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Abstract. We describe a model-checking based approach to verification of pro-
grams written in the agent programming language Dribble. We define a logic (an
extension of the branching time temporal logic CTL) which describes transition
systems corresponding to a Dribble program, and show how to express properties
of the agent program in the logic and how to encode transition systems as an in-
put to a model-checker. We prove soundness and completeness of the logic and a
correspondence between the operational semantics of Dribble and the models of
the logic.

1 Introduction

BDI-based agent-oriented programming languages [5] facilitate the implementation of
cognitive agents by providing programming constructs to implement concepts such as
beliefs, goals, and (pre-defined) plans. In such languages, an agent selects a plan to
achieve one or more goals based on its beliefs about the environment. However in any-
thing other than toy environments, selecting an appropriate plan does not guarantee that
it can be successfully executed. The beliefs used to select a particular plan for a given
goal is only a heuristic, and cannot capture the preconditions of all the actions in the
plan (some of which may be false when the plan is selected and will only be made true
by actions in the plan). Moreover, in dynamic environments, an agent’s beliefs (and
hence the best way of achieving a goal) may change in unanticipated ways during plan
execution, and a rational agent must be prepared to revise its plans at run time to take
advantage of ‘fortuitous’ changes in the environment (e.g., which allow some steps in
the plan to be skipped) or to recover from ‘adverse’ changes in the environment (e.g.,
when a precondition of an action is discovered not to hold).

Many BDI-based agent programming languages provide facilities to drop plans if
the corresponding goal is ‘unexpectedly’ achieved or when execution of the plan fails
[6, 16, 17]. More advanced languages, e.g., [18, 9] provide support for arbitrary mod-
ification of plans during their execution. However, while such meta-level capabilities
simplify the development of rational agents, they make it more difficult to reason about
the execution of agent programs, e.g., to verify their correctness. In addition to reason-
ing about the agent’s beliefs, goals and plans, we need to model the current state of plan
execution, and the evolution of the agent’s program at run time in response to inter-
actions between the effects the agent’s actions in its environment and its plan revision
capabilities.

In this paper we present an approach to verifying agent programs which admit arbi-
trary revisions at run time. We focus on the BDI agent programming language Dribble



introduced in [18]. Dribble allows the implementation of agents with beliefs, (declara-
tive) goals, actions, abstract actions (procedural goals), plans, and rules for selecting and
revising plans. Although relatively simple and abstract, it is representative of a wider
class of BDI agent programming languages which support plan revision, and presents
significant challenges for verification. Our approach is based on model-checking. We
define a logic (an extension of the branching time temporal logic CTL) which describes
transition systems corresponding to a Dribble program, and show how to express prop-
erties of the program in the logic and how to encode transition systems as an input to
a model-checker. We prove soundness and completeness of the logic and a correspon-
dence between the operational semantics of Dribble and the models of the logic.

The rest of the paper is organised as follows. In the next section, we describe the
syntax and operational semantics of Dribble. In section 3 we introduce a logic for ex-
pressing properties of Dribble programs, and give a complete axiomatisation of the set
of models corresponding to the operational semantics of a Dribble agent program. We
discuss the use of the logic for verification in section 4, where we describe model-
checking of Dribble programs and give a simple example of a program and a property
which can be model-checked. We give a brief survey of related work in section 5.

2 Dribble

In this section, we briefly review the syntax and operational semantics of Dribble.

2.1 Beliefs and goals

Let Prop be a finite set of propositional variables and L the set of propositional for-
mulas. In order to make L finite, we allow L to contain only formulas in Disjunctive
Normal Form (DNF). A formula is said to be in DNF iff it is a disjunction of conjunc-
tive clauses in which a conjunctive clause is a conjunction of literals. As usual, a literal
is either p or ¬p for any p ∈ Prop. Moreover, formulas of L satisfy the following
conditions:

1. formulas do not contain duplicates of conjunctive clauses;
2. conjunctive clauses of a formula do not contain duplicates of literals; and
3. literals in a conjunctive clause of a formula only occur in some fixed order.

A Dribble agent has both a belief base and a goal base which are finite subsets of
L. The agent’s beliefs and goals are expressed in a language LBG. The syntax of LBG
is defined as follows:

β ← Bα | Gα | ¬β | β1 ∧ β2 where α ∈ L.

The meaning of Bα is that α can be propositionally derived from the belief base of an
agent, and Gα means that α is the consequence of some single goal in the goal base
of an agent. For convenience, a formula β is of LB (LG) iff it does not contain any
subformula of the form Gα (Bα, respectively).

A formula of LBG is interpreted by a pair of a belief base and a goal base 〈δ, γ〉,
in which both δ and γ are finite subsets of formulas of L. The truth of a formula β is
defined inductively as follows.



– 〈δ, γ〉 |=BG Bα⇔ δ |=Prop α
– 〈δ, γ〉 |=BG Gα⇔ ∃g ∈ γ : g |=Prop α
– 〈δ, γ〉 |=BG ¬ϕ⇔ 〈δ, γ〉 6|=BG ϕ
– 〈δ, γ〉 |=BG β ∧ β′ ⇔ 〈δ, γ〉 |=BG β and 〈δ, γ〉 |=BG β′

2.2 Plans

A Dribble plan consists of basic actions and abstract plans composed by sequence and
conditional choice operators. The sequence operator, ‘;’, takes two plans, π1, π2, as
arguments and states that π1 should be performed before π2. The conditional choice
operator allows branching and generates plans of the form ‘if φ then π1 else π2’.The
syntax of plans is defined as follows:

π ← a | b | if β then π′1 else π′2 | π′1;π′2

where a is an abstract plan, b is a basic action and β ∈ LB .
We depart from [18] in that we do not have an empty plan (denoted by E in [18])

as a special kind of plan which can occur as part of other plans. Below, we will use E
as a marker for an empty plan base, but not as a plan expression, to avoid introducing
rewriting rules for E;E to E and π1;E;π2 to π1;π2, etc.

We define length of a plan π, len(π), inductively as follows:

len(a) = 1
len(b) = 1

len(if β then π′1 else π′2) = len(π′1) + len(π′2) + 4
len(π′;π) = len(π′) + len(π)

Notice that in the case of the if-then-else statement, the length is the sum of lengths of
the plans π′1 and π′2 together with the number of extra symbols of the statement, i.e. if ,
then, else and β.

Since in reality, agents can hold a plan up to some fixed length, we make an as-
sumption that all plans have length smaller than a certain preset number. Restricting the
length of plans also makes the set of plans finite. This is necessary for the axiomatisa-
tion of the logic later in the paper.

In the rest of this paper, we denote by Plans the set of all plans whose lengths are
smaller than lenMAX , where lenMAX is a natural number.

Plans = {π | len(π) ≤ lenMAX}

2.3 Dribble agents

Writing a Dribble agent means writing a number of goal rules and practical reasoning
rules. The syntax of goal rules (PG) and practical reasoning (PR) rules is given below.

– PG rules: β → π where β ∈ LBG and π ∈ Plans
– PR rules: π1 | β → π2 where β ∈ LB and π1, π2 ∈ Plans, and π2 may be

empty.



One writes a PG rule to intend that an agent with an empty plan base will generate a
plan π if its current belief and goal bases satisfy the condition encoded in β. If the agent
has certain goals in its goal base, it will generate a plan based on its beliefs to hopefully
achieve those goals. A PR rule proposes a possible revision π2 to (the prefix of) a plan
π1 which is applicable if the belief base satisfies the condition encoded in β. That is, if
the agent has certain beliefs which imply that the current plan will be unable to achieve
the intended goal(s) or that the plan is redundant and can be simplified, it can modify
the plan. Note that π2 can be empty, allowing the agent to drop part or all of a plan.

We have slightly modified the meaning of PR rules given in [18]. In Dribble, these
rules apply to complete plans (π1 is the agent’s plan in its entirety, not a plan prefix,
for example a name for an abstract plan). In contrast we allow π1 to be a prefix of the
agent’s plan, which is replaced by π2 followed by the continuation of the original plan.
We could have written PR rules as π′1;π | β → π2;π where π is a plan variable. In
cases where π1 matches the entire plan, our PR rules are equivalent to those in [18].
We believe that our generalisation is justified programmatically, and it presents an in-
teresting challenge for logical formalisation, in particular model-checking. To enforce
our assumption about the length of plans, we require that Dribble agents consist of PG
and PR rules which do not produce plans of length more than lenMAX .

A Dribble agent only has one intention at a time, i.e., its plan base contains at
most one plan and it can apply a goal rule only when its plan is empty, and is strongly
committed to its goals, i.e., an agent drops a goal only when it believes that the goal has
been achieved.

A Dribble agent is a tuple 〈δ, γ, Γ,∆〉 in which Γ is a set of goal rules, ∆ is set
of practical reasoning rules, δ and γ are the initial belief base and goal base and both
satisfy the following conditions:

1. δ is consistent
2. ∀α ∈ γ, δ 6|=Prop α
3. ∀α ∈ γ, α is consistent

that is, the agent’s beliefs are consistent, it does not have as a goal any formula it already
believes to be the case, and each of its goals is consistent (though its goals may be
inconsistent with each other as they can be achieved at different times).

2.4 Operational semantics

In this section, we describe how a Dribble agent operates. A Dribble program P is a
pair (Γ,∆) of PG rules and PR rules.

A configuration of an agent is a tuple 〈δ, γ, {π}〉 where δ, γ and π are the agent’s
current belief base, goal base and plan base (where π is the current plan, possibly par-
tially executed), respectively. In what follows, we will omit the set brackets around the
plan for readability, as in 〈δ, γ, π〉. The plan base can also be empty, which we will write
as 〈δ, γ, ∅〉. The initial configuration of an agent is 〈δ0, γ0, ∅〉.

We specify the operational semantics of a Dribble agent as a set of transition rules.
Each transition corresponds to a single execution step and takes the system from one
configuration/state to another. In the cases corresponding to applying PG and PR rules,



we have additional conditions to guarantee that we do not produce a plan of length
more than lenMAX . Notice that transitions from a configuration in which the plan base
begins with an abstract plan are included in application of PR rules.
Application of a goal rule

ϕ→ π ∈ Γ len(π) ≤ lenMAX 〈δ, γ〉 |=BG ϕ

〈δ, γ, ∅〉 −→apply(ϕ→π) 〈δ, γ, π〉

Application of a plan revision rule

π1 | β → π2 ∈ ∆ len(π2;π) ≤ lenMAX 〈δ, γ〉 |=BG β

〈δ, γ, π1;π〉 −→apply(π1|β→π2) 〈δ, γ, π2;π〉

Basic action execution

T (b, δ) = δ′ γ′ = γ \ {g ∈ γ | δ′ |=Prop g}
〈δ, γ, b;π〉 −→execute(b) 〈δ′, γ′, π〉

where T is a belief update function which takes an action and a belief base and returns
the resulting belief base. T is a partial function since an action may not be applicable
in some situations.
Conditional statement

〈δ, γ〉 |=BG β

〈δ, γ, if β then π1 else π2;π〉 →execute(if) 〈δ, γ, π1;π〉

〈δ, γ〉 6|=BG β

〈δ, γ, if β then π1 else π2;π〉 →execute(if) 〈δ, γ, π2;π〉

Note that in the last three rules, π may be absent (or be an empty string), in which case
for example executing b;π will result in 〈δ′, γ′, ∅〉.

For technical reasons, if in a configuration 〈δ, γ, π〉 no transition rule is appli-
cable, we assume that there is a special ‘stall’ transition to the same configuration:
〈δ, γ, π〉 →stall 〈δ, γ, π〉.

A computation tree CT (c0, P ) for a Dribble agent with a program P = (Γ,∆) is
a tree with root c0 where each node is a configuration, such that for each node c and
each child c′ of c, c→ c′ is a transition in the transition system for P . The meaning of
a Dribble agent 〈δ0, γ0, P 〉 is a tree CT (〈δ0, γ0, ∅〉, P ).

3 A logic of Dribble programs

In this section, we introduce a logic which allows us to formalize the properties of Drib-
ble agent programs. Formulas of the logic will be used as input to the model-checker.
In addition, we give a complete axiomatisation of the models of the logic. Axiomati-
sation is, of course not necessary for model-checking, but it helps us to understand the
logic and its models; for example, the axioms may be more intuitive or clearer than the
semantic conditions on models.



The language of our logic LD is based on Computation Tree Logic (CTL) [7] which
is a logic for reasoning about branching time. The syntax of CTL is as follows:

LCTL : ϕ← p | ¬ϕ | ϕ1 ∧ ϕ2 | EXϕ | E(ϕUψ) | A(ϕUψ) where p ∈ L

The meaning of the temporal operators is as follows: EXϕ means there is a successor
state which satisfies ϕ; E(ϕUψ) means that there is a branch where ϕ holds until ψ
becomes true; A(ϕUψ) means that on all branches, ϕ holds until ψ.

3.1 Syntax

LD extends LCTL with belief, goal and plan operators (Bs, Gs and P).

LD : ϕ ← Bsδ | Gsγ | Pπ | ¬ϕ | ϕ1 ∧ ϕ2 | EXϕ | E(ϕUψ) | A(ϕUψ)

where δ, γ ⊆ L; π ∈ Plans ∪ {E}. Bs and Gs describe the belief base and goal base
of the agent. Note that these operators apply to sets of formulas. P is used to describe
the plan base of the agent. If the agent’s plan is π, this is expressed as Pπ, and if the
plan base is empty, this is expressed as PE.

We will use the usual abbreviation:

AXϕ = ¬EX¬ϕ (in all successor states, ϕ)
AFϕ = A(>Uϕ) (on all branches, in some future state, ϕ)
EFϕ = E(>Uϕ) (there exists a branch, where in some future state, ϕ)
AGϕ = ¬EF¬ϕ (on all branches, in all states, ϕ)
EGϕ = ¬AF¬ϕ (there is a branch, where in all states, ϕ).

3.2 Semantics

In this section we define models for the logic. We show in section 4 that they corre-
spond exactly to the computation trees for Dribble agents generated by the operational
semantics.

Given a Dribble agent program P = (Γ,∆), a Dribble model of P is a triple MP =
(S,R, V ) in which:

– S is a nonempty set of states
– R ⊆ S × S satisfies the properties below
– V = (Vb, Vg, Vp) a collection of three functions, Vb(s) : S → 2L, Vg(s) : S → 2L

and Vp(s) : S → 2Plans satisfying the following conditions, for all s ∈ S:
1. Vb(s) and Vg(s) are finite subsets of propositional formulas
2. Vb(s) is consistent
3. ∀α ∈ Vg(s) : Vb(s) 6|=Prop α

4. ∀α ∈ Vg(s) : α is (propositionally) consistent
5. Vp(s) is a singleton or an empty set.



To simplify the definition, we use the following conventions: ∀g ∈ Γ of the formϕ→ π
then guard(g) = ϕ, body(g) = π, i.e. guard(g) specifies the mental condition for
which situation is a good idea to execute the plan, and body(g) is the plan generated
after firing the goal rule. Also, ∀r ∈ ∆ of the form π1 | β → π2 then head(r) = π1,
guard(r) = β and body(r) = π2. If Vp(s) = {π}, we will write Vp(s) = π for
readability.

Further requirements for R are listed below.

EPG: For all s ∈ S, if Vp(s) = ∅ and there exists g ∈ Γ such that 〈Vb(s), Vg(s)〉 |=BG

guard(g) then there is s′ ∈ S such that (s, s′) ∈ R with Vb(s′) = Vb(s), Vg(s′) =
Vg(s) and Vp(s′) = body(g)

APG: For all (s, s′) ∈ R such that Vp(s) = ∅, then Vb(s′) = Vb(s), Vg(s′) = Vg(s)
and there is g ∈ Γ such that 〈Vb(s), Vg(s)〉 |=BG guard(g) and Vp(s′) = body(g)

EBA: For all s ∈ S, if Vp(s) = b;π then there is s′ ∈ S such that (s, s′) ∈ R
with Vb(s′) = T (b, Vb(s)), Vg(s′) = Vg(s) \ {g ∈ Vg(s)|Vb(s′) |=Prop g} and
Vp(s′) = π

EIF: For all s ∈ S, if Vp(s) = πif ;π, where πif = if β then π1 else π2, then there is
s′ ∈ S such that (s, s′) ∈ R with Vb(s′) = Vb(s), Vg(s′) = Vg(s) and

Vp(s′) =
{
π1;π if 〈Vb(s), Vg(s)〉 |=BG β
π2;π otherwise

EPR: For all s ∈ S, if Vp(s) = π1;π and there exists r ∈ ∆ such that head(r) = π1

and 〈Vb(s), Vg(s)〉 |=BG guard(r) then there is s′ ∈ S such that (s, s′) ∈ R with
Vb(s′) = Vb(s), Vg(s′) = Vg(s) and Vp(s′) = body(r);π

ABAvPR: For all (s, s′) ∈ R, such that Vp(s) = b;π′;π, where π′ might be empty,
then either of the following is true:
1. Vb(s′) = T (b, Vb(s)), Vg(s′) = Vg(s) \ {g ∈ Vg(s) | Vb(s′) |=Prop g} and
Vp(s′) = π′;π

2. Vb(s′) = Vb(s), Vg(s′) = Vg(s), and there is r ∈ ∆ such that 〈Vb(s), Vg(s)〉 |=BG

guard(r), head(r) = b;π′ and Vp(s′) = body(r);π
AIFvPR For all (s, s′) ∈ R such that Vp(s) = πif ;π′;π (π′ might be empty), then

either of the following is true:
1. Vb(s′) = Vb(s), Vg(s′) = Vg(s), and

Vp(s′) =
{
π1;π′;π if 〈Vb(s), Vg(s)〉 |=BG β
π2;π′;π otherwise

2. Vb(s′) = Vb(s), Vg(s′) = Vg(s), and there is r ∈ ∆ such that 〈Vb(s), Vg(s)〉 |=BG

guard(r), head(r) = πif;π
′ and Vp(s′) = body(r);π

APR For all (s, s′) ∈ R such that Vp(s) = a;π′;π (π′ might be empty), then Vb(s′) =
Vb(s), Vg(s′) = Vg(s), and there is r ∈ ∆ such that 〈Vb(s), Vg(s)〉 |=BG guard(r),
head(r) = a;π′ and Vp(s′) = body(r);π

For any state s such that there are no transitions R(s, s′) required by the conditions
above, we stipulate R(s, s). This is required to make the transition relation serial.

No other transitions apart from those required by the conditions above exist in the
model.



Given a model MP and a state s of MP , the truth of a LD formula is defined
inductively as follows:

– MP , s |= Bsδ ⇔ Vb(s) = δ
– MP , s |= Gsγ ⇔ Vg(s) = γ
– MP , s |= Pπ ⇔ Vp(s) = π
– MP , s |= PE ⇔ Vp(s) = ∅
– MP , s |= ¬ϕ⇔MP , s 6|= ϕ
– MP , s |= ϕ1 ∧ ϕ2 ⇔MP , s |= ϕ1 and MP , s |= ϕ2

– MP , s |= EXϕ⇔ ∃s′ : (s, s′) ∈ R : MP , s
′ |= ϕ

– MP , s |= E(ϕUψ)⇔ ∃ path (s0, s1, ..., sn) such that:
s0 = s;n ≥ 0; (si, si+1) ∈ R ∀0 ≤ i < n and MP , sn |= ϕ, and for all i < n,
MP , si |= ψ

– MP , s |= A(ϕUψ)⇔ ∀ paths (s0, s1, ...) such that:
s0 = s and ∀i ≥ 0 (si, si+1) ∈ R, exists n ≥ 0: MP , sn |= ϕ, and for all i < n,
MP , si |= ψ

Note that the formulas of CTL are evaluated in state s on a tree corresponding to
an unravelling of MP with the root s. Without loss of generality, we can assume that
each model of P is a tree with the root which intuitively corresponds to the initial
configuration of the agent.

3.3 Axiomatization

We will refer to the axiom system below as the Dribble logic of a program P , DLP . To
simplify the axioms, we use guard(g), body(g), head(r), guard(r) and body(r) with
the same meanings as in the model. Finally, we use πif for if β then π1 else π2.

CL classical propositional logic
CTL axioms of CTL
A1a

∨
δ⊆L

Bsδ

A1b Bsδ → ¬Bsδ′, ∀δ′ 6= δ
An agent has only one belief base.

A2a
∨
γ⊆L

Gsγ

A2b Gsγ → ¬Gsγ′, ∀γ′ 6= γ
An agent has only one goal base.

A3a
∨

π∈Plans∪{E}
Pπ

A3b Pπ → ¬Pπ′, where π, π′ ∈ Plans ∪ {E}, ∀π′ 6= π
An agent has only one plan.

A4 ¬Bsδ, ∀δ such that δ |=Prop ⊥
Belief base is consistent.

A5 Bsδ → ¬Gsγ for all γ such that ∃g ∈ γ : δ |=Prop g
All goals in goal base are not consequences of belief base.

A6 ¬Gsγ for all γ such that ∃g ∈ γ : g |=Prop ⊥
Each goal in goal base is consistent.



EPG Bsδ ∧Gsγ ∧ PE → EX(Bsδ ∧Gsγ ∧ Pπ) if ∃g ∈ Γ such that 〈δ, γ〉 |=BG

guard(g) and π = body(g)
In a state s where some planning goal rule is applicable, i.e. the current plan is
empty, there exists a next state s′ where its plan is the one generated by firing the
planning goal rule.

APG Bsδ∧Gsγ∧PE → AX(
∨
g∈Γ ′

(Bsδ∧Gsγ∧Pπg)) where Γ ′ is a set of planning

goal rules g that satisfies the following two conditions: 〈δ, γ〉 |=BG guard(g) and
πg = body(g), provided Γ ′ 6= ∅.
In a state s where the current plan is empty, all possible next states from s are only
reachable by applying some PG rule, i.e. its plan is generated by firing the PG rule.

EBA Bsδ ∧ Gsγ ∧ P(b;π) → EX(Bsδ′ ∧ Gsγ′ ∧ Pπ) where δ′ = T (b, δ) and
γ′ = γ \ {g | δ′ |=Prop g}
In a state s where a basic action is applicable, there exists a next state s′ in which
the basic action is removed from its plan, and the belief base is updated according
to the basic action (the goal base, therefore, also has to be changed in order to
maintain the disjointness with the belief base).

EIF Bsδ ∧Gsγ ∧P(πif ;π)→ EX(Bsδ ∧Gsγ ∧P(πi;π))
where

πi =
{
π1 if 〈Vb(s), Vg(s)〉 |=BG β
π2 otherwise

In a state s where the current plan begins with a conditional plan, there exists a
next state s′ in which the conditional plan is replaced by one of its two sub plans
depending on whether its condition is derivable or not from the belief base in s,
respectively.

EPR Bsδ ∧Gsγ ∧P(π1;π)→ EX(Bsδ ∧Gsγ ∧P(π2;π))
if ∃r ∈ ∆ such that 〈δ, γ〉 |=BG guard(r), head(r) = π1 and
π2 = body(r)
In a state s where a plan revision rule is applicable, i.e. the head of the rule is the
beginning of the current state and the guard of the rule is derivable from the current
belief and goal base, there exists a next state s′ in which the beginning of the plan
in s is replaced by the body of the rule.

ABAvPR Bsδ ∧Gsγ ∧P(b;π′;π)→ AX((Bsδ′ ∧Gsγ′ ∧P(π′;π))∨
∨
r∈∆′

(Bsδ′ ∧

Gsγ′ ∧ P(π′′;π))) where ∆′ is a set of plan revision rules r that satisfies the
following three conditions: head(r) = b;π′, 〈δ, γ〉 |=BG guard(r) and body(r) =
π′′, provided ∆′ 6= ∅ or T (b, δ) is defined.
In a state s where a basic action b is the first element of the plan, we can only
transit to another state by executing the action or applying an applicable practical
reasoning rule.

AIFvPR Bsδ ∧Gsγ ∧P(πif ;π′;π)→ AX((Bsδ′ ∧Gsγ′ ∧P(πi;π′;π)) ∨∨
r∈∆′

(Bsδ′ ∧ Gsγ′ ∧ P(π′′;π))) where ∆′ is a set of plan revision rules r that

satisfy three following conditions: head(r) = πif ;π′, 〈δ, γ〉 |=BG guard(r) and
body(r) = π′′; and

πi =
{
π1 if 〈Vb(s), Vg(s)〉 |=BG β
π2 otherwise



In a state s where an if-then-else statement is the first element of the plan, we can
only transit to another state by executing the if-then-else statement or applying an
applicable practical reasoning rule.

APR Bsδ ∧Gsγ ∧P(a;π1;π)→ AX
∨
r∈∆′

(Bsδ′ ∧Gsγ′ ∧P(π2;π)) where ∆′ is a

set of plan revision rules r that satisfy three following conditions: head(r) = a;π1,
〈δ, γ〉 |=BG guard(r) and body(r) = π2; provided ∆′ 6= ∅.
In a state swhere an abstract plan is the first element of the plan, we can only transit
to another state by applying a practical reasoning rule.

Stall Bsδ ∧Gsγ ∧Pπ → AX(Bsδ ∧Gsγ ∧Pπ) where Bsδ ∧Gsγ ∧Pπ describes
a configuration from which no normal transitions are available.

We have the following result.

Theorem 1. DLP is sound and complete with respect to the class of models of the
program P .

Proof. The proof of soundness is straightforward and is omitted. In the rest of this
section, we show the completeness ofDLP . Most of the proof is from that ofCTL [13].

Let BGP = 2L× 2L× (Plans∪ {E}). BGP intuitively corresponds to the set of
all possible configurations. Note that this is a finite set.

Given a consistent formula ϕ0, we construct the generalised Fischer-Ladner closure
of ϕ0, FL(ϕ0), as the least set H of formulas containing ϕ0 such that:

1. Bsδ ∈ H for all δ ⊆ L
2. Gsγ ∈ H for all γ ⊆ L
3. Pπ ∈ H for all π ∈ Plans ∪ {E}
4. EX(Bsδ ∧Gsγ ∧Pψ) for all (δ, γ, π) ∈ BGP
5. EX(

∨
(δ,γ,π)∈BGP ′

(Bsδ ∧Gsγ ∧Pψ)) for all BGP ′ ⊆ BGP

6. ¬ϕ ∈ H , then ϕ ∈ H
7. ϕ ∧ ψ ∈ H , then ϕ, ψ ∈ H
8. E(ϕUψ) ∈ H , then ϕ, EXE(ϕUψ) ∈ H
9. A(ϕUψ) ∈ H , then ϕ, AXA(ϕUψ) ∈ H

10. EXϕ ∈ H , then ϕ ∈ H
11. AXϕ ∈ H , then ϕ ∈ H
12. ϕ ∈ H and ϕ is not of the form ¬ψ, then ¬ϕ ∈ H

It is obvious that FL(ϕ0) is finite. As usual, we define a subset s of FL(ϕ0) that is
maximally consistent if s is consistent and for all ϕ, ¬ϕ ∈ FL(ϕ0), either ϕ or ¬ϕ is in
s. Repeat the construction of a modelM for ϕ0 as in [13] based on the set of maximally
consistent sets of FL(ϕ0), with the condition that the assignments are as follows:

– Vb(s) = δ for any δ such that Bsδ ∈ s
– Vg(s) = γ for any γ such that Gsγ ∈ s
– Vp(s) = π for any π such that Pπ ∈ s (and Vp(s) = ∅ if PE ∈ s).

The above definition is well-defined because axioms A1x, A2x and A3x guarantee that
there are exactly one Bsδ ∈ s, Gsγ ∈ s and Pπ ∈ s. Our remaining task is to show
that M is, in fact, a model of P .



EPG: Assume that Vb(s) = δ, Vg(s) = γ and Vp(s) = ∅, then we have Bsδ ∧Gsγ ∧
PE ∈ s. Furthermore, assume that there is g ∈ Γ such that 〈δ, γ〉 |=BG guard(g).
By axiom EPG and modus ponens (MP), EX(Bsδ ∧ Gsγ ∧ Pbody(g)) ∈ s.
According to the construction ofM , there is s′ such that Bsδ∧Gsγ∧Pbody(g) ∈
s′ and (s, s′) ∈ R. It is obvious that Vb(s′) = δ, Vg(s′) = γ and Vp(s′) = body(g).

APG: Assume that Vb(s) = δ, Vg(s) = γ and Vp(s) = ∅, then we have Bsδ ∧Gsγ ∧
PE ∈ s. Let Γ ′ is the set of PG rules g ∈ Γ such that 〈δ, γ〉 |=BG guard(g). By
axiom APG and modus ponens (MP), AX(

∨
g∈Γ ′

(Bsδ ∧Gsγ ∧ Pbody(g))) ∈ s.

According to the construction of M , for any s′ such that (s, s′) ∈ R,∨
g∈Γ ′

(Bsδ ∧Gsγ ∧Pbody(g)) ∈ s

Then, there exists g ∈ Γ ′ such that Bsδ ∧Gsγ ∧Pbody(g) ∈ s′. It is obvious that
Vb(s′) = δ, Vg(s′) = γ and Vp(s′) = body(g).

The proof of other conditions onR is similar to the two cases above and are omitted.
This shows that M is a model of the program P .

4 Verification

We can express properties of Dribble programs using CTL operators in the usual way.
For example, a safety property that ‘nothing bad will happen’ can be expressed as
AG¬φ, where φ is a description of the ‘bad’ situation. Similarly, a liveness property
that ‘something good will happen’, for example the agent will achieve its goal, can
be expressed as EFφ, where φ is a description of the ‘good’ situation. It is essential
however that we know that we are verifying the properties with respect to the compu-
tation trees which precisely correspond to the operational semantics of the agent. We
prove in the next section that models of the logic correspond to computation trees, and
hence that a CTL formula is true at the root of a Dribble model for P if, and only if,
the corresponding property holds for the initial configuration c0 of its computation tree
CT (c0, P ).

4.1 Correspondence theorem

We say that a state s of some model MP is corresponding to a configuration c ∈
CT (c0, P ) (notation: s ∼ c) iff c = 〈Vb(s), Vg(s), Vp(s)〉.

Consider a Dribble agent 〈δ0, γ0, P 〉 and its computational tree CT (〈δ0, γ0, ∅〉, P ).
We claim that it is isomorphic to the Dribble model of P with the root s0 such that
s0 ∼ 〈δ0, γ0, ∅〉 and for every state s, all children of s are distinct. The last condition
is required for isomorphism; there may be Dribble models for P where there are du-
plicated transitions to identical states. Such duplication of identical successors does not
affect the truth of DLP formulas.

Theorem 2. CT (c0, P ) is isomorphic to the Dribble model MP of P with the root s0
such that s0 ∼ c0 satisfying the condition that for every state s, all children of s are
distinct.



Proof. We are going to show that∼ defines a bijection between the states of CT (c0, P )
and MP . We prove the theorem by induction on the distance from the root of the tree.

Base case: Assume that (s0, s) ∈ R in MP . We will show that there exists a unique c0
with c0 → c in CT (c0, P ) and s ∼ c. The other direction (if c0 → c then there is a
unique s such that R(s0, s) and s ∼ c) is similar.

Case 1: Assume that Vp(s0) = ∅, by APG, there is g ∈ Γ such that

〈Vb(s0), Vg(s)〉 |=BG guard(g)

Furthermore, Vb(s) = Vb(s0), Vg(s) = Vg(s0) and Vp(s) = body(g). Let c = 〈Vb(s), Vg(s), Vp(s)〉.
By the operational semantics, c0 →apply(g) c.

Case 2: Assume that Vp(s0) = b;π′;π (π′ might be empty). As (s0, s) ∈ R, ABAvPR
implies that there are two cases to consider. In the first case, Vb(s) = T (b, Vb(s0)),
Vg(s) = Vg(s0) \ {α ∈ Vg(s0) | Vb(s) |=Prop α} and Vp(s) = π′;π. Simply let
c = 〈Vb(s), Vg(s), π′π〉, we have that c0 →execute(b) c. In the second case, we have
Vb(s) = Vb(s0), Vg(s) = Vg(s0) and there is r ∈ ∆ such that head(r) = b;π′ and

〈Vb(s0), Vg(s0)〉 |=BG guard(r)

and Vp(s) = body(r);π. Let c = 〈Vb(s), Vg(s), body(r);π〉, then we have c0 →apply(r)

c.

For the other cases of Vp(s0), the proof is done in a similar manner by using the suitable
conditions of R.

Induction step: Assume that the path from s0 to s has length n > 1. That means there
are s1, . . . , sn = s in MP such that (si, si+1) ∈ R for all i > 0. By the induction
hypothesis, there are c1, . . . , cn−1 such that si ∼ ci for all i = 0, . . . , n − 1 and
ci →xi

ci+1 by some

xi ∈ {execute(b), execute(if), apply(g), apply(r)}

By repeating the proof of the base case, we have that there is cn such that sn ∼ cn and
cn−1 →x cn by some

x ∈ {execute(b), execute(if), apply(g), apply(r)}.

4.2 Automated verification

In this section, we show how to encodeDLP models for a standard CTL model checker
to allow the automated verification of properties of Dribble programs. For the examples
reported here, we have used the MOCHA model checker [3], due to the ease with which
we can specify Dribble programs in reactive modules, the description language used by
MOCHA.1

1 Note that model checkers such as MCMAS [15] intended for the verification of multi-agent
systems are not appropriate, as they assume that epistemic modalities are defined in terms of
accessibility relations, rather than syntactically as in LD .



States of the DLP models correspond to an assignment of values to state variables
in the model checker. In particular, the agent’s mental state is encoded as a collection
of state variables. The agent’s goals and beliefs are encoded as boolean variables with
the appropriate initial values. The agent’s plan is encoded as an array of steps of length
lenMAX + 1. step is an enumeration type which includes all basic actions and ab-
stract plans declared in the agent’s program, and a set of special if-tokens. Each if-token
(β, u, v) corresponds to an if-then-else construct appearing one of the agent’s plans, and
encodes the belief(s) tested, β and the lengths of the ‘then’ and ‘else’ branches (denoted
by u and v respectively). All elements of the plan array are initially assigned the value
null

The execution of plans and the application of goal and practical reasoning rules
are encoded as a MOCHA atom which describes the initial condition and transition
relation for the variables corresponding to the agent’s belief and plan bases. A basic
action is performed if the corresponding step token is the first element in the plan array.
Executing the action updates the agent’s beliefs appropriately and advances the plan,
i.e., for each plan element i > 0, the step at location i is moved to location i − 1. If
the first element of the plan array is an if-token, a test is performed on the appropriate
belief(s) and the plan advanced accordingly. For example, if the first element of the
plan array is (β, u, v) and β is false, the plan is advanced u + 1 steps. Goal rules can
be applied when the agent has no plan, i.e., when the first element of the plan array
contains ‘null’, and the rule’s mental condition holds (i.e., the agent has the appropriate
beliefs and goals). Firing the rule writes the plan which forms the body of the goal
rule into the plan array. Practical reasoning rules can be applied when the plan to be
revised matches a prefix of the plan array and the rule’s belief condition is believed by
the agent. Firing the rule writes the plan which forms the body of the rule into the plan
array and appends the suffix of the original plan (if any). In the case in which the first
element of the plan array is an abstract action, application of the appropriate practical
reasoning rule inserts the plan corresponding to the abstract action at the beginning of
the plan array. An additional atom encodes the agent’s commitment strategy, and drops
any goals the agent has come to believe as a result of executing a basic action.

The evolution of the system’s state is described by an initial round followed by an
infinite sequence of update rounds. State variables are initialised to their initial val-
ues in the initial round and new values are assigned to the variables in the subsequent
update rounds. At each update round, MOCHA non-deterministically chooses between
executing the next step in the plan (if any) and firing any applicable goal and practical
reasoning rules.

4.3 Example

As an illustration, we show how to prove properties of a simple agent program written in
Dribble. Consider the following Dribble program for a simple ‘vacuum cleaner’ agent.
The agent’s environment consists of two rooms, room1 and room2, and its goal is to
clean both rooms. The agent has actions which allow it to move between rooms and
to clean a room, and goal rules which allow it to select an appropriate plan to clean a
room. To clean a room the agent’s battery must be charged and cleaning discharges the
battery. The agent has a PR rule which revises a plan which is not executable because



the battery has become discharged. The agent’s beliefs and goals are expressed using
the following propositional variables: c1, c2 which mean that room1 and room2 are
clean, r1, r2 which mean that the agent is in room1 and room2, and b means that the
agent’s battery is charged. The agent has the following five basic actions:2

– mR for ‘move right’. It is applicable if the agent’s belief base δ is such that δ |=prop

r1, for example δ = {b∧¬c1∧¬c2∧r1∧¬r2}. For this particular δ, T (mR, δ) =
{b ∧ ¬c1 ∧ ¬c2 ∧ ¬r1 ∧ r2}, that is, the agent no longer believes that it is in r1
but believes that it is in r2. In general, T (mR, δ) is defined as follows: for every
α ∈ δ, in every disjunct in α containing r1, replace r1 with ¬r1 and for every
disjunct containing ¬r2, replace ¬r2 with r2.

– mL for ‘move left’. The belief update function is defined analogously.
– cR for ‘clean room’. It is applicable if the agent’s belief base δ is such that δ |=prop

b. If the action is executed in room1, it makes c1 true, similarly for executing cR in
room2. In both cases b becomes false.

– cB for ‘charge battery’. It is only applicable in r2 (intuitively because this is where
the charger is) and it makes b true.

The agent’s program consists of the following two goal rules:

g1 = c1 → if r1 then cR elsemL; cR
g2 = c2 → if r2 then cR elsemR; cR

and the PR rule:

r1 = cB;π | r1 → mR; cB;π

We would like to verify that, starting in a state in which the agent believes that it
is in room1, r1, and its battery is charged, b, the above program results in the agent
achieving its goals c1 and c2. This can be achieved by verifying, for the corresponding
model, that AF (Bc1 ∧ Bc2) is true in the initial configuration where b, ¬c1, ¬c2, r1
and ¬r2 are true.

5 Related work

A logic for proving properties of Dribble agents is presented in [18], based on dynamic
logic rather than on CTL. However, no axiomatisation of the logic or automated ver-
ification procedure is given. In [1, 2], Alechina et al. introduced a logic which is also
based on dynamic logic for verification of agent programs written in a sublanguage of
3APL, but this work does not consider rules to revise plans. In [10] Dastani et al. prove a
correspondence between an APL-like agent programming language and a specification
language based on CTL, and show that any agent implemented in the language satisfies
some desirable properties, e.g., relating to commitment strategies. In contrast, our aim
in this paper is to verify whether a given property holds for a particular agent program.
In addition, the APL considered by Dastani et al. does not include practical reasoning

2 For simplicity, we omit abstract actions.



rules, and hence their results are confined to agents which are unable to revise their
plans.

A strand of work on model-checking properties of agent programming languages is
represented by [4] and continued by [11, 12] who use Java Path Finder (JPF) which is
a model checker for Java programs. This approach requires writing a Java interpreter
for the language using Agent Infrastructure Layer (AIL). After that, verification pro-
ceeds as for a standard Java program, without exploiting any features specific to agent
programming languages.

A model-checking approach to automated verification of ConGolog programs was
described in [8]. The paper proposes a very expressive logic which includes first-order
language for specifying properties of programs and defines a model-checking algorithm
for the logic. Due to the first-order sublanguage, the algorithm is not guaranteed to
terminate. While ConGolog is a very expressive language, it differs from the APL and
Dribble family of languages in that it lacks an explicit mechanism for revising plans.

MetateM [14] is another language for agent programming which is based on exe-
cutable temporal statements. Although it is easy to verify automatically properties of
agents written in MetateM, the language is very different from agent programming lan-
guages such as 3APL, AgentSpeak and Dribble, where plan constructs are based on
conventional imperative languages (e.g. plans with branching constructs and loops).

6 Conclusion

This paper describes a temporal logic which allows us to axiomatise the set of transition
systems generated by the operational semantics of a Dribble program, and formulate
properties of a Dribble agent, such as that the agent is guaranteed to achieve its goals
or is not going to violate some safety restrictions. One of the interesting properties of
Dribble are practical reasoning or plan rewriting rules, and we believe that they pose
interesting challenges for logical formalisation; in particular, we had to introduce ex-
plicit ‘plan operators’ in the language to model those rules. We show how to encode
the models of the logic as input to a standard model-checker, which gives an automatic
procedure for verifying properties of a Dribble program.
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