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Abstract

We address a version of the set-cover problem where we do not know the sets initially (and hence
referred to as covert) but we can query an element to find out which sets contain this element as well as
query a set to know the elements. We want to find a small set-cover using a minimal number of such
queries. We present a Monte Carlo randomized algorithm thatapproximates an optimal set-cover of size
OPT within O(logN) factor with high probability usingO(OPT · log2 N) queries whereN is the input
size.

We apply this technique to the network discovery problem that involves certifying all the edges and
non-edges of an unknownn-vertices graph based on layered-graph queries from a minimal number of
vertices. By reducing it to the covert set-cover problem we present anO(log2 n)-competitive Monte
Carlo randomized algorithm for the covert version of network discovery problem. The previously best
known algorithm [4] has a competitive ratio ofΩ(

√
n logn) and therefore our result achieves an expo-

nential improvement.

1 Introduction

Given a ground setS with n′ elements and a family of setsS1, S2 . . . Sm′ where1 Si ⊂ S, a coverC is
a collection of sets from this family whose union isS. It is known that finding a cover consisting of the
minimum number of sets is a computationally intractable problem [9]. There are many strategies [6, 11, 14]
to approximatethe smallest cover within a factor ofO(log n′) which is known to be the best possible unless
P = NP [8].

In this paper, we consider the following version of the set cover problem. Although we knowm′, n′,
we do not know the elements nor the cardinality of any of the setsSi. We are allowed to query an element
e ∈ S that returns all setsSi that containe which we refer to as a hitting-set query; we can also query a
set to know its elements. We would like to compute a small set cover ofS using a minimal number of such
queries. More specifically, ifOPT is the minimum size of a set cover for any instance of the problem, we
would like to find a set cover of sizeO(OPT · polylog n′) using onlyO(OPT · polylog n′) queries. Note

∗A Preliminary version of the results have appeared earlier in the 4th Workshop on Algorithms and Computation 2010
1We have chosenn′

,m
′ as notations to keep them distinct from graphs withn vertices andm edges.
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that by usingmin{m′, n′} queries, we can reduce it to the standard version but the number of queries may
not satisfyO(OPT · polylog n′). By restricting the number of queries to be close toOPT , an algorithm
cannot afford to learn the contents of all the sets, yet it is required to find a cover close to the optimal.

This formalization is also distinct from theonlineproblems addressed in [1, 2] where the sets are known
but the adversary chooses a set of the ground set for which a minimal cover must be computed. An adversary
chooses the elements one after the other and the online algorithm must maintain a cover of the elements
revealed upto a given stage. There is no apparent relationship between the two versions. In one case, the
initial sets are not known but the algorithm can choose the elements for hitting set queries whereas in the
online case, the sets are known but the adversary chooses theelements. Moreover, the number of queries is
also a measure of performance in the version considered here.

Our research is motivated by the problem of discovering the topologies of large networks such as the
Internet. For large networks such as the Internet which changes frequently, it is very difficult and costly
to obtain the topology accurately. Nevertheless, such information about the network is very useful - for
example, the robustness properties of the network or studying the routing aspects.

In order to create the topology of the network, one of the techniques used is to obtain local views of the
network from various locations and combine them to determine the topology of the network. One can view
this technique as an approach for discovering the topology of the network by some queries. Here, a query
corresponds to the local view of the network from one specificlocation. In the real world scenario, the cost
of answering a query is usually very high, so the objective ofthe network discovery problem is to find the
map of the network using a minimal number of queries.

Note that in the network discovery problem, we have to confirmthe existence and non-existence of an
edge between any pair of vertices. So, any query at a vertex should implicitly or explicitly confirm the
absence or presence of edges between some pair of vertices. TheLayered Graph Query ModelandDistance
Query Modelare the most widely studied query models.

Layered Graph Query Model: A query at a vertexv yields the set of all edges on shortest paths from the
vertexv to any other vertex reachable fromv in the graph. More specifically, we obtain information about
an edge(x, y), iff d(v, x) andd(v, y) are consecutive whered(v, x) is the level ofx (from v, see Figure 1).

Distance Query Model: A query at a vertexv yields the distances ofv to every vertex of the graph,i.e.
a query at a vertexv returns a vector~v, where theith component indicate the distance toith vertex from
vertexv. It is easy to see that it is a weaker query model as compared toLayered Graph Query Model. In the
Distance Query Model, an edge may be discovered by a combination of queries as illustrated in Figure 2. In
the example shown in Fig 2, query at vertex1 discovers the non-edges{(1, 4), (1, 5), (1, 6), (2, 6), (3, 6)}
and edges{(1, 2), (1, 3)}. A query at vertex6 discovers the non-edges
{(1, 4), (1, 5), (1, 6), (2, 6), (3, 6), (4, 2), (5, 2), (3, 2)} and edges{(3, 1), (1, 2), (6, 4), (6, 5)}. Combining
these two queries, we discover the edges(5, 3) and (4, 3). In the off-line version of network discovery
problem, the network is initially known to the algorithm. Unlike the online problem, here the goal is to
compute a minimum number of queries that suffice to discover the network. Given a network, we can verify
whether what we have been given is the correct information. Thus, we refer to the off-line version of network
discovery problem asnetwork verification.

1.1 Prior work in network discovery

Bejerano and Rastogi [5] studied the problem of verifying all edges of a graph with as few queries as possible
in a model similar to theLayered Graph Query Model. For a graph withn vertices, they give a set-cover
basedO(log n)-approximation algorithm and show that the problem is NP-hard. In contrast to Bejerano
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Figure 1: A query at a vertexv1 in the layer graph model (a) yields certificate for the edges in (b) and
non-edges in (c)
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Figure 2: The edges(5, 3) and(4, 3) of the graph (a) is discovered by the combination of queries at vertex1
in (b) and at vertex6 in (c) in the distance query model - the distances are depicted via layers of the graph.
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and Rastogi, we are interested in verifying (or discovering) both the edges and the non-edges of a graph. It
turns out that the network verification problem was considered as a problem of placing landmarks in graphs
[13]. The problem was shown to be NP-complete and anO(log n)-approximation algorithm was presented.
Beerliova et al. [3] proved anΩ(log n) lower bound on the approximation factor for any polynomial time
algorithm for the network verification in theLayered Graph Query ModelunlessP = NP .

In the online version of the problem, the network (graph) is unknown to thealgorithm. To decide the
next query, the algorithm can only use the knowledge about the network it has gained from the answers of
previously asked queries. Thus, the difficulty in selectinggood queries arises from the fact that we only
have the partial information about the network.

For the network discovery problem, Beerliova et al.[4] haveshown anΩ(
√
n) lower bound on the com-

petitive ratio of any deterministic online algorithm and anΩ(log n) lower bound for any randomized al-
gorithm for theDistance Query Model. The best known algorithm in theDistance Query Modelis a ran-
domized online algorithm which isO(

√
n log n)-competitive [4]. In contrast, for theLayered Graph Query

Model, Beerliova et al.[4] have shown that no deterministic online algorithm can be(3− ε) competitive for
anyε > 0. The best known algorithm in this model before this work is anO(

√
n log n)-competitive online

randomized algorithm [4] that leaves an exponential gap between the best known lower and upper bounds
for theLayered Graph Query Model.

In this paper, we present a randomized Monte Carlo online algorithm with a competitive ratioO(log2 n)
for theLayered Graph Query Modelthereby nearly closing this exponential gap.

1.2 Our results and techniques

The network verification problem can be solved by reducing itto an appropriate instance of the set-cover
problem (or hitting set problem). Hence, we obtain anO(log n) approximation algorithm for the network
verification problem which is the best that we can hope to do unlessP = NP . In the online network
discovery problem, we do not know the grapha priori and hence the above reduction cannot be used directly.
In particular, the sets are not known explicitly, so we first develop an algorithm for solving the covert version
of the set-cover problem using queries.

We present an algorithm that computes a set-cover of size at mostO(log(m′+n′) ·OPT ) using at most
O(log2(m′ + n′) · OPT ) queries with high probability. Using this, we obtain anO(log2 n)-competitive
Monte Carlo randomized algorithm for the network discoveryproblem in theLayered Graph Query Model.
This is a significant improvement from the previously best knownO(

√
n log n)-competitive algorithm ([3]).

Our algorithm for the set-cover simulates the greedy set-cover algorithm without any information about
the contents of any of the sets initially. We use estimation using random sampling to choose the (near) largest
cardinality set which is the basis of the greedy algorithm. We have to compensate for the inaccuracies in
sampling by using a more careful amortization argument for proving the approximation factor. The greedy
algorithm is modified to run inO(log(n′ +m′) rounds instead of the conventionalOPT · log n′ stages.

2 Preliminaries

Let G = (V,E) be a connected, undirected, unweighted graph representinga network ofn vertices. For
two distinct nodesu, v ∈ V , we say that(u, v) is an edge if(u, v) ∈ E and non-edges if(u, v) /∈ E. The
set of non-edges inG is denoted byE.

We assume that the setV of nodes is known in advance and it is the presence or absence of edges that
need to be discovered or verified. A query at nodev is denoted byquery(v).
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We say that aquery(v) certifies (u, v) if by using the answers to thequery(v), one can confirm the
presence or absence of the edge(u, v) in the graph,i.e. query(v) implicitly or explicitly confirms whether
(u, v) ∈ E or (u, v) ∈ E. We associate two sets with eachquery(v) as follows. For a given vertex
v ∈ V , let Qv denotes the set of all(u, v) ∈ V × V such thatquery(v) certifies (u, v) . For a given
(u, v) ∈ V × V , let H(u,v) denote the set of all verticesv such thatquery(v)certifies (u, v) . The two
definitions can be considered duals of each other.

Qv = {(u, v) ∈ V × V | query(v) certifies (u, v)} ∀v ∈ V

H(u,v) = {v ∈ V | query(v) certifies (u, v)}∀(u, v) ∈ V × V.

The above formulation of the network discovery problem can be reduced to theset-coverproblem in which
given a collection of setsQv of E ∪ E, the goal is to find a (minimum size) subsetV ′ ⊂ V such that
∪v∈V ′Qv = E ∪ E. Therefore, querying the vertices of the set-cover will certify all the edges and non-
edges that can be used to discover the network.

In the relatedhitting-setproblem, given a collection of setsH(u,v) of V , the goal is to find a (minimum
size) subsetV ′ ⊂ V such that for any given setH(u,v), there exists a vertexv′ ∈ V ′ such thatv′ ∈ H(u,v).
It may be noted that the (offline) hitting-set problem is often solved by reducing it to the corresponding
set-cover problem.

In the offline verification problem, given any query model, one can find the above sets exactly as the
graph is known. So the network verification problem can be solved by reducing it to the corresponding set-
cover problem (or hitting set problem). Hence, we get anO(log n) competitive algorithm for the network
verification problem. As mentioned earlier this is the best that we can hope to do for this problem unless
P = NP .

In the online network discovery problem, since we do not knowthe grapha priori, we cannot compute
the above sets explicitly without querying all the vertices2 To circumvent this problem, we develop an
algorithm for approximating the set-cover using the related hitting-set queries. It can be easily seen (c.f.
Section 6), that thatH(u,v) can be obtained fromQu andQv in the context of the network discovery problem.

3 Approximating set-cover from ε-net

Clarkson [12] presented an elegant algorithm for set cover for geometric problems with bounded VC di-
mension (see [10] for a survey of such results) based onweightedε-net. His algorithm is based on random
sampling (weighted) and a procedure to verify if a family of subsets is indeed a set cover. Notice that in
our context|C| queries suffice to perform this verification whereC is the claimed set cover. Intuitively, if
an element is covered byΩ(ε) fraction of the sets, then it will be covered by theε-net. For the remain-
ing elements, the algorithms successively boosts the probability of being covered by a clever reweighting
technique. The origins of this method goes back to Clarkson [7].

If a set has weightw and the sum of weights of all the sets isW , then the set is sampled with probability
w
W . The algorithm repeatedly picks a random sample where in each new iteration, the weights are modified
until we obtain a set cover. The algorithm assumes that the size of the optimal set coverOPT is known and
fixesε = 1

αk wherek = |OPT |. The algorithm can be summarized as follows
It is known that with high probability, the above algorithm converges inO(k log(m/k) iterations ([12]).

Since |OPT | is not known initially, we can use the doubling technique to guess|OPT | within a factor

2While this may be necessary for some graphs like the completegraphs, in general this will lead to poor competitive ratio.
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Algorithm 1 Set cover using weighted ε-net
Initially assign every set a unit weight. Initialize setcoverC = φ.
while C is not a coverdo

1: Pick a weightedε-netE of sizeO(1/ε · logm′).
2: If E is a set-cover then reportE.
3: Else, it misses at least one element, sayx. Let Sx be the family of all sets that contain the elementx

and double the weights of all sets inSx.

2 by beginning withk0 = 1 and ki+1 = 2ki as thei-th guess. Each iteration of the algorithm takes
O(ki logm

′) queries, so the total number of queries isO(k2i log
2 m′). Note that it takesO(ki) queries to

verify a set cover. This yields a grand total of
∑log |OPT |

i=0 O(22i log2 m) = O(|OPT |2 log2 m) queries.
This has competitive ratio roughly|OPT | log2 m, so that for|OPT | ≤ Õ(

√
m′), the competitive ratio is

about
√
m′. For |OPT | ≥

√
m′/ log2 m′, the competitive ratio is clearlỹO(

√
m′) asm′ queries trivially

suffices. Therefore, by using this algorithm for network discovery in the layered graph model, we can match
the algorithm of Beerliova et al. [3].

4 A near-optimal algorithm

In the conventional greedy set-cover algorithm, we choose asetsmax that covers the maximum number of
uncovered elements, saynmax, and add it to the cover. This leads to alog n′ approximation. Instead, if we
choose any set that covers at least half ofnmax uncovered elements, then it gives a2 log n′ approximation.
Recall thatn′,m′ denote the number of elements and the number of sets respectively. More generally, if we
choose a set that cover at least1

c′nmax elements, then we obtain ac′ log n′ approximation. We consider a
version of thisRelaxed Greedy-Set-Cover(RGSC) where we repeat the following in stages1, 2, . . . log n′.
At any stage we identify all the sets that contain at least1

2nmax uncovered elements. We can consider the
sets of in an arbitrary, but fixed orderingO and include those sets that contribute at least1

2nmax uncovered
elements by deleting elements that have been already covered by sets chosen earlier. Note that the sets that
will be included will depend onO - however, at the end of this stage, there will not be any set that contains
nmax/2 or more uncovered elements. Since any such orderingO corresponds to a valid run ofRGSC, this
will yield a 2 log n′ approximation guarantee - see Appendix for a formal proof.

Our algorithm is based around simulating this approach, where we try to estimate the value ofnmax

indirectly using random sampling. In roundi, 3 we check fornmax ∈ [ n′

2i−1 ,
n′

2i−2 ] by choosing a random
set of uncovered elements of an appropriate size. Using hitting set queries, we find the sets containing these
randomly chosen elements. We choose an appropriate number of uncovered elements that will hit the sets
having n′

2i−2 elements with high probability. We consider the sets in a fixed order and if a set contains more
than at least a threshold number of randomly picked elements, then we include the set in the set-cover.
Because of the estimation using random sampling, we lose a factor c′ > 2 in the underlying RGSC as we
may choose some sets which contain fewer thannmax/2 uncovered elements (but at leastnmax

c′ ).
Algorithm Pseudo Greedy described below, selects all sets containing at leastnmax/2 uncovered el-

ements and discards the sets containing less than1
c′nmax uncovered elements for4 < c′ < 8 with high

probability.

3the notationnmax will refer to the maximum in the current roundi.
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We assume that the sets are numbered in some canonical order.In the specific application of the net-
work discovery problem, this ordering is implicit ({v1, v2, . . . vn}, this induces a canonical ordering on the
collectionQv of sets). In the general setting, we assume that such an ordering exits or it can be easily
computed.

In Algorithm 2, N denotes the cardinality of the ground set plus the number sets in the given family
(N = n′ + m′). In the case of Network Discovery problem,N = O(|V |2). In roundi, we try to identify
the sets containing at leastn

′

2i+1 uncovered elements.

Algorithm 2 Pseudo-Greedy
Initialize set coverC = {}.
for i = 0, 1 . . . do

1: Let ni be the number of elements left in this round andsi = min{n′

2i
, ni}. Choose a random sampleRi

of size(4αni/si) logN .
Comment: α is a constant whose value will be determined in the analysis.

2: If si ≤ α logN then solve the hitting set problem directly using at mostni hitting set queries and run
the explicit greedy set-cover algorithm.

3: Else (ifsi > α logN ), letSi be the sets that contain more thanα logN sampled elements.
If Si is empty, incrementi and go to step 1.

4: ProcessSi = {X1,X2, . . .} in some predefined order until all sets are exhausted.

(i) LetRj be the union of elements ofRi that are contained in the sets chosen amongX1,X2, . . . Xj .

(ii) C = C ∪Xj+1 if
|Xj+1 ∩ (Ri \Rj)| ≥ α logN

(else discardXj+1.

(iii) UpdateRj toRj+1. using set queries.

5: Update the elements covered by the sets chosen in this round using set queries.

5 Analysis

We begin with a rough intuition behind the previous algorithm. If the largest set has sizen′/t then the
minimum number of sets in any set cover isΩ(t). Therefore we can afford to query a sample of size
approximatelyO(t · polylog n′) elements without blowing up the competitive ratio. In this context note
that a uniform random sample of sizeO(t · polylog n′) will have θ(polylogn′) elements common with a
set of sizen′/t with high probability. However, if there areΩ(t) sets of sizeO(n′/t), we cannot afford to
sample repeatedly for finding these sets. The above observations form the crux of the analysis that are now
formalized.

Lemma 5.1 In roundi, in Step 3, the following holds with high probability
(i) If a setT contains at leastsi/2 elements then with high probability it will have at leastα logN sampled
elements.
(ii) Any setT chosen in Step 3 will contain at least1c′ si elements for4 < c′ < 8 with high probability.

7



Proof. Let T be a set wherem ≥ |T | ≥ m/2. Suppose we sample every element independently with
probabilityp. The expected number of sampled elementsY is such thatmp ≥ Y ≥ mp/2. From Chernoff
bounds,

Pr[(1 + ε)mp ≥ Y ≥ (1− ε)mp/2] ≥ 1− 2e−mpε2/4

Choosingε = 1/2, we get
Pr[3/2mp ≥ Y ≥ mp/4] ≥ 1− 2e−mp/16

In roundi, each element is picked independently with probability(4α/si) logN , therefore, the expected
number of hits in a set of sizem is (4mα/si) logN . From Chernoff bounds, by substitutingm = si,

Pr[6α logN ≥ Y ≥ α logN ] ≥ 1− 2e−α/4 logN = 1− 2/Nα/4

Since the number of suchT is less thanN , the algorithm picks all sets containing at leastsi/2 uncovered
elements with high probability. On the other hand,T be any set chosen in Step 3 of the algorithm. Then, by
applying Chernoff bound, we get,

Pr[T < si/c
′] ≤ e−(c′−2)α/8 logN = 1/N (c′−2)α/8

for all 4 < c′ < 8.

Lemma 5.2 If round i takesO(ni

si
· f(N)) queries, then the set-cover can be found usingO(ng · f(N))

queries whereng is the size of the set-cover returned by the underlying RGSC Algorithm.

Proof.
In roundi, we include all those sets in the cover that covers at leastsi/2 additional elements. In round

i, let us distribute the cost uniformly to the remaining elements, i.e., each of theni elements is charged
O(f(N)/si). If an element is covered by a set chosen in roundi then it is not charged in the subsequent

rounds. So the total cost over all the rounds for elementx isC(x) ≤ f(N)·
(

1
|s(x)| +

1
si
+ 1

2si
+ 1

4si
+ . . .

)

≤
3c′ f(N)

|s(x)| wheres(x) is the set thatfirst covers elementx andsi/c′ ≤ |s(x)| ≤ si. The constantc′ refers to
the constant in the previous lemma. Therefore

∑

x

C(x) ≤ f(N)
∑

x

3c′

|s(x)| = 3c′f(N) ·
∑

S∈C

∑

x:s(x)=S

1

|s(x)|

The summation represents the cost of the underlyingRGSCalgorithm and therefore, it is bounded by
3c′f(N) · ng (see Lemma 7.1 in the Appendix).
Note that the underlyingRGSCalgorithm is ac′ logN approximation to the set-cover.

Theorem 5.3 Algorithm 2 returns a set-cover of size at mostO(logN · OPT ) using at mostO(log2N ·
OPT ) queries with high probability.

Proof. In our algorithm,f(N) is O(logN) and the maximum number of iterations isO(logN). When
si < α logN , we solve the problem directly using at mostni hitting set queries, and explicitly run the
greedy set-cover. Since the largest set has sizen′/2i, the size of the optimal cover is at leastΩ(n′/ logN)
and therefore, the number of queries isO(logN · OPT ). In order to prove the theorem, we will show
that the bound onng in Lemma 5.2 isO(logN · OPT ). So, we must establish that the setsshortlistedin

8



Step 3 of the Algorithm and finally included in the cover in Step 4 are only those sets (on the basis of their
estimates) that covers at leastsi/c

′ uncovered elements. In particular, we must guard against oversampling
of the uncovered elements of any setat the time it is considered for inclusion in a given round. Even though
the sets were appropriately sampled in Step 3, at the time of its consideration in Step 4(ii), the sampling of
the remaining part must be accurate enough that may necessitate arguing about an exponential number of
possibilities depending on the order of its inclusion.

To avoid this, let us assume that we consider the sets ofSi in increasing order of their indices Let
X1,X2 . . . be the sets ofSi in this canonical ordering that contain at leastsi/c

′ elements. Now consider
a hypothetical orderingO of the elements based on this ordering of the sets. Namely, all elements ofXi

are numbered smaller thanXi+1 and the numbering within a set is arbitrary. For example, allthe elements
in X1 \ X2 are numbered beforeX1 ∩ X2 and elements ofX2 \X1 come last. Suppose the elements are
sampled according toO. We defineX ′

i as all the uncovered elements inXi afterX1,X2, . . . Xi−1 have been
considered and (hypothetically) sample the elements inX ′

i according toO.
We considerX ′

i to beunder-sampledif |X ′
i| ≥ si but the number of sampled elements intersectingX ′

i

(not includingXi \X ′
i) is less thanα log n. We analogously defineoversamplingfor X ′

i.
We say that a bad event has occurred in roundj, if any of the setsX ′

i is under-sampled or oversampled
and let the complement of this event beZi. From Lemma 5.1, we can bound the probability of under
sampling and over sampling such thatPr[Zi] ≥ 1 − 3/N (α/4)−1 (by choosingc′ > 4). LetAi be the event
that no under-sampling or oversampling occurs forX ′

1,X
′
2 . . . X

′
i. Then,

Pr[Ai] = Pr[Ai−1

⋂

Zi] = Pr[Zi|Ai−1] · Pr[Ai−1]

Therefore,

Pr[Ai] ≥ Pr[Ai−1] · (1− 3/N (α/4)−1) ≥
(

1− 2/Nα/4−1
)i

for i ≤ N

By choosing sufficiently largeα this is at least1− 1/N2. Since this holds for allj ≤ O(logN) rounds,
this also bounds the failure probability of our algorithm.

Remarks: (i) The bounds do not depend onO and holds for any parallel sampling method.
(ii) We say that the algorithmfails if in any of rounds, it does not pick all sets containing at least si/2
uncovered elements or picks any set containing less thansi/c

′ uncovered elements. The sizes of sets that
will be chosen will satisfy the the above mentioned bounds with high probability; otherwise, the algorithm
will be deemed to have failed. Note that the bound of Lemma 5.2also holds with the same probability. Since
we do not verify these properties, we obtain a Monte Carlo algorithm.
(iii) A deterministic algorithm picks all the sets of size atleastsi/2, and while our randomized algorithm
chooses all sets of size at leastsi/2, it may pick some sets which are little smaller (but greater thansi/c′).

6 Network Discovery

The off-line problem of network verification can be reduced to a set-cover problem. In the online version, we
do not want to compute the sets explicitly since this will lead to a poor competitive ratio in many situations.
So we solve the problem by using hitting-set queries as described in the previous section that gives us an
estimate of the set sizes. In our setting, the hitting-set problem is defined on the setsH(u,v) and the set-cover
problem on the setsQv. During any stage, random sampling is done on the set of unresolved edges to obtain
estimates ofQv by queryingQxy where(x, y) is a sampled edge.

9



Recall that inLayered Graph Query Model, a query at a vertexv yields the set of all edges on shortest
paths betweenv and any other vertex. Now, we observe that this query model isequivalent to the model
in which a query at vertexv yields all edges and non-edges between vertices of different distances fromv.
Note that an edge connects two vertices of different distance fromv if and only if it lies on a shortest path
betweenv and one of these two vertices. The shortest path rooted atv implicitly confirms the absence of all
edges between vertices of different distance fromv. So given an edge or non-edge whose status is not yet
resolved, say(v, u), we query both the end pointsv andu to determine the distances of all nodes tou and
v. From this we can deduce the setH(u,v) of nodes from which the edge or non-edge betweenu andv can
be discovered:H(u,v) = {x ∈ V |d(u, x) 6= d(v, x) d(s, x) = distance froms to x}

Algorithm Pseudo Greedy described in the previous section above translates to the following in the
context of the network discovery problem. Randomly pick a undiscovered edge and query the setH(u,v).
Let n be the number of vertices in the graph and letQ denote the query set- this is the (approximately
minimal) set of vertices which will be used to discover the network. If v is contained in at leastα log n of
the queried sets, includev in the set-coverQ. Actually, like the general set-cover problem, it is a two stage
process where we first shortlist and then subsequently run through this list in some predefined ordering, say
according to the labels of the vertices. As before, we solve the set-cover problem onQv using a sequence of
H(u,v) hitting set queries. The reader can easily work out the details that we omit to avoid repetition.

In the following algorithmN = O(n2). The algorithm takesO(log n) stages and in each stage we
makeO(log n · OPT ) queries, whereOPT is the optimum number of queries required to solve the network
verification problem. Since this is also optimum for the online problem, AlgorithmNetwork Discovery
makesO(log2 n·OPT ) queries. The algorithm yields a setO(log n·OPT )Qv queries that suffices to discover
the given network. Therefore the overall number of queries for the online discovery is stillO(log2 n · OPT ).

Algorithm 3 Network Discovery
for i = 0, 1 . . . do

1: Let ni be the number of edges and non-edges which needs to be discovered andsi = min{(
n

2)
2i

, ni}.
Choose a random sample ofRi of size(4αni/si) logN .

2: If si ≤ α logN then findH(u,v) for each of the undiscovered edge/non-edge and solve the network
discovery problem by reducing it explicitly to the set-cover problem.

3: If si > α logN , for each sampled edge/non-edge(u, v), find the setH(u,v).
4: Consider the vertices{v1, v2, . . .} in this order and includevj in Q (Qvj is in the set-cover) only if

Qvj contains more thanα logN sampled edge/non-edge. (vj ∈ H(u,v) for at leastα logN of the
(u, v) ∈ Ri).
(The actual implementation of this is similar to Steps 3-4 ofthe AlgorithmPseudo Greedy.)

From our earlier analysis of the covert set-cover problem itfollows that

Theorem 6.1 There is aO(log2 n)-competitive randomized Monte Carlo algorithm for the network discov-
ery problem in the Layered Graph Query Model.

Remark Even if we restrict the query model to return a Layered graph of some bounded depth (that may
not correspond to the entire graph), the reduction to covertset cover problem is analogous by modifying the
definition of the sets and we obtain the same competitive ratio.
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7 Conclusion and open problem

The algorithm described in the last section gave aO(log2 n) algorithm for the network discovery problem –
Can we improve this toO(log n) ? We can consider a weighted version of the network discoveryproblem,
where each query at a vertex costs saywv, it is not clear whether we can extend our approach to solve the
weighted version of the problem.

We note that in theDistance Query Model, by querying bothv andu, we can discover ifu or v is
a edge or non-edge. If it is a non-edge, then we can find the setH(u,v) – a vertexw is in this set if
d(u,w) − d(v,w) ≥ 2. But if (u, v) is an edge, then we can not find the setH(u,v). It is not clear how to
determine thepartial witnesses, using set-cover queries as before. Therefore, it remains open if we can we
improve the knownO(

√

n log n) bound for network discovery problem toO(poly(log n)) approximation
randomized algorithm in theDistance Query Model?
Acknowledgement The first author is thankful to Rajeev Raman and Thomas Erlebach for introducing him
to the problem and subsequent technical discussions.
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Appendix A

Chernoff bounds
If a random variableX is the sum ofn iid Bernoulli trials with a success probability ofp in each trial, the

following equations give us concentration bounds of deviation of X from the expected value ofnp. These
are useful for small deviations from a large expected value.

Prob(X ≤ (1− ǫ)pn) ≤ exp(−ǫ2np/2) (1)

Prob(X ≥ (1 + ǫ)np) ≤ exp(−ǫ2np/4) (2)

for all 0 < ǫ < 1.
Greedy set-cover

For completeness, we also sketch the proof of approximationfactor ofRGSC(θ) for θ < 1, such that
at any step, the size of the set chosen is at leastθ · nmax.

Let us number the elements ofS in the order they were covered by the greedy algorithm (wlog,we
can renumber such that they arex1, x2 . . .). We will apportion the cost of covering an elemente ∈ S as
w(e) = 1

U\V wheree is covered for the first time byU andV is set of elements covered till then. This is
also called thecost-effectivenessof setU . The total cost of the cover is

∑

U

∑

e∈n(U)

1

|n(U)|

wheren(U) is subset of uncovered elements inU whenU was chosen ande is covered for the first time.
This can be rewritten as

∑

iw(xi).

Lemma 7.1

w(xi) ≤
Co/θ

n− i+ 1

whereCo is the number of sets in the optimum cover.

In the iteration whenxi is covered for the first time, the number of uncovered elements is≥ n−i+1. The
pure greedy choice is more cost effective than any left over set of the optimal cover. SupposeSi1 , Si2 . . . Sik

are the unselected sets of the minimum set-cover. Then, at least one of them has a cost-effectiveness of
≤ k

n−i+1 ≤ Co

n−i+1 . It follows that the set chosen byRGSC(θ) achieves a cost-effectiveness ofCo

(n−i+1)θ .

Sow(xi) ≤ Co/θ
n−i+1 .

Thus the cost of the greedy cover is
∑

i
Co/θ
n−i+1 which is bounded byCo/θ ·Hn. HereHn = 1

n + 1
n−1 +

. . . 1.
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