The difficulty of programming contests increases

Michal Forisek*

Comenius University, Bratislava, Slovakia
forisek@dcs.fmph.uniba.sk

Abstract. In this paper we give a detailed quantitative and qualitative
analysis of the difficulty of programming contests in past years. We an-
alyze task topics in past competition tasks, and also analyze an entire
problem set in terms of required algorithm efficiency. We provide both
subjective and objective data on how contestants are getting better over
the years and how the tasks are getting harder. We use an exact, formal
method based on Item Response Theory to analyze past contest results.

1 Introduction

It is a well-known consensus in the community around programming contests
that the difficulty of these contests progressively increases. For example, Verhoeff
et al. mention this observation in [23] as a part of the motivation to have a
Syllabus for the International Olympiad in Informatics (IOT).

In this article, we try to give exact, objective arguments that this is indeed
happening. We analyze the “internals” of competition tasks (such as covered
topics and required algorithm efficiency). Also, we analyze the raw competition
data (such as detailed results, submission logs, etc.) that can be used to show
whether tasks are getting harder.

We will now give an overview of prior research in this area. The age at which
children start practicing for programming contests is decreasing. Kelevedjiev and
Dzhenkova [10] mention that in many countries the age at which children start
with programming and programming contests is already as low as ages 11 to
12. Thanks to this early start the contestants are able to cover more areas of
computer science during their preparations. In accord, the set of topics used in
contest tasks is growing. For example, Manev [14] notes that tasks on graphs
became common in all levels of contests after such tasks were used at the IOl
Each year there are proposals of new task types that push the boundary of the
scope of programming contests still further — for recent examples see 3,21, 16].

But even if we restrict ourselves to a fixed set of topics, there will still be
both easier and harder tasks around, and the harder ones are more and more
common. Kiryukhin in [12] describes the development of the Russian Olympiad
in Informatics. One important point mentioned by Kiryukhin is that only after
the introduction of modern, efficient computers around the year 1995 the orga-
nizers were able to use test inputs large enough to evaluate algorithm efficiency

* This work was supported by the grant VEGA 1/0726/09

with sufficient precision. Hence the best contestants became motivated to learn,
design and implement better, more efficient algorithms.

Note that from Kiryukhin’s observation it follows that only for the last ap-
proximately 15 years algorithm efficiency plays a significant role in programming
contests. In other words, since 1995 the focus in programming contests started to
shift from “implement a correct algorithm” towards the much harder “implement
a correct algorithm that is as efficient as possible”.

In [18, Section 7] Revilla et al. discuss the issue of task difficulty. They
were not able to find a satisfying way to determine the difficulty of tasks in
the University of Valladolid (UVa) Ounline Judge [17]. They state that difficulty
is subjective, and while most people agree on the ends of the spectrum, the
difficulty levels of intermediate tasks are almost impossible to establish. For the
book [19] the difficulty of the selected tasks was estimated manually.

For past 101 tasks there are several publications related to the scope of this
article: Kiryukhin and Okulov [13] (in Russian) manually analyze and classify
the past tasks, Verhoeff [22] provides a different clarification and also ranks
the difficulty of tasks based on the percentage of contestants who managed to
“fully solve” the task (i.e., score at least 90% of possible points). As claimed
by Verhoeff, this metric only describes how hard the task was for the set of
contestants who were solving it — but it is not sufficient to compare the difficulty
of tasks from different years.

Kemkes et al. [11] introduce Item Response Theory (IRT) as a tool that can
be used to evaluate the difficulty of competition tasks, and they use it to analyze
scoring of tasks from past IOIs. Their methods were further developed by the
author of this article in [5, 6].

1.1 Goals of the article

In this article we present detailed evidence (both quantitative and qualitative)
for the following claims:

1. The set of topics covered by task statements and solutions is growing.

2. The topics previously considered difficult now start to appear in contests
designed to be “easier” (such as categories for younger students).

The difficulty of tasks in programming contests is increasing.

4. The skill level of both top and average contestants is increasing.

©w

We will mostly focus on Claim 3. However, it is important to realize that
claims 3 and 4 are closely related. In Section 2 we illustrate this on an example.

1.2 Overview of the article

In Section 2 we show that raw scores, more precisely IOl medal boundaries, do
not carry sufficient information to argue about task difficulty.

In Section 3 we address the first two goals of our article, and additionally we
show that in tasks based on the same computational problem there is a trend
towards requiring more efficient algorithms.

600

last gold ——
500 last bronse - - -
400 e
300 =
200 '+ 1l B
100 S R M :
0
P RS

Fig. 1: IOI medal boundaries in years 1998 to 2008.

In Section 4 we present the results of our international survey that shows a
strong correlation between the year in which a task was set and its perceived
difficulty.

In Section 5 we address the fourth goal of this article, showing data that
the skill level of both the very best and the average contestants is gradually
increasing. The main claim of this article logically follows from the data presented
in the previous three sections.

Finally, in Section 6 we give a short note on how Item Response Theory can
be used to obtain data that will give us even more information on task difficulty.

2 I0OI medal boundaries

A nalve attempt to prove that the difficulty of programming contests increases
would simply lead us to examine the scores — with the hypothesis that we should
see a steady decrease.

In Figure 1 we show the medal boundaries at the IOI in the years where
automated grading was used.! For clarification: the three lines denote the score
achieved by the last contestant that was awarded a gold, a silver, and a bronze
medal respectively. (This corresponds to the top 8.3%, top 25%, and top 50%.)

Clearly, there is no visible decrease in the scores, more precisely, no signifi-
cant negative correlation between the year and the medal boundaries. Quite on
the contrary, the scores tend to be pretty balanced throughout the years, with
seemingly easier and harder years alternating. As we already mentioned (and as
we show in later Sections), the actual reason is that two trends occur at the same
time — not only are the tasks getting harder and harder, but also the contestants
are getting better and better.

The conclusion we can draw from this simple example is that if we want to
argue about task difficulty, we can not do it without addressing the contestants’

! In all years except for 1998 and 2000 the theoretical maximum was 600 points. In
1998 the maximum was 700, the scores are scaled. In 2000 each contestant was given
100 free points, hence those 100 points were subtracted from the scores.

skills at the same time. Or, from a statistical point of view, we will not be able
to draw any conclusions from contest results only, unless we assign contestant
names to the scores or add some other additional data source.

3 Task topics and algorithm complexity

We now show several related trends: In Section 3.1 we show that difficult concepts
such as dynamic programming become more and more common in solutions, and
such concepts now occur even in tasks supposed to be “easy”. In Section 3.2 we
show that tasks built upon the same computational problem now usually require
more efficient algorithms than in the past. Finally, in Section 3.3 we show that
each year there are new tasks requiring new, more complex algorithms.

3.1 Task topics in TopCoder contests

TopCoder Inc. organizes programming contests since 2001. Since 2003, there are
regular single-round competitions, called Single Round Matches (SRMs) that
all use the same format: The contestants are separated into two (approximately
equally large) divisions according to their current rating.? The stronger division
is called Division 1 (Div1), the weaker one is Division 2 (Div2). In each Division,
the contestants are given three tasks to solve. The tasks are labeled “easy”,
“medium” and “hard” according to their expected difficulty. Tasks in Divl are
different (and harder) than tasks in Div2.

In the task archive each task has a set of labels assigned by its author.
The labels list the general methods used to solve the task, such as “dynamic
programming”, “geometry”, or “graph theory”. These labels and also detailed
results of all past matches can be obtained from the official data feeds [20].

We focused on four of the more interesting labels. For each of these, we plotted
a graph that shows, for each difficulty level in each division, the percentage of
tasks that had this label in each half-year since 2003. These plots are shown in
Figure 2. The main points that can be observed by reading these plots:

— The number of “easy” tasks based on brute force and simulation decreases.
— The number of tasks that require difficult concepts increases, and such tasks
are becoming more and more frequent in easier difficulty levels.

In Subfigure 2a we see the steady decline of hard tasks that can be solved
by brute force. This is most clearly visible in Divl hard tasks (the hardest task
in each round), where the percentage of tasks solvable by brute force decreased
steadily since 2006, and actually reached zero in 2009.

A similar trend is visible in Subfigure 2b. In 2005 simulation tasks were still
pretty common even as Divl hard tasks, but since 2006 the number of such
tasks never exceeded 10%, and it was zero in 2009. Almost the same is true for

2 The rating is a TopCoder-calculated numeric estimate of the contestant’s skill. Rat-
ings currently lie in the range [0,4000), higher is better.

div2 hard divl hard - - - - div2 easy divieasy ------
divl medium div2 medium divl medium
div2 hard - - - - divl hard -- -

(a) Brute force.

div2 easy divlieasy ------ div2 easy divlieasy ------
div2 medium divl medium div2 medium divl medium
div2 hard - - - - divl hard -- - div2 hard - - - divl hard -- -
0.5 - 0.6
0.4 . 0.5 i i I A N =
- I , N . - S e R R S
0 A B I B S B S s 02 b S A y ‘
0.1 ,“\\/, S—s I A 0.1 //\/__' 777777 L
Oe 2 Y Y 2 v’e @’/e 2 D 2 O\J 2 2 9”9 2 Y 2 ére e\é
2 0, 0, 9 o o o O 9 9 9 o 2 0 0 0 o o o o o 9 o 9
222292929 22%%% $%%9%%%9%%9%%%
%% %%222%%%%% %% 2% %% 2222 %% %%
(¢) Graph Theory (d) Dynamic programming.

Fig. 2: Percentages of topic-related tasks in TopCoder’s SRMs.

Divl medium tasks. On the other hand, more and more of the easiest tasks are
simulation-based.

Subfigure 2c¢ shows the percentage of graph theoretical tasks. Even in the
second half of 2004 almost no Divl hard tasks contained graph theory. Ever
since, this number is steadily growing, and in 2009 it reaches 50%. Also observe
that several years ago graph theoretical tasks were used as the more difficult
problems only. Until 2005 such tasks were only used as the harder two tasks in
Divl, and as the hardest task in Div2. In 2006 the first such tasks appeared as
Divl easy and Div2 medium tasks, and the percentage of such tasks is growing
steadily ever since. In 2009 the first task on graphs was used as Div2 easy.

Finally, in Subfigure 2d we can observe similar trends for tasks that require
dynamic programming. The popularity of such tasks was growing between 2003
and 2006, and is more or less constant since. Again, we can observe that since
2005 dynamic programming is finding its way into the easier task levels. In 2008
a dynamic programming task was used as Div2 easy for the first time.

3.2 Efficient algorithms in UVa contests

For technical reasons, the number of elements in data structures used in Top-
Coder tasks is limited to 50. E.g., if the input is an adjacency matrix of a graph,
the graph can only have at most 50 vertices. This does, to some extent, make it
impossible for problem setters to enforce the use of the most efficient algorithms
for a given task. E.g., the most efficient algorithms for single-source shortest

paths in a graph have time complexity roughly proportional to N log IV, but for
N =50 even an O(N?) algorithm will do fine. However, other contests lack this
limitation, and in such contests we can also observe that as years progress, it is
more and more common to use test data sizes that require the contestants to
implement more efficient algorithms.

We analyzed of tasks in the “Contest” section of the UVa Online Judge [17]
archive. We focused on several well-known computational problems, for each of
them we found tasks based on it, and examined their input sizes. When analyzing
the tasks, two helpful resources were the manual classifications of UVa Online
Judge tasks done independently by Greve [7] and by Naverniouk [15].

The results are shown in Table 1. In all four cases, the evolution of maximum
instance sizes clearly shows the progress towards requiring asymptotically more
efficient algorithms — with the most recent versions requiring (almost) optimal
ones known.

id [name date N M |comment
10269 |Adventure of Super Mario|2002-04-20| 1000 requires preprocessing
10342 | Always Late 2002-07-27 200 2nd shortest walk
10603 |Fill 2004-01-10| 80000| 240000|solvable via BFS as well
10740 |Not the Best 2004-10-16| 1000 10000 |k shortest walks
10917|Walk Through the Forest [2005-09-24| 1000 number of shortest paths
10986 |Sending email 2006-01-21| 20000| 50000
11367|Full Tank? 2007-12-01{100000|1 000 000 |state: city and fuel amount
11635 |Hotel booking 2009-07-18| 10000| 100000|additional complications

(a) Single-source shortest paths.

id [name date N|comment
10065 | Useless Tile Packers 2001-01-19 100
10173 |Smallest Bounding Rectangle|2001-09-01| 1000 O(N2) postprocessing needed
10652 |Board Wrapping 2004-05-22| 2400
11072|Points 2006-08-12|100 000 |followed by point-in-polygon queries
11096 |Nails 2006-09-21 100
11168|Airport 2007-02-17| 10000 |non-trivial postprocessing
11626 |Convex Hull 2009-06-13|100 000

(b) Convex hull.

id [name date N|comment
10131|Is Bigger Smarter? |2001-06-29| 1000
10534|Wavio Sequence 2003-07-26{10 000 |two computations needed
10635|Prince and Princess|2004-03-13|62 500 |non-trivial preprocessing needed

(c) Longest increasing subsequence.

id [name date N M |comment
10319 |Manhattan 2002-06-29 120 400|solving 2-SAT
10731 |Test 2004-09-25 26
11324 |The Largest Clique|2007-10-27| 1000| 50000
11504 |Dominos 2008-09-27|100 000|100 000

(d) Strongly connected components.
Table 1: Maximum instance sizes in UVa contest tasks.

In all tables, N is the main instance size: the number of vertices/sequence elements/points.
Wherever the input is a graph, M is the limit on its number of edges. If omitted, M = O(N?).

3.3 New task types by year

In this Section we attempt to show how the set of topics used in contest tasks
is growing in time. In order to do so, we created a list of topics that, according
to our opinion, form a representative sample of different algorithms and areas
of Computer Science. For each of the topics we attempted to find the earliest
contest and task that involved this topic. We then arranged the topics into a list
ordered by the year of the first appearance.

Obviously, it is not humanly possible to take all international contests into
account. The list we present is based on the following contests:

International Olympiad in Informatics [8] 1989-2009

The set of ACM ICPC contests at UVa Online Judge [17] 2000-2009
Internet Problem Solving Contest [9] 1999-2009

— TopCoder competitions [20] 2000-2009

One important set of contests that is missing in the list is the set of World Finals
of the ACM ICPC [1] — so far we did not have sufficient resources to analyse
these tasks. (Also, this analysis is only possible to some extent, due to the fact
that the official test data used for the contest is destroyed after the contest.)

1991: grammars and rewriting systems (IOI: S-terms)
1995: theoretical task; process communication (IOI: Printing),
interactive task (IOI: Wires and Switches)
1996: a two-player interactive game (IOI: A game),
optimal job scheduling (IOI: Job processing)
1997: optimization tasks and approximation algorithms (entire IOT)
1999: open-data task format (entire IPSC 1999),
code analysis and white-box testing (IPSC: Coins)
2000: game played in multiple submissions (IPSC: Trolls),
querying an unknown sequence (IOI: Median)
2001: Fenwick trees (IOI: Mobiles),
meet-in-the-middle search (IOI: Double crypt),
max. weight bipartite matching (BUET/UVA Oriental C.1: Bob Laptop),
a-star heuristic search (2001 Regionals Warmup Contest: 15-Puzzle problem)
2002: reducing a 2d task to independent 1d tasks (IOI: Utopia),
dynamic programming exponential in some dimension (TC: PinballLanes),
general matching, Chinese postman problem (U. of Waterloo June Contest)
2003: programming non-traditional computation models (IPSC: begin 4 7 add)
2004: reducing runtime from O(N!) to O(2") via DP (TopCoder: KiloManX)
2006: pen and paper cryptoanalysis (IPSC: Encoded messages),
modern cryptoanalysis (IPSC: h4x0r t3h c¢0d3),
page faults in caching (IPSC: Librarian)
2007: minimum cost maximum flow (TC: RadarGuns)
2008: low-level data representation (IPSC: Comparison mysteries)
2009: regular expressions processing (IPSC: Muzidabutur)

4 Subjective task difficulty rating

For the purpose of obtaining useful data on how contestants perceive task dif-
ficulty, we carefully selected a set of 12 tasks using the following methodology:
All the tasks come from different years of the ACM ICPC [1] Northwestern Eu-
ropean regional contest (NWERC). More precisely, for each year between 1997
and 2008 inclusive we examined the results of the contest and picked the median
task® according to the number of teams that solved it.# The rationale behind this
choice was that the median task should reasonably well represent the difficulty
of the problem set.

The statements of those 12 tasks (without any indication of their origin) were
presented as a survey to active contestants. The goal in the survey was to esti-
mate the relative difficulty of those 12 tasks. Details on the survey formulation
are given in Appendix A.

We got 33 answers to the survey. The respondents that filled in the survey
were from over 20 different countries on 5 different continents, and all of them
are successful participants in international programming contests.

The results of the survey are presented in Table 2. Tasks are labeled 0 to 11
according to the year in which they were used (0 is oldest). The left half of Table
2 contains the raw answers: the number in row X and column Y is the number
of respondents who think task X is harder than task Y. Shaded cells are those
for which the opposite opinion received strictly less votes.

The right half contains the same data, but we only count the 26 non-anonymous
respondents for which we know their TopCoder ratings (see Section 3.1 for ex-
planation of ratings). We used the ratings as weights of their votes. In this way
we gave a higher significance to votes by better contestants. The totals are in
thousands, rounded to the closest one.

=
=
=

internet/0
space/1
papergirl/2
railroads/3
dates/4
floors/5
boss/6
taxicab/7
tantrix/8| 24 20 21 18 22 15
setstack/9| 21 10 13 13 18 10 11 7 5
escape/10| 26 20 17 16 20 15 15 7 11
mobile/11| 22 15 16 13 18 12 12 7 10 12 7
Table 2: Survey of NWERC task difficulties. Left part: raw, right part: weighted.

=
W © 00 0N NSO

=

Ao © o=
GO W W O

—

=

© W ©
—
S

= =
= © = W00 0o Utoo o Ut O

3 Ties were broken by the total number of submissions (or equivalently, number of
incorrect submissions, less means easier), and if the problem set contained 2N tasks
then the N-th easiest task was selected.

4 Even more precisely, for the years 1997 to 1999 only summary ranklists were avail-
able. For these contests we selected the median task by hand.

There clearly is a significant correlation between the year in which the task
was used and its perceived difficulty. (A huge majority of shaded cells is be-
low the diagonal, which means that the tasks from later years were labeled as
more difficult.) The only significant difference between the two tables is in the
row/column 9 corresponding to the “SetStack” task from NWERC 2006. This
task is deceiving: it seems solvable by a plain simulation, but this is false. The
replies in our survey match the actual results of the contest, where 31 out of 42
teams attempted to solve this task, but only 9 of them solved it. In the right
half of Table 2 we see that the higher rated responders found this task harder.

Finally, we note that the trend of increasing median task difficulty seems to
stall in last five years, hence it would be interesting to repeat the survey after
several years to find out more about this new trend.

5 Comparison of performance in different years

We already argued that when discussing task difficulty we have to take into ac-
count the skill levels of the contestants. However, the converse is not necessarily
true: we may be able to compare the skill levels of contestants in different years.
Where does the symmetry break? For the contestant, a few years can mean all
the difference in the world — a few years of practice (or inactivity) can strongly
influence the contestant’s skill in solving the tasks. However, a task after sev-
eral years is precisely the same task. Hence the tool that can help us compare
skill levels of the contestants in different years is a task that was given in differ-
ent years to (ideally) two disjoint sets of contestants. We were able to discover
multiple such situations and we analyzed them.

5.1 TopCoder tasks

In general, TopCoder does a pretty good job in avoiding repeating the same task.
Still, we were able to find several pairs of almost identical tasks in past TopCoder
matches. Statistic data on these tasks is given in Table 3. The column “opened”
is the number of contestants who attempted to solve the task, “solved” is the
number (and percentage) of those who managed to submit a correct solution.
The next two columns give the fastest and the average solving time, respectively;
the average is only computed over all contestants who solved the task. The last
column is the number of contestants who competed in both rounds.

Notable facts: By observing the number of solvers and the average solving
times for Div1 tasks, the rate of their improvement is obvious — both for the top
and the average Divl contestants. On the other hand, the performances on the
easy Div2 tasks are almost identical in early 2007 and late 2008. Essentially the
same task was used as a hard task in 2007 and as a medium in 2009.

5.2 Slovak selection camp

Tasks are sometimes reused in the Slovak selection camp — a week-long camp for
approximately the best 10 contestants in the Slovak Olympiad in Informatics,

task date level opened solved fastest|average|overlap
Layoff Mar 2003|divl hard 138| 11 (7.97%)|0:21:45| 0:35:51 10
Terrorists® Jan 2007 |divl hard 385[102 (26.49%)|0:02:44| 0:18:13
InstantRunoff Dec 2003 |[divl easy 160| 85 (53.13%)[0:07:07| 0:23:01 10
InstantRunoffVoting|Mar 2008|divl easy 583]469 (80.45%)|0:02:48| 0:16:59
InstantRunoff Dec 2003 [div2 med. 187| 37 (19.79%)]0:16:08| 0:44:42 0
InstantRunoffVoting|Mar 2008|div2 med. 759220 (28.99%)|0:07:52| 0:34:03
Graduation Jun 2004 [div1 hard 120 2 (1.66%)[0:20:13| 0:30:07 19¢
SharksDinner Jul 2007 |divl hard 379| 51 (13.46%)|0:10:27| 0:24:18
CountPalindromes |Feb 2007 |divl hard 379] 11 (2.90%)]0:25:47| 0:42:47 63%
PalindromePhrases |Apr 2009 |divl med. 447| 61 (13.65%)|0:07:21| 0:41:19
Palindromize Jan 2007 |div2 easy 569[371 (65.20%)]0:01:42| 0:20:54 39
ThePalindrome Dec 2008 |div2 easy 751|454 (60.45%)|0:02:47| 0:19:59

¢ Layoff is a plain maximum flow task, Terrorists requires finding multiple minimum cuts.

b Two more people competed in Division 2 in 2003, and in Division 1 in 2008.

¢ None of the two solvers in 2004 took part in 2007.

4 Only 24 of these managed to solve the task. The other 37 solvers did not participate in 2007.

Table 3: Pairwise similar tasks used in TopCoder contests over the years.

where the IOI team is selected. The data for those tasks is presented in Table
4. For each task, we normalized the score to 100 points. The column “top 4”
contains the sum of the normalized scores of the four best solvers for that task,
the column “OK” is the number of participants that scored at least 90% of points
for the given task. In the column “medals” you can find the medals acquired by
the Slovak I0I team that year — G, S, B standing for gold, silver, and bronze,
respectively.

Out of the 11 tasks, only in 5 of them was the best result obtained in the
most recent year the task was used. From this observation, we have to conclude
that in the data from the selection camp we do not observe the increase of skill
levels that was clearly visible on the international scale. We see two factors that
could contribute to this contradiction significantly.

First, the Slovak OI is so small that it is not statistically significant. With
only about 100 students competing in this contest each year, the skill levels of
the top ones can vary wildly from year to year. And judging by the Slovak results
at the IOI, they indeed do vary. As for the data from the selection camp, kindly
note that for 9 of the 11 tasks® the best result in the selection camp occurred in
the year in which Slovakia obtained the best medals.

Second, in Section 5.1 we were not able to consider one important factor — the
ages of the contestants. Note that the TopCoder data set contained contestants
of all ages, whereas the selection camp is always attended by secondary school
students only. At the moment, we do not have sufficient data to look into this,
and we consider this to be an interesting question for further research.

® The task “sally” is one of the other two. For this task the conditions in 2003 and
2009 were not identical. This is a task solvable by brute force. In 2003 the task was
used with a strict time limit, and implementing good pruning was necessary to get
a full score. In 2009 all correct solutions got a full score.

LA RMAMANMMNMMAMR AL MAIDNNQM
FRNRNRNANNMRNANRNNRNNRRRA 0|5 R M A
qmwo@mgmmwmoOmUmomOmmUOmm
g O noY @) O OOOWO
fecleeeren oo i oo oo Q|0 o
QCOOOOI\NC‘O@WL’JI\NN@OI\OWOO¢LDCF)
SOICOISHIN D0 SND O[0 N+ DS RS 0| —
QN IR I|TFRNAQA = AN @[| DD DD [
&l\l\ﬁﬂoo—<~u—<cx1—<omomooo—<w<ﬂ©<r—<o
O
MDD H [O HF AN AN N[O O AN ~ [N
OO0l oo oo locoo|locoo|lco|lo o
li=g=l=R=l=R=l=R=R=l=R=R=l=R=ll=R=ll=R=l=R=ll=R=][=RK=]
A AN AN AN AANANAANAANNTNNNNN N

>

< Z

4 %}

) ~ I < = g =
vl oo O] 3 | =L S| o
s Elcl=| S | §|E|2|E|5|2 |3

=

Sle || 8| © S |Z || 28| A ®

Table 4: Tasks reused in the Slovak selection camp

6 Evaluating task difficulty using IRT

Item Response Theory [2] is a modern testing theory that gives us a set of new
tools to analyze contest results. Among other things, this theory allows us to
model tasks with different difficulties. More precisely, the two-parameter logistic
model is a suitable model to describe programming contest tasks. In this model,
each contestant ¢ is assumed to have a scalar ability level 6., and each task ¢
is assumed to have two scalar parameters a; and b; that describe its difficulty.
In this model, the probability that a contestant with ability 6. will solve a task
with parameters a¢, by is Pr(6,a,b) = 1/ (1 + e~*®=9). (Note that b is equal to
the value 6 for which Pr(6,a,b) = 0.5, and a is the derivative in this point.)

In [5] the author of this paper developed a framework how Item Response
Theory can be applied to the results of programming contests. Using this frame-
work, it should be possible to make a thorough analysis of the past contests,
compute maximum likelihood estimates of their task parameters, and use this
data to draw conclusions about the relative difficulty of those contests.

Due to space restrictions we will not attempt such analysis here. Instead, we
will just limit ourselves to a single example of such results. Using the method
described in [5] we computed the maximum likelihood estimates for contestant
and task parameters describing all tasks from TopCoder’s SRMs in 2007 and
2008, and all contestants that took part in those matches.

In Figure 3 we show the plots of item characteristic curves for all Divl hard
tasks used in matches in 2007 (left) and 2008 (right). The x axis on both plots
represents ability levels (the entire range being [—5, 5]), the y axis is probability
of solving a given task, and each task corresponds to one of the plotted logistic
functions. In layman’s terms, the further to the right a curve is, the harder the
task — because this means that the contestant’s ability has to be large in order
to have a chance to solve the task.

(a) 2007. (b) 2008.

Fig. 3: Item characteristic curves for hard tasks in TopCoder matches.

For easier readability of the plot, we ordered the tasks according to their b,
parameter, grouped them into four quarters, and plotted each quarter using a
different color and pattern. Note that the parameter b; is equal to the ability
level necessary to have a 50% chance of solving the task. In other words, b; is
the x coordinate of the point where the logistic curve crosses the line y = 0.5.

Observe the line y = 0.5 to see the values b; in Figure 3. The first quartiles
of b; are almost the same (2.23 in 2007, 2.3 in 2008). However, note that in 2008
almost all b; in the first quarter exceed 2. The median task in 2007 is already
significantly easier than in 2008 (2.6 vs. 2.8), and the trend is even more visible
at the third quartile (2.82 vs. 3.23).

7 Conclusion

Programming contests are still growing in popularity. The community of con-
testants is growing, and this puts an added pressure on their preparation (and
performances). The contestants are getting better and better each year. As a con-
sequence, the tasks in the contests they solve must become harder and harder,
to be able to distinguish between the top contestants.

In this article we give sufficient evidence that this process is still happening.
When will it stop? In our opinion, we should see parallels between the area of
programming contests, and all of Computer Science — which is still one of the
most rapidly developing sciences. As long as the boundaries of Computer Science
grow at the current pace, the contests will mimic this growth, and incorporate
the new discoveries into new, even more challenging tasks — thereby preparing a
future generation of scientists who can push the boundaries even further.

We see many open questions and directions for further research in this area.
To list some: Is this process a good thing, or should we attempt to stop it? Aren’t
the contests already too difficult? How does the gradually increasing difficulty
impact newcomers? To what extent does the increase in difficulty also require an
increase in mathematical skills of the contestants? What is the relation between
the age of contestants and their skill levels? How much more insight can the
Item Response Theory based models give us about the results of past contests,
and how can they be used in order to prepare better contests in the future?

References

1. ACM International Collegiate Programming Contest. http://cm2prod.baylor.edu/
(accessed 2008)

2. Baker, F. B., and Kim, S.: Item Response Theory: Parameter Estimation Tech-
niques. CRC http://edres.org/irt/baker/ (2004)

3. Burton, B.: Breaking the routine: events to complement informatics olympiad train-
ing. Olympiads in Informatics 2, 5-15 (2008)

4. Fenwick, P.: A New Data Structure for Cumulative Frequency Tables. Software —
Practice And Experience 24, 327-336 (1994)

5. Forisek, M.: Theoretical and Practical Aspects of Programming Contests. PhD the-

sis, Comenius University (2009)

Forisek, M.: Using Item Response Theory to Rate (Not Only) Programmers.

Olympiads in Informatics 3, 3-16 (2009)

Greve, M.: UVA toolkit. http://uvatoolkit.com/ (2009)

International Olympiad in Informatics. http://ioinformatics.org (accessed 2009)

. Internet Problem Solving Contest. http://ipsc.ksp.sk/ (accessed 2009)

O Kelevedjiev, E., and Dzhenkova, Z.: Tasks and training the youngest beginners for

informatics COmpetltIOI’lb. Olympiads in Informatics 2, 75-89 (2008)

11. Kemkes, G., Vasiga, T., and Cormack, G.: Objective Scoring for Computing Com-
petition Tasks. LNCS 4226 — Proceedings of ISSEP 2006, 230—241 (2006)

12. Kiryukhin, V.: The Modern Contents of the Russian National Olympiads in Infor-
matics. Olympiads in Informatics 1, 90-104 (2007)

13. Kiryukhin, V., and Okulov, S.: Methods of Problem Solving in Informatics: Inter-
national Olympiads. (In Russian.) Izdatelstvo BINOM. (2007)

14. Manev, K.: Tasks on graphs. Olympiads in Informatics 2, 90-104 (2008)

15. Naverniouk, I.: Igor’s UVa Tools. http://shygypsy.com/acm/ (2009)

16. Opmanis, M.: Team Competition in Mathematics and Informatics “Ugale” — find-
ing new task types. Olympiads in Informatics 3, 80-100 (2009)

17. Revilla, M., et al.: University of Valladolid (UVa) Online Judge.
http://uva.onlinejudge.org/ (2009)

18. Revilla, M., Manzoor, S., and Liu, R.: Competitive Learning in Informatics: The
UVa Online Judge Experience. Olympiads in Informatics 2, 131-148 (2008)

19. Skiena, S., and Revilla, M.: Programming Challenges. Springer (2003)

20. TopCoder, Inc.: Algorithm Data Feeds. http://www.topcoder.com/wiki/display/
te/Algorithm+Data+Feeds (2009)

21. Truu, A., and Ivanov, H.: On Using Testing-Related Tasks in the IOI. Olympiads
in Informatics 2, 171-180 (2008)

22. Verhoeff, T.: 20 Years of IOI Competition Tasks. Olympiads in Informatics 3, 149—
166 (2009)

23. Verhoeff, T., Horvath, G., Diks, K., and Cormack, G.: A Proposal for an 101
Syllabus. Teaching Mathematics and Computer Science 4, 193-216 (2006)

24. Verhoeff, T., Horvath, G., Diks, K., Cormack, G., and Forisek, M.: IOI Syllabus
for IOI 2009. http://www.i0i2009.org/GetResource?id=32 (2009)

2

A Survey on NWERC tasks

The survey contained a list of 12 tasks, ordered randomly. The order was different
for different people. The purpose of this randomization was to ensure that the
respondents have no preconceptions on the difficulty of the tasks.
These are the exact instructions given to the people taking the survey:
Your task is to order the following ACM ICPC problems based on how
difficult you find them.

— Click the problem name to read the problem statement. Please read the
problem statements and think about the solutions!

— Consider the overall difficulty of solving the task, from opening the problem
statement to submitting a correct solution.

— Use the dropdown boxes to assign numbers 1 to 12 to the problems.

— You may assign the same number to problems that have approximately the
same difficulty according to you.

— You also may only rate a subset of the tasks and omit those where you are
not certain. Even such feedback is valuable.

— The absolute values of numbers you use to rate the tasks do not matter. The
only thing that matters is: If you give task A a smaller number than task
B, you think that A is easier than B.

— The tasks are shown in random order. This order changes when you reload
the page. Hence it is a good idea not to reload the page while you are entering
your choices.

