Skip to main content

The Solution of Non-linear Diffusion Equation under Stochastic Nonhomogeneity Using Symbolic WHEP and Pickard Algorithms

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 5890))

Abstract

In this paper, a nonlinear diffusion equation is studied under stochastic nonhomogeneity through homogeneous boundary conditions. The analytical solution for the linear case is obtained using the eigenfunction expansion. The Pickard approximation method is used to introduce a first order approximate solution for the nonlinear case. The WHEP technique is also used to obtain approximate solution under different orders and different corrections. Using Mathematica-5, the solution algorithm is operated through first order approximation. The method of solution is illustrated through case studies and figures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Feriet, K.: Random solutions of partial differential equations. In: Proc. 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1995, vol. III, pp. 199–208 (1956)

    Google Scholar 

  2. Bhrucha-Reid,: A survey on the theory of random functions. The institute of mathematical sciences. Matscience Report 31, India (1965)

    Google Scholar 

  3. Lo Dato, V.: Stochastic processes in heat and mass transport. In: Bharucha-Reid (ed.) C: Probabilistic methods in applied mathematics, vol. 3(A), pp. 183–212 (1973)

    Google Scholar 

  4. Becus, A.G.: Random generalized solutions to the heat equations. J. Math. Anal. and Appl. 60, 93–102 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Marcus, R.: Parabolic Ito equation with monotone nonlinearities. J. Functional Analysis 29, 257–286 (1978)

    Article  Google Scholar 

  6. Manthey, R.: Weak convergence of solutions of the heat equation with Gaussian noise. Math. Nachr. 123, 157–168 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Manthey, R.: Existence and uniqueness of a solution of a reaction-diffusion with polynomial nonlinearity and with noise disturbance. Math. Nachr. 125, 121–133 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Jetschke, G.: On the equivalence of different approaches to stochastic partial differential equations. J. Math. Nachr. 128, 315–329 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jetschke, G., Manthey, R.: On a linear reaction diffusion equation with white noise on the whole real line. Forschungsergebnisse (Jena) N/86/17 (1986)

    Google Scholar 

  10. Jetschke G.: I. Large deviations for a nonlinear Brownian bridge. Forschungsergebnisse (Jena) N/86/11 (1986)

    Google Scholar 

  11. Jetschke, G.: II. Most probable states of a nonlinear Brownian bridge. Forschungsergebnisse (Jena) N/86/20 (1986)

    Google Scholar 

  12. Jetschke, G.: III. Tunneling in a bistable infinite-dimensional potential. Forschungsergebnisse (Jena) N/86/40 (1986)

    Google Scholar 

  13. Uemura, H.: Construction of the solution of 1-dim heat equation with white noise potential and its asymptotic behavior. Stoch. Anal. & Appl. 14, 487–506 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. El Tawil, M.: On stochastic partial differential equations. AMSE Review 14(1), 1–81 (1990)

    Google Scholar 

  15. Darrag, A., El Tawil, M.: The consolidation of soils under stochastic initial exess pore pressure. Appl. Math. Modelling (AMM) 17, 609–612 (1993)

    Article  MATH  Google Scholar 

  16. El Tawil, M.: Stochastic-diffusion-convection equation with random edges. J. Eng. and appl. sci. (Cairo univ.) 41(2), 229–239 (1994)

    Google Scholar 

  17. El-Tawil, M.: Nonhomogeneous boundary value problems. J. Math. Anal. and Appl. 200, 53–65 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. El-Tawil, M., Saleh, M.: The stochastic diffusion equation with a random diffusion coefficient. Sci. Bull. Fac. Eng. Ain Shams Univ. 33(4), 605–613 (1998)

    Google Scholar 

  19. El Maghrapy, I., El-Tawil, M.: The stochastic diffusion equation with a Scie random diffusion coefficient and a non-homogeneous term in 3-d. J. of eng. and Applied.-Cairo Univ. 47(4), 617–637 (2000)

    Google Scholar 

  20. El-Tawil, M.: The application of WHEP technique on partial differential equations. International Journal of Differential Equations and its Applications 7(3), 325–337 (2003)

    MATH  MathSciNet  Google Scholar 

  21. El-Tawil, M.: The Homotopy Wiener-Hermite expansion and perturbation technique (WHEP). In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science I. LNCS, vol. 4750, pp. 159–180. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Farlow, S.J.: Partial differential equations for scientists and engineers. Wiley, N.Y (1982)

    MATH  Google Scholar 

  23. Crow, S., Canavan, G.: Relationship between a Wiener-Hermite expansion and an energy cascade. J. of fluid mechanics 41(2), 387–403 (1970)

    Article  MATH  Google Scholar 

  24. Saffman, P.: Application of Wiener-Hermite expansion to the diffusion of a passive scalar in a homogeneous turbulent flow. Physics of fluids 12(9), 1786–1798 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kahan, W., Siegel, A.: Cameron-Martin-Wiener method in turbulence and in Burger’s model: General formulae and application to late decay. J. of fluid mechanics 41(3), 593–618 (1970)

    Article  Google Scholar 

  26. Wang, J., Shu, S.: Wiener-Hermite expansion and the inertial subrange of a homogeneous isotropic turbulence. Physics of fluids 17(6) (1974)

    Google Scholar 

  27. Hogge, H., Meecham, W.: Wiener-Hermite expansion applied to decaying isotropic turbulence using a renormalized time-dependent base. J. of fluid of mechanics 85(2), 325–347 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  28. Doi, M., Imamura, T.: Exact Gaussian solution for two-dimensional incompressible inviscid turbulent flow. J. of the physical society of Japan 46(4), 1358–1359 (1979)

    Article  MathSciNet  Google Scholar 

  29. Kambe, R., Doi, M., Imamura, T.: Turbulent flows near flat plates. J. of the physical society of Japan 49(2), 763–778 (1980)

    Article  MathSciNet  Google Scholar 

  30. Chorin, Alexandre, J.: Gaussian fields and random flow. J. of fluid of mechanics 63(1), 21–32 (1974)

    Article  MATH  Google Scholar 

  31. Kayanuma, Y.: Stochastic theory for non-adiabatic crossing with fluctuating off-diagonal coupling. J. of the physical society of Japan 54(5), 2037–2046 (1985)

    Article  Google Scholar 

  32. Joelson, M., Ramamonjiarisoa, A.: Random fields of water surface waves using Wiener-Hermite functional series expansions. J. of fluid of mechanics 496, 313–334 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Eftimiu, C.: First-order Wiener-Hermite expansion in the electromagnetic scattering by conducting rough surfaces. Radio science 23(5), 769–779 (1988)

    Article  Google Scholar 

  34. Gao, L., Nakayama, J.: Scattering of a TM plane wave from periodic random surfaces. Waves random media 9(11), 53–67 (1999)

    Article  MATH  Google Scholar 

  35. Tamura, Y., Nakayama, J.: Enhanced scattering from a thin film with one-dimensional disorder. waves in random and complex media 15(2), 269–295 (2005)

    Article  Google Scholar 

  36. Tamura, Y., Nakayama, J.: TE plane wave reflection and transmission from one-dimensional random slab. IEICE transactions on electronics E88-C(4), 713–720 (2005)

    Article  Google Scholar 

  37. Skaropoulos, N., Chrissoulidis, D.: Rigorous application of the stochastic functional method to plane wave scattering from a random cylindrical surface. J. of mathematical physics 40(1), 156–168 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  38. Jahedi, A., Ahmadi, G.: Application of Wiener-Hermite expansion to non-stationary random vibration of a Duffing oscillator. J. of applied mechanics, Transactions ASME 50(2), 436–442 (1983)

    MATH  MathSciNet  Google Scholar 

  39. Orabi, I., Ahmadi, G.: Functional series expansion method for response analysis of nonlinear systems subjected to ransom excitations. Int. J. of nonlinear mechanics 22(6), 451–465 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  40. Orabi, I.: Response of the Duffing oscillator to a non-Gaussian random excitation. Response of the Duffing oscillator to a non-Gaussian random excitation 55(3), 740–743 (1988)

    MATH  MathSciNet  Google Scholar 

  41. Abdel Gawad, E., El-Tawil, M., Nassar, M.A.: Nonlinear oscillatory systems with random excitation. Modeling, Simulation and Control –B 23(1), 55–63 (1989)

    Google Scholar 

  42. Orabi, I., Ahmadi, G.: New approach for response analysis of nonlinear systems under random excitation. American society of mechanical engineers. design engineering division (publication) DE 37, 147–151 (1991)

    Google Scholar 

  43. Gawad, E., El-Tawil, M.: General stochastic oscillatory systems. Applied Mathematical Modelling 17(6), 329–335 (1993)

    Article  MATH  Google Scholar 

  44. El-Tawil, M.A., El-Jihany, A.: On The Solution of stochastic oscillatory quadratic nonlinear equations using different techniques, a comparison study. Topological methods in nonlinear sciences (TMNA). Journal of the Juliusz Schauder Center. 31(2), 315–330 (2008)

    MATH  Google Scholar 

  45. El-Tawil, M., Mahmoud, G.: The solvability of parametrically forced oscillators using WHEP technique. Mechanics and mechanical engineering 3(2), 181–188 (1999)

    Google Scholar 

  46. Tamura, Y., Nakayama, J.: A formula on the Hermite expansion and its aoolication to a random boundary value problem. IEICE Transactions on electronics E86-C(8), 1743–1748 (2003)

    Google Scholar 

  47. Xu, Y., Xu, W., Mahmoud, G.: On a complex Duffing system with random excitation. Chaos Solitons & Fractals 35(1), 126–132 (2008)

    Article  MATH  Google Scholar 

  48. El-Tawil, M., Mahmoud, G.: The solvability of parametrically forced oscillators using WHEP technique. Mechanics and mechanical engineering 3(2), 181–188 (1999)

    Google Scholar 

  49. Rubinstein, R., Choudhari, M.: Uncertainty quantification for systems with random initial conditions using Wiener-Hermite expansions. Studies in applied mathematics 114(2), 167–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Imamura, T., Meecham, W., Siegel, A.: Symbolic calculus of the Wiener process and Wiener-Hermite functionals. J. math. Phys. 6(5), 695–706 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

El-Tawil, M.A., Al-Mulla, N.A. (2010). The Solution of Non-linear Diffusion Equation under Stochastic Nonhomogeneity Using Symbolic WHEP and Pickard Algorithms. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VII. Lecture Notes in Computer Science, vol 5890. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11389-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11389-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11388-8

  • Online ISBN: 978-3-642-11389-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics