arxiv:1202.1090v1 [cs.DS] 6 Feb 2012

The covert set-cover problem with application to Network

Discovery*
Sandeep Sen V.N. Muralidhara
Dept of Comp Sc & Engg [lIT-Bangalore,
[IT Delhi Electronics City,
New Delhi-110016, India Bangalore, 560100, India
ssen@cse.iitd.ernet.in murali@iiitb.ac.in

November 15, 2018

Abstract

We address a version of the set-cover problem where we donuot khe sets initially (and hence
referred to as covert) but we can query an element to find oighwdets contain this element as well as
query a set to know the elements. We want to find a small setragsing a minimal number of such
queries. We present a Monte Carlo randomized algorithneghatoximates an optimal set-cover of size
OPT within O(log N) factor with high probability using (O PT -log* N) queries wheréV is the input
size.

We apply this technique to the network discovery problen itihalves certifying all the edges and
non-edges of an unknowmvertices graph based on layered-graph queries from a ralmomber of
vertices. By reducing it to the covert set-cover problem wesent arO(log? n)-competitive Monte
Carlo randomized algorithm for the covert version of netagiscovery problem. The previously best
known algorithm[[4] has a competitive ratio 8f/n log n) and therefore our result achieves an expo-
nential improvement.

1 Introduction

Given a ground se$ with n’ elements and a family of sef, Ss ... S, Wherﬂ S; C S, acoverC is
a collection of sets from this family whose unionSs It is known that finding a cover consisting of the
minimum number of sets is a computationally intractablébfmm [9]. There are many strategies([6] 11, 14]
to approximatethe smallest cover within a factor 6f(log n") which is known to be the best possible unless
P =NP[8].

In this paper, we consider the following version of the satecgroblem. Although we known', n/,
we do not know the elements nor the cardinality of any of thie Sg We are allowed to query an element
e € S that returns all sets; that containe which we refer to as a hitting-set query; we can also query a
set to know its elements. We would like to compute a small @eticof S using a minimal number of such
gueries. More specifically, i PT is the minimum size of a set cover for any instance of the jroblve
would like to find a set cover of siz8(OPT - polylog n’) using onlyO(OPT - polylog n") queries. Note

*A Preliminary version of the results have appeared eaniéne 4th Workshop on Algorithms and Computation 2010
1We have chosen’, m’ as notations to keep them distinct from graphs witvertices andn edges.

http://arxiv.org/abs/1202.1090v1

that by usingmin{m’, n’} queries, we can reduce it to the standard version but the euaflgueries may
not satisfyO(OPT - polylogn’). By restricting the number of queries to be closex&7', an algorithm
cannot afford to learn the contents of all the sets, yet #daiired to find a cover close to the optimal.

This formalization is also distinct from thanline problems addressed in [1, 2] where the sets are known
but the adversary chooses a set of the ground set for whichienadicover must be computed. An adversary
chooses the elements one after the other and the onlingthifgamust maintain a cover of the elements
revealed upto a given stage. There is no apparent relaifpbsitween the two versions. In one case, the
initial sets are not known but the algorithm can choose teenehts for hitting set queries whereas in the
online case, the sets are known but the adversary choosekethents. Moreover, the number of queries is
also a measure of performance in the version considered here

Our research is motivated by the problem of discovering dipelbgies of large networks such as the
Internet. For large networks such as the Internet which gésuirequently, it is very difficult and costly
to obtain the topology accurately. Nevertheless, suchrimétion about the network is very useful - for
example, the robustness properties of the network or stgdyie routing aspects.

In order to create the topology of the network, one of then@gles used is to obtain local views of the
network from various locations and combine them to deteerttie topology of the network. One can view
this technique as an approach for discovering the topoldglgeonetwork by some queries. Here, a query
corresponds to the local view of the network from one spelgfiation. In the real world scenario, the cost
of answering a query is usually very high, so the objectivéhefnetwork discovery problem is to find the
map of the network using a minimal number of queries.

Note that in the network discovery problem, we have to confiimexistence and non-existence of an
edge between any pair of vertices. So, any query at a ver@xdahimplicitly or explicitly confirm the
absence or presence of edges between some pair of vertloelsayiered Graph Query ModelindDistance
Query Modelare the most widely studied query models.

Layered Graph Query ModeA query at a vertex yields the set of all edges on shortest paths from the
vertexwv to any other vertex reachable fromin the graph. More specifically, we obtain information about
an edg€z, y), iff d(v, z) andd(v,y) are consecutive wheigv, z) is the level ofz (from v, see Figuréll).

Distance Query ModelA query at a vertex yields the distances afto every vertex of the graphg.

a query at a vertex returns a vectof/, where theith component indicate the distanceitb vertex from
vertexv. Itis easy to see that it is a weaker query model as compalealytred Graph Query Modeln the
Distance Query Modehn edge may be discovered by a combination of queries agdted in Figurgl2. In
the example shown in F[g 2, query at vertexliscovers the non-edg€$1,4), (1,5), (1,6), (2,6), (3,6)}
and edgeg(1,2), (1,3)}. A query at vertex6 discovers the non-edges

{(1,4),(1,5),(1,6),(2,6),(3,6), (4,2),(5,2),(3,2)} and edgeq(3,1), (1,2), (6,4), (6,5)}. Combining
these two queries, we discover the edges3) and (4, 3). In the off-line version of network discovery
problem, the network is initially known to the algorithm. like the online problem, here the goal is to
compute a minimum number of queries that suffice to discdwenetwork. Given a network, we can verify
whether what we have been given is the correct informatidnusTwe refer to the off-line version of network
discovery problem asetwork verification

1.1 Prior work in network discovery

Bejerano and Rastodgil[5] studied the problem of verifyingdges of a graph with as few queries as possible
in a model similar to thé.ayered Graph Query ModelFor a graph withn vertices, they give a set-cover
basedO (log n)-approximation algorithm and show that the problem is NRthdn contrast to Bejerano

(©

Figure 1: A query at a vertex; in the layer graph model (a) yields certificate for the edgeéb) and
non-edges in (c)

! 1> 0

(CY 6 (©

Figure 2: The edges, 3) and(4, 3) of the graph (a) is discovered by the combination of quetiesrex1
in (b) and at vertex in (c) in the distance query model - the distances are depidtelayers of the graph.

and Rastogi, we are interested in verifying (or discoveringth the edges and the non-edges of a graph. It
turns out that the network verification problem was congdexs a problem of placing landmarks in graphs
[13]. The problem was shown to be NP-complete an@éiog n)-approximation algorithm was presented.
Beerliova et al. [[3] proved af(logn) lower bound on the approximation factor for any polynomiaiet
algorithm for the network verification in tHeayered Graph Query ModehlessP = N P.

In the online version of the problem, the network (graph) is unknown toalymrithm. To decide the
next query, the algorithm can only use the knowledge abaunhétwork it has gained from the answers of
previously asked queries. Thus, the difficulty in selectyogpd queries arises from the fact that we only
have the partial information about the network.

For the network discovery problem, Beerliova et al.[4] hakiewn arf2(/n) lower bound on the com-
petitive ratio of any deterministic online algorithm and @Qflog n) lower bound for any randomized al-
gorithm for theDistance Query ModelThe best known algorithm in thistance Query Modek a ran-
domized online algorithm which i©(y/n log n)-competitive [4]. In contrast, for thieayered Graph Query
Model Beerliova et all[4] have shown that no deterministic omlitgorithm can bé3 —) competitive for
anye > 0. The best known algorithm in this model before this work iSHR/n Tog n)-competitive online
randomized algorithni [4] that leaves an exponential gapéen the best known lower and upper bounds
for the Layered Graph Query Model

In this paper, we present a randomized Monte Carlo onlineriign with a competitive rati® (log? n)
for the Layered Graph Query Modéhereby nearly closing this exponential gap.

1.2 Our resultsand techniques

The network verification problem can be solved by reducirtg &n appropriate instance of the set-cover
problem (or hitting set problem). Hence, we obtain@fiog n) approximation algorithm for the network
verification problem which is the best that we can hope to dess?” = NP. In the online network
discovery problem, we do not know the graghriori and hence the above reduction cannot be used directly.
In particular, the sets are not known explicitly, so we fiestelop an algorithm for solving the covert version
of the set-cover problem using queries.

We present an algorithm that computes a set-cover of sizestMilog(m’' +n’) - OPT) using at most
O(log?(m’ 4+ n') - OPT) queries with high probability. Using this, we obtain @flog? n)-competitive
Monte Carlo randomized algorithm for the network discovargblem in theLayered Graph Query Model
This is a significant improvement from the previously bestkn O(+/n Iog n)-competitive algorithm [[3]).

Our algorithm for the set-cover simulates the greedy se¢rcalgorithm without any information about
the contents of any of the sets initially. We use estimatgingirandom sampling to choose the (near) largest
cardinality set which is the basis of the greedy algorithme Neve to compensate for the inaccuracies in
sampling by using a more careful amortization argument fovipg the approximation factor. The greedy
algorithm is modified to run i® (log(n’ + m’) rounds instead of the conventior@PT - log n’ stages.

2 Preliminaries

Let G = (V, E) be a connected, undirected, unweighted graph represemtiggwork ofrn vertices. For
two distinct nodes:, v € V, we say that(u, v) is an edge if(u,v) € E and non-edges i{u,v) ¢ E. The
set of non-edges itv is denoted bye.

We assume that the s&tof nodes is known in advance and it is the presence or absérckges that
need to be discovered or verified. A query at node denoted byjuery(v).

We say that ajuery(v) certifies (u,v) if by using the answers to thg.ery(v), one can confirm the
presence or absence of the edge v) in the graphj.e. query(v) implicitly or explicitly confirms whether
(u,v) € Eor (u,v) € E. We associate two sets with eaghery(v) as follows. For a given vertex
v € V, let @, denotes the set of allu,v) € V x V such thatguery(v) certifies (u,v) . For a given
(u,v) € V x V, let H,, denote the set of all verticessuch thatguery(v)certifies (u,v) . The two
definitions can be considered duals of each other.

Qv = {(u,v) € V x V| query(v) certifies (u,v)} Vv € V

Hy) = {v € V| query(v) certifies (u,v)}V(u,v) € V x V.

The above formulation of the network discovery problem camdaluced to theet-coverproblem in which
given a collection of set§), of £ U E, the goal is to find a (minimum size) subgét c V such that
Uwev'@, = E U E. Therefore, querying the vertices of the set-cover wiltibeall the edges and non-
edges that can be used to discover the network.

In the relatechitting-setproblem, given a collection of sefg, ,) of V, the goal is to find a (minimum
size) subset” C V such that for any given séf|, ,, there exists a vertex € V' such that' € H,).

It may be noted that the (offline) hitting-set problem is nfsolved by reducing it to the corresponding
set-cover problem.

In the offline verification problem, given any query model, one can find theva sets exactly as the
graph is known. So the network verification problem can beexbby reducing it to the corresponding set-
cover problem (or hitting set problem). Hence, we getHibg n) competitive algorithm for the network
verification problem. As mentioned earlier this is the bbst wve can hope to do for this problem unless
P=NP.

In the online network discovery problem, since we do not kiogvgrapha priori, we cannot compute
the above sets explicitly without querying all the verti@e%o circumvent this problem, we develop an
algorithm for approximating the set-cover using the reldtéting-set queries. It can be easily seen (c.f.
Section 6), that thal{,, ,,) can be obtained frory,, and(, in the context of the network discovery problem.

3 Approximating set-cover from e-net

Clarkson [12] presented an elegant algorithm for set comegéometric problems with bounded VC di-
mension (see [10] for a survey of such results) basedeghted:s-net. His algorithm is based on random
sampling (weighted) and a procedure to verify if a family obsets is indeed a set cover. Notice that in
our context|C'| queries suffice to perform this verification wheres the claimed set cover. Intuitively, if
an element is covered Wy(e) fraction of the sets, then it will be covered by thenet. For the remain-
ing elements, the algorithms successively boosts the pilitheof being covered by a clever reweighting
technique. The origins of this method goes back to Clarkgpn [

If a set has weighty and the sum of weights of all the setdA§, then the set is sampled with probability
w - The algorithm repeatedly picks a random sample where in pew iteration, the weights are modified
until we obtain a set cover. The algorithm assumes that #eeddithe optimal set covep PT is known and
fixese = i wherek = |OPT|. The algorithm can be summarized as follows

It is known that with high probability, the above algorithmnverges irO(k log(m/k) iterations ([12]).
Since|OPT| is not known initially, we can use the doubling technique tegs|OPT'| within a factor

2While this may be necessary for some graphs like the comgtegehs, in general this will lead to poor competitive ratio.

5

Algorithm 1 Set cover using weighted -net
Initially assign every set a unit weight. Initialize seteo?’ = ¢.
while C' is not a covedo
1: Pick a weighted:-net€ of sizeO(1/e - log m’).
2. If £ is a set-cover then repoH.
3. Else, it misses at least one element, say et .S, be the family of all sets that contain the element
and double the weights of all sets$f;.

2 by beginning withky = 1 and k;,..1 = 2k; as thei-th guess. Each iteration of the algorithm takes
O(k;logm') queries, so the total number of queriesJ&k? log” m’). Note that it take€)(k;) queries to

verify a set cover. This yields a grand total Bt°2/°"7 O(22 log2 m) = O(|OPT|*log? m) queries.

This has competitive ratio roughly) PT'| log® m, so that forlOPT| < O(v/m/), the competitive ratio is
abouty/m’. For|OPT| > v/m//log?m/, the competitive ratio is clearlp(v/m/) asm’ queries trivially
suffices. Therefore, by using this algorithm for networlcdigery in the layered graph model, we can match
the algorithm of Beerliova et al. [3].

4 A near-optimal algorithm

In the conventional greedy set-cover algorithm, we choosets,.x that covers the maximum number of
uncovered elements, say,.., and add it to the cover. This leads tdog n’ approximation. Instead, if we
choose any set that covers at least half.gf,. uncovered elements, then it give g n’ approximation.
Recall thatn/, m’ denote the number of elements and the number of sets rasgchlore generally, if we
choose a set that cover at Ier:ciafzmm elements, then we obtaincalog n’ approximation. We consider a
version of thisRelaxed Greedy-Set-CoveRGSG where we repeat the following in stageg2, . ..logn/ .

At any stage we identify all the sets that contain at I%as,gam uncovered elements. We can consider the
sets of in an arbitrary, but fixed orderii@and include those sets that contribute at I%asgax uncovered
elements by deleting elements that have been already cblgreets chosen earlier. Note that the sets that
will be included will depend o1® - however, at the end of this stage, there will not be any s#tdbntains
Nmaz/2 Or More uncovered elements. Since any such ordéiegrresponds to a valid run &GSC this

will yield a 21log n’ approximation guarantee - see Appendix for a formal proof.

Our algorithm is based around simulating this approach,reviae try to estimate the value of,,..
indirectly using random sampling. In rourip] we check forn,,., € [2?—,'1, 2"—,2] by choosing a random
set of uncovered elements of an appropriate size. Usirigdiet queries, we find the sets containing these
randomly chosen elements. We choose an appropriate nurhbecavered elements that will hit the sets
having;—,’2 elements with high probability. We consider the sets in affiier and if a set contains more
than at least a threshold number of randomly picked elemémes we include the set in the set-cover.
Because of the estimation using random sampling, we losetarfd > 2 in the underlying RGSC as we
may choose some sets which contain fewer thap, /2 uncovered elements (but at ledgt=).

Algorithm Pseudo Greedy described below, selects all sets containing at least. /2 uncovered el-
ements and discards the sets containing less gha,gaw uncovered elements far < ¢ < 8 with high
probability.

3the notationma. Will refer to the maximum in the current rourid

We assume that the sets are numbered in some canonical brdke specific application of the net-
work discovery problem, this ordering is implici«; , v, . .. v, }, this induces a canonical ordering on the
collection), of sets). In the general setting, we assume that such animgdexits or it can be easily
computed.

In Algorithm[2, N denotes the cardinality of the ground set plus the numberisdhe given family
(N = n’ +m/). In the case of Network Discovery probled¥, = O(|V|?). In roundi, we try to identify
the sets containing at Ieagtﬁ—1 uncovered elements.

Algorithm 2 Pseudo-Greedy
Initialize set coveC = {}.
fori=0,1...do

1. Letn; be the number of elements left in this round and= min{g—;, n;}. Choose a random sampf
of size(4an;/s;)log N.
Comment: « is a constant whose value will be determined in the analysis.

2. If s; < alog N then solve the hitting set problem directly using at meshitting set queries and run
the explicit greedy set-cover algorithm.

3: Else (ifs; > alog V), let S* be the sets that contain more thatog NV sampled elements.
If S%is empty, incrementand go to step 1.

4: ProcessS’ = { X1, X, ...} in some predefined order until all sets are exhausted.

(i) Let R; be the union of elements dt’ that are contained in the sets chosen am&ngXs, . .. X;.

(i) C=CUX 1 if |
X410 (B \ R})| > alog N

(else discardX .
(iii) UpdateR; to R, ;. using set queries.

5. Update the elements covered by the sets chosen in this reimgl set queries.

5 Analysis

We begin with a rough intuition behind the previous algarithIf the largest set has siz€/t then the
minimum number of sets in any set cover(i$t). Therefore we can afford to query a sample of size
approximatelyO(t - polylogn’) elements without blowing up the competitive ratio. In thstext note
that a uniform random sample of siz& - polylog n’) will have §(polylogn’) elements common with a
set of sizen//t with high probability. However, if there ai@(t) sets of sizeD(n'/t), we cannot afford to
sample repeatedly for finding these sets. The above obgmrsdorm the crux of the analysis that are now
formalized.

Lemma5.1 Inroundi, in Step 3, the following holds with high probability

(i) If a setT" contains at least; /2 elements then with high probability it will have at leaslog N sampled
elements.

(ii) Any setT chosen in Step 3 will contain at Ieacétsi elements ford < ¢ < 8 with high probability.

Proof. LetT be a set wheren > |T'| > m/2. Suppose we sample every element independently with
probability p. The expected number of sampled eleménis such thainp > Y > mp/2. From Chernoff
bounds,

Pri(l4+eymp>Y > (1 —e)mp/2] > 1 — 2¢~mwe"/4

Choosings = 1/2, we get
Pr(3/2mp > Y > mp/4] > 1 — 2¢~mP/16

In roundi, each element is picked independently with probability/s;) log IV, therefore, the expected
number of hits in a set of size is (4ma/s;) log N. From Chernoff bounds, by substituting = s;,

Pri6alog N >Y > alog N] > 1 — 2e~/4loeN — 1 _ 9 /Na/4

Since the number of sudhiis less thanV, the algorithm picks all sets containing at leggt uncovered
elements with high probability. On the other hafithe any set chosen in Step 3 of the algorithm. Then, by
applying Chernoff bound, we get,

PriT < s;/c] < e (¢=2)a/8logN _ 1 /(c'=2)a/8
forall4<cd <8 m

Lemma5.2 If round i takesO(: - f(IV)) queries, then the set-cover can be found ugirg, - f(IV))
queries where, is the size of the set-cover returned by the underlying RG§aritam.

Proof.

In roundi, we include all those sets in the cover that covers at le@8tadditional elements. In round
i, let us distribute the cost uniformly to the remaining elaisgei.e., each of the,; elements is charged
O(f(N)/si). If an element is covered by a set chosen in routfeen it is not charged in the subsequent

rounds. So the total cost over all the rounds for eleméstC (x) < f(IV)- (st L4 25 +4s +.) <

30’|f(())‘ wheres(z) is the set thafirst covers element ands; /¢’ < |s(z)| < s;. The constant’ refers to
the constant in the previous lemma. Therefore

SECEF WRE S SIE W D

SeCx:s(x)= S

The summation represents the cost of the underlfR@SCalgorithm and therefore, it is bounded by
3¢ f(N) - ny (see Lemm&T7ll in the Appendix).
Note that the underlyin@GSCalgorithm is a’ log N approximation to the set-covem

Theorem 5.3 Algorithm[2 returns a set-cover of size at m6ilog N - OPT) using at most(log? N -
OPT) queries with high probability.

Proof. In our algorithm, f(N) is O(log N) and the maximum number of iterations@log N'). When
s; < alog N , we solve the problem directly using at mosthitting set queries, and explicitly run the
greedy set-cover. Since the largest set has:giz#, the size of the optimal cover is at ledtn’/ log N)
and therefore, the number of queriesGglog N - OPT). In order to prove the theorem, we will show
that the bound om, in Lemma5.2 isO(log N - OPT'). So, we must establish that the sst®rtlistedin

8

Step 3 of the Algorithm and finally included in the cover infsteare only those sets (on the basis of their
estimates) that covers at least’ uncovered elements. In particular, we must guard agairessampling

of the uncovered elements of any aethe time it is considered for inclusion in a given routiten though
the sets were appropriately sampled in Step 3, at the tims abnsideration in Step 4(ii), the sampling of
the remaining part must be accurate enough that may neatesaiguing about an exponential number of
possibilities depending on the order of its inclusion.

To avoid this, let us assume that we consider the set$ oh increasing order of their indices Let
X1, X5 ... be the sets o’ in this canonical ordering that contain at leagtc’ elements. Now consider
a hypothetical ordering@ of the elements based on this ordering of the sets. Namélglesthents ofX;;
are numbered smaller thaxy, ., and the numbering within a set is arbitrary. For examplethalelements
in X7 \ X9 are numbered befor&; N X5 and elements ok, \ X; come last. Suppose the elements are
sampled according t©. We defineX as all the uncovered elementsih after X1, Xo, ... X;_1 have been
considered and (hypothetically) sample the elemeni§/iaccording taO.

We considerX] to beunder-sampledf |X/| > s; but the number of sampled elements intersecfifjg
(notincludingX; \ X!) is less thanvlog n. We analogously defineversamplingor X/.

We say that a bad event has occurred in rognflany of the setsX! is under-sampled or oversampled
and let the complement of this event Ble. From Lemmd5J1, we can bound the probability of under
sampling and over sampling such tfafz;] > 1 — 3/N(®/4~1 (by choosing” > 4). Let 4; be the event
that no under-sampling or oversampling occursXgr X/ ... X/. Then,

Pr[A;] = Pr[Ai_1 () Zi] = Pr[Zi|Ai_1] - Pr[4;_]

Therefore, 4
Pr[A;] > Pr[A;_1] - (1 — 3/N©@/H-1) > (1 - 2/Na/4-1)” fori < N

By choosing sufficiently large this is at least — 1/N2. Since this holds for alj < O(log N) rounds,
this also bounds the failure probability of our algorithm.

Remarks: (i) The bounds do not depend ¢hand holds for any parallel sampling method.

(i) We say that the algorithnfails if in any of rounds, it does not pick all sets containing atsteg/2
uncovered elements or picks any set containing less ¢hafhuncovered elements. The sizes of sets that
will be chosen will satisfy the the above mentioned boundf Wigh probability; otherwise, the algorithm
will be deemed to have failed. Note that the bound of Lerhmlas@ holds with the same probability. Since
we do not verify these properties, we obtain a Monte Carlorétigm.

(i) A deterministic algorithm picks all the sets of sizelaasts; /2, and while our randomized algorithm
chooses all sets of size at leagt2, it may pick some sets which are little smaller (but gredtant; /).

6 Network Discovery

The off-line problem of network verification can be reduced set-cover problem. In the online version, we
do not want to compute the sets explicitly since this wildéa a poor competitive ratio in many situations.
So we solve the problem by using hitting-set queries as ibestin the previous section that gives us an
estimate of the set sizes. In our setting, the hitting-sellem is defined on the setf, ., and the set-cover
problem on the set§,. During any stage, random sampling is done on the set of olmexbedges to obtain
estimates of), by querying@., where(z,y) is a sampled edge.

Recall that inLayered Graph Query Modeh query at a vertex yields the set of all edges on shortest
paths between and any other vertex. Now, we observe that this query modedjisvalent to the model
in which a query at vertex yields all edges and non-edges between vertices of diffelistances from.
Note that an edge connects two vertices of different digtdram v if and only if it lies on a shortest path
betweerw and one of these two vertices. The shortest path rootedngplicitly confirms the absence of all
edges between vertices of different distance franso given an edge or non-edge whose status is not yet
resolved, sayv, u), we query both the end pointsand« to determine the distances of all nodes:tand
v. From this we can deduce the g¢t, ,,) of nodes from which the edge or non-edge betweamdv can
be discoveredf!(, ,y = {z € V|d(u,z) # d(v,) d(s,x) = distance froms to =}

Algorithm Pseudo Greedy described in the previous section above translates to tf@vfog in the
context of the network discovery problem. Randomly pick discovered edge and query the #£f, ..

Let n be the number of vertices in the graph anddetenote the query set- this is the (approximately
minimal) set of vertices which will be used to discover thénwek. If v is contained in at least log n of

the queried sets, includein the set-cover). Actually, like the general set-cover problem, it is a twags
process where we first shortlist and then subsequently rongh this list in some predefined ordering, say
according to the labels of the vertices. As before, we sdieeset-cover problem a, using a sequence of
H, . hitting set queries. The reader can easily work out the Idetzat we omit to avoid repetition.

In the following algorithmN = O(n?). The algorithm take®(logn) stages and in each stage we
makeO(logn - OPT) queries, wher®PT is the optimum number of queries required to solve the nétwor
verification problem. Since this is also optimum for the oeliproblem, AlgorithmNetwork Discovery
makesO (log® n-0PT) queries. The algorithm yields a $@flog n-0PT) Q,, queries that suffices to discover
the given network. Therefore the overall number of queriesHe online discovery is stitD(log? n - OPT).

Algorithm 3 Network Discovery
fori=0,1...do

1: Let n; be the number of edges and non-edges which needs to be disdamds; = min{(Qi),ni}.
Choose a random sample Bf of size(4an;/s;)log N.

2: If s; < alog N then findH, . for each of the undiscovered edge/non-edge and solve theret
discovery problem by reducing it explicitly to the set-copeoblem.

3: If s5; > alog N, for each sampled edge/non-edgev), find the setr,, ,,).

4: Consider the verticegvy, vz, ...} in this order and include; in Q (Q,; is in the set-cover) only if
Qy,; contains more thamlog N sampled edge/non-edgew; (€ H,,, for at leastalog N of the
(u,v) € Ry).

(The actual implementation of this is similar to Steps 3-4hef AlgorithmPseudo Greedy.)

From our earlier analysis of the covert set-cover problefollbws that

Theorem 6.1 There is aD(log? n)-competitive randomized Monte Carlo algorithm for the ratadiscov-
ery problem in the Layered Graph Query Model.

Remark Even if we restrict the query model to return a Layered grapsome bounded depth (that may
not correspond to the entire graph), the reduction to ceetrtover problem is analogous by modifying the
definition of the sets and we obtain the same competitive.rati

10

7 Conclusion and open problem

The algorithm described in the last section gav@(kg? n) algorithm for the network discovery problem —
Can we improve this t@)(logn) ? We can consider a weighted version of the network discomeniglem,
where each query at a vertex costs say it is not clear whether we can extend our approach to sokve th
weighted version of the problem.

We note that in théDistance Query Modelby querying bothv andw, we can discover if. or v is
a edge or non-edge. |If it is a non-edge, then we can find théggt) — a vertexw is in this set if
d(u,w) — d(v,w) > 2. Butif (u,v) is an edge, then we can not find the #&t, ,,y. Itis not clear how to
determine thepartial witnesses, using set-cover queries as before. Therefommains open if we can we
improve the knowrO(+/n logn) bound for network discovery problem @(poly(logn)) approximation
randomized algorithm in thBistance Query Modal
Acknowledgement The first author is thankful to Rajeev Raman and Thomas Eglefa introducing him
to the problem and subsequent technical discussions.

References

[1] Noga Alon, Baruch Awerbuch, and Yossi Azar. The onlinecsser problem. I'8§TOC '03: Proceed-
ings of the thirty-fifth annual ACM symposium on Theory of mating pages 100-105, 2003.

[2] Baruch Awerbuch, Yossi Azar, Amos Fiat, and Tom Leightdlaking commitments in the face of
uncertainty: how to pick a winner almost every time (extehdbstract). II'5TOC '96: Proceedings
of the twenty-eighth annual ACM symposium on Theory of cangpyages 519-530, 1996.

[3] Zuzana Beerliova, Felix Eberhard, Thomas Erlebachxaheler Hall, Michael Hoffmann 0002, Matls
Mihalak, and L. Shankar Ram. Network discovery and vetiiica In WG, pages 127-138, 2005.

[4] Zuzana Beerliova, Felix Eberhard, Thomas Erlebachxadeler Hall, Michael Hoffmann 0002, Matls
Mihalak, and L. Shankar Ram. Network discovery and vetiiice IEEE Journal on Selected Areas
in Communications24(12):2168-2181, 2006.

[5] Yigal Bejerano and Rajeev Rastogi. Robust monitorindirdk delays and faults in ip networks. In
INFOCOM, 2003.

[6] V. Chvatal. A greedy heuristic for the set-covering desh. Mathematics of Operations Research
4:233 — 235, 1979.

[7] Kenneth L. Clarkson. A las vegas algorithm for lineargmamming when the dimension is small. In
FOCS pages 452-456, 1988.

[8] U. Feige. A threshold of In n for approximating set covéournal of the ACM45:634 — 652, 1998.
[9] Michael R. Garey and David S. Johnsd@omputers and intractabilityFreeman, 1979.

[10] Sariel Har-PeledGeometric Approximation Algorithm#athematical surveys and monographs, Vol
173, American Mathematical Society, 2011.

[11] D.S. Johnson. Approximating algorithms for combimitioproblem.Journal of Computer and System
Sciences9:256 — 278, 1974.

11

[12] K.Clarkson. Algorithms for polytope covering and apgtions. InProc. of Workshop in Algorithms
and Data Structuregpages 246-252, 1993.

[13] Samir Khuller, Balaji Raghavachari, and Azriel Rosgdf Landmarks in graphsDiscrete Applied
Mathematics70(3):217-229, 1996.

[14] Vijay V. Vazirani. Approximation algorithmsSpringer-Verlag New York, Inc., New York, NY, USA,
2001.

Appendix A

Chernoff bounds

If a random variableX is the sum of: iid Bernoulli trials with a success probability pfin each trial, the
following equations give us concentration bounds of désiabf X from the expected value ofp. These
are useful for small deviations from a large expected value.

Prob(X < (1 —e)pn) < exp(—e*np/2) (1)
Prob(X > (14 e)np) < exp(—e*np/4) (2)

forall0 <e< 1.
Greedy set-cover

For completeness, we also sketch the proof of approximddicior of RGSC(0) for # < 1, such that
at any step, the size of the set chosen is at ®ast,, .

Let us number the elements Sfin the order they were covered by the greedy algorithm (wWiog,
can renumber such that they are x5 ...). We will apportion the cost of covering an element S as
w(e) = vy V wheree is covered for the first time by andV is set of elements covered till then. This is
also called theost-effectivenessf setlU. The total cost of the cover is

U een(U

wheren(U) is subset of uncovered elementslinvhenU was chosen and is covered for the first time.
This can be rewritten &g, w(x;).

Lemma7.1 0,/
N < or”
wiwi) < n—i+1
whereC, is the number of sets in the optimum cover.

In the iteration whem; is covered for the first time, the number of uncovered elemisit n—i+1. The
pure greedy choice is more cost effective than any left osofsthe optimal cover. Supposg, , S;, ... Si,

are the unselected sets of the minimum set-cover. Thenast tme of them has a cost-effectiveness of

< lf+1 < = z+1 It follows that the set chosen lYGSC(#) achieves a cost- effectlveness(ejW
Co/6
Sow(x;) < n_2/+1
Thus the cost of the greedy coverE P H—l which is bounded by, /6 - H,,. HereH,, = % %1 +
.. L

12

	1 Introduction
	1.1 Prior work in network discovery
	1.2 Our results and techniques

	2 Preliminaries
	3 Approximating set-cover from -net
	4 A near-optimal algorithm
	5 Analysis
	6 Network Discovery
	7 Conclusion and open problem

