paul, H.S. (2010). Causal Cycle Based Communication Pattern Matching. In: Kant, K., Pemmaraju, S.V., Sivalingam, K.M., Wu, J. (eds) Distributed Computing and Networking. ICDCN 2010. Lecture Notes in Computer Science, vol 5935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11322-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11322-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11321-5

  • Online ISBN: 978-3-642-11322-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics