Skip to main content

Retracted: New Mathematical Conception and Computation Algorithm for Study of Quantum 3D Disordered Spin System under the Influence of External Field

  • Chapter
Book cover Transactions on Computational Science VII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 5890))

Abstract

The dielectric medium consisting of rigidly polarized molecules is treated as a 3D disordered spin system. For investigation of statistical properties of this system on a scales of space-time periods of standing electromagnetic wave a microscopic approach has been developed. Using Birgoff’s ergodic hypothesis the initial 3D spin-glass problem is reduced to two conditionally separated 1D problems along the external electromagnetic field’s propagation. The first problem describes a quantum dynamics of 1D disordered N-particles system with relaxation in 3D media, while the second one describes a statistical properties of ensemble of disordered steric 1D spin-chains. On the base of constructions which are developed in both problems, is calculated the coefficient of polarizability related with the collective orientational effects of dipoles in external standing electromagnetic field. The Clausius-Mossotti equation for effective dielectric constant on the space-time scale’s of external standing field is generalized. The effective parallel algorithm for computation of stationary dielectric constant is proposed.

An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-642-11389-5_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apollonov, V.V., Artemyev, A.I., Feodorov, M.V., Shapiro, E.A.: Free-electron laser exploiting a superlattice-like medium. Optic Express 3, 162–170 (1998)

    Article  Google Scholar 

  2. Morozov, G.V., Sprung, D.W.L., Martorell, J.: Optimal band-pass filter for electrons in semiconductor superlattices. J. Phys. D: Appl. Phys. 35, 2091–2095 (2002)

    Article  Google Scholar 

  3. Rasporin, A.S., Cui, H.L.: Domain theory of self-induced transparency in a semiconductor superlattice. Phys. Rev. B 68, 045305–045311 (2003)

    Article  Google Scholar 

  4. Shen, M., Cao, W.: Acoustic bandgap formation in a periodic structure with multilayer unit cells. J. Phys. D: Appl. Phys. 33, 1150–1154 (2000)

    Article  MathSciNet  Google Scholar 

  5. Zhang, X., et al.: Comparison of experimental and Monte Carlo simulated BSE spectra of multilayered structures and ’in-depth’ measurements in a SEM. J. Phys. D: Appl. Phys. 35, 1414–1437 (2002)

    Article  Google Scholar 

  6. Mkrtchyan, A.R., et al.: Nanotechnologies in the area of physics, chemistry and biotechnology. In: Fifth ISTC SAC Seminar, St. Petersburg, Russia, pp. 202–205 (2002)

    Google Scholar 

  7. Gevorkyan, A.S., Hu, C.-K.: On a mathematical approach for the investigation of some statistical phenomena of a disordered 3D spin system in the external field. In: Barsegian, G.A., et al. (eds.) Proceedings of the ISAAC Conf. on Analysis, Yerevan, Armenia, pp. 165–178 (2004)

    Google Scholar 

  8. Schnatterly, S.E., Tarrio, C.: Local Fields in Solids: Microscopic Aspects for Dielectrics. Rev. of Mod. Phys. 64, 619–622 (1992)

    Article  Google Scholar 

  9. Kobelev, V.P., Selin, Yu.I., Shaimardanov, A.M.: Application of Superposition Principle to Fields in Dielectric Medium. Sov. Phys. Techn. Phys. 26, 1432–1437 (1981)

    Google Scholar 

  10. Briggs, J.: Effective Electric Field in an Inhomogeneous Medium. Phys. Rev. A 18, 1577–1590 (1978)

    Article  Google Scholar 

  11. Barrera, R.G., Mello, P.A.: Statistical Interpretation of the Local Field Inside Dielectrics. Amer. J. of Phys. 50, 165–169 (1982)

    Article  Google Scholar 

  12. Chen, Z., Sheng, P.: Local Fields in Random Dielectrics: Distribution Characteristics and the Effects of Microstructure. Phys. Rev. B. 43, 5735–5746 (1991)

    Article  Google Scholar 

  13. Kittel, Ch.: Introduction to Solid State Physics. Wiley, J., and sons, Inc., New York (1962)

    Google Scholar 

  14. Griffith, D.J.: Introduction to Electrodynamics, p. 192. Prentic Hall, New Jersey (1989)

    Google Scholar 

  15. Becker, R.: Electromagnetic Fields and Interactions. Dover, New York (1972)

    Google Scholar 

  16. Tu, Y., Tersoff, J., Grinstein, G.: Properties of a Continuous-Random-Network Model for Amorphous Systems. Phys. Rev. Lett. 81, 4899–4902 (1998)

    Article  Google Scholar 

  17. Lifshits, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the theory of disordered systems, Nauka, Moscow (1982) (in Russian)

    Google Scholar 

  18. Gevorkyan, A.S.: Exactly solvable models of stochastic quantum mechanics within the framework of Langevin-Schreodinger type equation, Analysis and applications. In: Barsegian, G., Begehr, H. (eds.) Proceeding of the NATO Advanced research workshop, Yerevan 2002, NATO Science publications, pp. 415–442. Kluwer, Dordrecht (2004)

    Google Scholar 

  19. Berthier, L., Young, A.P.: Time and length scales in spin-glass, October 30 (2003), arXiv; cond-nat/0310721 v1

    Google Scholar 

  20. Pavlov, P.V., Khokhlov, A.F.: Solid State Physics, High School Book Company, Moscow (2000) (in Russian)

    Google Scholar 

  21. Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1968); Nauka, Moscow (1984)

    Google Scholar 

  22. Klyatskin, V.I.: Statistical description of dynamical systems with fluctuating parameters, Nauka, Moscow (1975) (in Russian)

    Google Scholar 

  23. Zachariasen, W.H.: J. Am. Chem. Soc.  54, 3841–3851 (1932)

    Google Scholar 

  24. Edwards, S.F., Anderson, P.W.: Short-Range Ising Model of Spin Glasses. J. Phys. F 9, 965–974 (1975)

    Article  Google Scholar 

  25. Binder, K., Young, A.P.: Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Physics 58(4), 801–976 (1986)

    Article  Google Scholar 

  26. Dasgurta, Ch., Ma, S.-k., Hu, C.-K.: Dynamic properties of a spin-glass model at low temperatures. Phys. Rev. B 20, 3837–3849 (1979)

    Article  Google Scholar 

  27. van Hemmen, J.L.: In: van Hemmen, J.L., Morgenstern, I. (eds.) Proceedings of the Heidelberg Coloquium on Spin Glasses. Lecture Notes in Physics, vol. 192. Springer, Berlin (1983)

    Chapter  Google Scholar 

  28. Berg, B.A., Neuhaus, T.: Multicanonical ensemble: A new approach to simulate first-order phase transitions. Phys. Rev. Lett. 68, 9–12 (1992)

    Article  Google Scholar 

  29. Fedoryuk, M.V.: Method of saddle-point, Moscow, Nauka (1977) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gevorkyan, A.S., Hu, CK., Flach, S. (2010). Retracted: New Mathematical Conception and Computation Algorithm for Study of Quantum 3D Disordered Spin System under the Influence of External Field. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VII. Lecture Notes in Computer Science, vol 5890. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11389-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11389-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11388-8

  • Online ISBN: 978-3-642-11389-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics