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Abstract. We study the recently introducedConnected Feedback Vertex Set (CFVS)
problem from the view-point of parameterized algorithms. CFVS is the connected variant of
the classical Feedback Vertex Set problem and is defined as follows: given a graph G =
(V,E) and an integer k, decide whether there exists F ⊆ V , |F | ≤ k, such that G[V \ F ] is
a forest and G[F ] is connected. We show that Connected Feedback Vertex Set can be

solved in time O(2O(k)nO(1)) on general graphs and in time O(2O(
√

k log k)nO(1)) on graphs
excluding a fixed graph H as a minor. Our result on general undirected graphs uses as
subroutine, a parameterized algorithm for Group Steiner Tree, a well studied variant
of Steiner Tree. We find the algorithm for Group Steiner Tree of independent in-
terest and believe that it will be useful for obtaining parameterized algorithms for other
connectivity problems.

1 Introduction

Feedback Vertex Set (FVS) is a classical NP-complete problem and has been exten-
sively studied in all subfields of algorithms and complexity. In this problem we are given
an undirected graph G = (V,E) and a positive integer k as input, and the goal is to check
whether there exists a subset F ⊆ V of size at most k such that G[V \ F ] is a forest.
This problem originated in combinatorial circuit design and found its way into diverse
applications such as deadlock prevention in operating systems, constraint satisfaction and
Bayesian inference in artificial intelligence. We refer to the survey by Festa, Pardalos
and Resende [14] for further details on the algorithmic study of feedback set problems
in a variety of areas like approximation algorithms, linear programming and polyhedral
combinatorics.

In this paper we focus on the recently introduced connected variant of Feedback
Vertex Set, namely, Connected Feedback Vertex Set (CFVS). Here, given a
graph G = (V,E) and a positive integer k, the objective is to check whether there exists a
vertex-subset F of size at most k such that G[V \F ] is a forest and G[F ] is connected. Sit-
ters and Grigoriev [32] recently introduced this problem and obtained a polynomial time
approximation scheme (PTAS) for CFVS on planar graphs. We find it a bit surprising
that the connected version of FVS was not considered in the literature until now. This is
in complete contrast to the fact that the connected variant of other problems like Vertex
Cover—Connected Vertex Cover [13, 18, 23, 27], Dominating Set—Connected
Dominating Set [16, 20, 21, 25] are extremely well studied in the literature. In this pa-
per, we continue the algorithmic study of CFVS from the view-point of parameterized
algorithms.

Parameterized complexity is a two-dimensional generalization of “P vs. NP” where, in
addition to the overall input size n, one studies how a secondary measurement that cap-
tures additional relevant information affects the computational complexity of the problem

http://arxiv.org/abs/0909.3180v1


in question. Parameterized decision problems are defined by specifying the input, the pa-
rameter and the question to be answered. The two-dimensional analogue of the class P
is decidability within a time bound of f(k)nc, where n is the total input size, k is the
parameter, f is some computable function and c is a constant that does not depend on
k or n. A parameterized problem that can be decided in such a time-bound is termed
fixed-parameter tractable (FPT). For general background on the theory see the textbooks
by Downey and Fellows [12], Flum and Grohe [15] and Niedermeier [29].

FVS has been extensively studied in parameterized algorithms. The earliest known
FPT-algorithms for FVS go back to the late 80’s and the early 90’s [2, 11] and used the
seminal Graph Minor Theory of Robertson and Seymour (for an overview, see [26]). Ra-
man et al. [30] designed an algorithm with run-time O(2O(k log log k)nO(1)) which basically
branched on short cycles in a bounded search tree approach. Subsequently, several al-
gorithms for FVS with run-time O(2O(k)nO(1)) were designed using a technique known
as iterative compression. After several rounds of improvements, the current best FPT-
algorithm for FVS runs in time O(5kkn2) [5].

We show that CFVS can be solved in time O(2O(k)nO(1)) on general graphs and in time

O(2O(
√
k log k)nO(1)) on graphs excluding a fixed graph H as a minor. Most of the known

FPT-algorithms for connectivity problems enumerate all minimal solutions and then try to
connect each solution using an algorithm for the Steiner Tree problem. This is the case
with the existing FPT-algorithms for Connected Vertex Cover [23, 27]. The crucial
observation which the algorithms for Connected Vertex Cover rely on is that there
are at most 2k minimal vertex covers of size at most k. However, this approach fails for
CFVS as the number of minimal feedback vertex sets of size at most k is Ω(nk) (consider
a graph that is a collection of k vertex-disjoint cycles each of length approximately n/k).
To circumvent this problem, we make use of “compact representations” of feedback vertex
sets. A compact representation is simply a collection of families of mutually disjoint sets,
where each family represents a number of different feedback vertex sets. This notion was
defined by Guo et al. [22] who showed that the set of all minimal feedback vertex sets of
size at most k can be represented by a collection of set-families of size O(2O(k)).

We use compact representations to obtain an FPT-algorithm for CFVS in Section 3.
But in order to do that we need an FPT-algorithm for a general version of Steiner Tree,
namely Group Steiner Tree (GST), which is defined as follows. Given a graph G =
(V,E), subsets Ti ⊆ V , 1 ≤ i ≤ l, and an integer p, does there exist a subgraph of G on p
vertices that is a tree T and includes at least one vertex from each Ti. Observe that when
the Ti’s are each of size one then GST is the Steiner Tree problem.

We find it mildly surprising that GST can be solved in time O(2lnO(1)) using polyno-
mial space just as Steiner Tree because this is in sharp contrast to their behaviour in
terms of approximability. While Steiner Tree admits a 1.55-factor approximation al-
gorithm [31], GST is as hard as Set Cover [19] and hence has an Ω(log n) lower bound
on the approximation factor [1]. Our FPT-algorithm for GST uses a Turing-reduction to
a directed version of Steiner Tree, called Directed Steiner Out-Tree, which we
first show to be fixed-parameter tractable. We note that GST is known to be of interest
to database theorists, and it has has been studied in [9], where an algorithm with runtime
O(3l · n+ 2l · (n+m)) (that uses exponential space) is discussed.

We also note that CFVS does not admit a polynomial kernel on general graphs but has
a quadratic kernel on the class of graphs that exclude a fixed graph H as minor. Finally, in
Section 4 we design a subexponential time algorithm for CFVS on graphs excluding some
fixed graph H as a minor using the theory of bidimensionality. This algorithm is obtained



using an O∗(wO(w))-algorithm that computes an optimal connected feedback vertex set
in graph of treewidth at most w.

2 Preliminaries

This section contains some basic definitions related to parameterized complexity and
graph theory as well as commentary on the notation used in this paper. To describe
running times of algorithms we sometimes use the O∗ notation. Given f : N → N, we
define O∗(f(n)) to be O(f(n) · p(n)), where p(·) is some polynomial function. That is,
the O∗ notation suppresses polynomial factors in the running-time expression.

A parameterized problem Π is a subset of Γ ∗ × N, where Γ is a finite alphabet. An
instance of a parameterized problem is a tuple (x, k), where k is called the parameter.
A central notion in parameterized complexity is fixed-parameter tractability (FPT) which
means, for a given instance (x, k), decidability in time f(k) ·p(|x|), where f is an arbitrary
function of k and p is a polynomial in the input size. The notion of kernelization is formally
defined as follows.

Definition 1. [Kernelization] A kernelization algorithm, or in short, a kernel for a
parameterized problem Π ⊆ Γ ∗ ×N is an algorithm that given (x, k) ∈ Γ ∗ ×N outputs in
time polynomial in |x|+ k a pair (x′, k′) ∈ Γ ∗ ×N such that (a) (x, k) ∈ Π if and only if
(x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function. The function g
is referred to as the size of the kernel. If g(k) = kO(1) or g(k) = O(k) then we say that Π
admits a polynomial kernel and linear kernel respectively.

We say that a graph G (undirected or directed) contains a graph H if H is a subgraph
of G. Given a directed graph (digraph) D = (V,A), we let V (D) and A(D) denote the
vertex and arc set of D, respectively. A vertex u ∈ V (D) is an in-neighbor (out-neighbor)
of v ∈ V (D) if uv ∈ A (vu ∈ A, respectively). The in- and out-neighborhood of a
vertex v are denoted by N−(v) and N+(v), respectively. The in-degree d−(v) (resp. out-
degree d+(v)) of a vertex v is |N−(v)| (resp. |N+(v)|). We say that a subdigraph T of D
with vertex set VT ⊆ V (D) is an out-tree if T is an oriented tree with only one vertex r
of in-degree zero (called the root). The vertices of T of out-degree zero are called leaves
and every other vertex is called an internal vertex.

3 Connected Feedback Vertex in General Graphs

In this section we give an FPT-algorithm for CFVS on general graphs. Recall the problem
definition.

Input: An undirected graph G = (V,E) and an integer k.

Parameter: The integer k.
Question: Does there exist S ⊆ V of size at most k such that G \ S is acyclic

and G[S] is connected?

We start by describing an FPT-algorithm for the Group Steiner Tree problem which
is crucially used in our algorithm for CFVS.



3.1 Group Steiner Tree

The Group Steiner Tree (GST) problem is defined as follows:

Input: An undirected graph G = (V,E); vertex-disjoint subsets S1, . . . , Sl ⊆ V ;
and an integer p.

Parameter: The integer l.
Question: Does G contain a tree on at most p vertices that includes at least one

vertex from each Si?

Our fixed-parameter algorithm for GST first reduces it toDirected Steiner Out-Tree
(defined below) which we then show to be fixed-parameter tractable.

Input: A directed graph D = (V,A); a distinguished vertex r ∈ V ; a set of
terminals S ⊆ V ; and an integer p.

Parameter: The integer l = |S|.
Question: Does D contain an out-tree on at most p vertices that is rooted at r and

that contains all the vertices of S?

Lemma 1. The GST problem Turing-reduces to the Directed Steiner Out-Tree
problem.

Proof. Given an instance (G = (V,E), S1, . . . , Sl, p) of GST, construct an instance of
Directed Steiner Out-Tree as follows. Let S = {s1, s2, . . . , sl} be a set of l new
vertices, that is, si /∈ V for 1 ≤ i ≤ l. Let V ′ = V ∪ S and A = {uv, vu : {u, v} ∈
E} ∪⋃l

i=1{xsi : x ∈ Si}. Finally, let D = (V ′, A). It is easy to see that G contains a tree
on at most p vertices that includes at least one vertex from each Si if and only if there
exists a vertex r ∈ V ′ and an out-tree in D rooted at r on at most p+ l vertices containing
all vertices of S. ⊓⊔

We now show that Directed Steiner Out-Tree is fixed-parameter tractable. The
algorithm outlined here is essentially the same as that for the Steiner Tree problem
due to Nederlof [28]. We give an outline for the sake of completeness. First recall the well-
known Inclusion-Exclusion (IE) formula. Let U be a finite universe and A1, . . . , Al ⊆ U .
Then
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Now note that if for all X ⊆ [l], one can evaluate |⋂i∈X Āi| in time polynomial in the input

size n, then one can evaluate |⋂l
i=1Ai| in time O(2l · nO(1)) and using space polynomial

in n.
Given a directed graph D = (V,A), define a branching walk B in D to be a pair (TB =

(VB , EB), φ), where TB is a rooted ordered out-tree and φ : VB → V is a homomorphism
from TB to D. The length of B, denoted by |B|, is |EB |. For a node s ∈ V , B is from s
if the root of TB is mapped to s by φ. We let φ(VB) denote {φ(u) : u ∈ VB} and φ(EB)
denote {(φ(u), φ(b)) : (a, b) ∈ EB}. Let (D, r, S, p) be an instance of the Directed
Steiner Tree problem. As in [28], one can show that there exists an out-tree T = (V ′, E′)
of D rooted at r such that S ⊆ V ′ and |V ′| ≤ p if and only if there exists a branching
walk B = (TB = (VB , EB), φ) from r such that S ⊆ φ(VB) and |B| ≤ p − 1. We now



frame the problem as an IE-formula. Let U be the set of all branching walks from r of
length p − 1. For each v ∈ S, let Av be the set of all elements of U that contain v.
Then |⋂v∈S Av| is the number of all branching walks that contain all the vertices of S
and this number is larger than zero if and only if the instance is a yes-instance.

For X ⊆ S define X ′ = X ∪ (V \ S), and define bXj (r) to be the number of branching

walks from r of length j in the graph G[X ′]. Then |⋂v∈X Āv| = b
S\X
c (r). Now bXj (r) can

be computed in polynomial time:

bXj (r) =







1 if j = 0;
∑

s∈N+(r)∩X′

∑

j1+j2=j−1

bXj1(s) · bXj2(r) otherwise.

The proof of this again follows from [28]. Now for each X ⊆ {1, . . . , l}, we can compute the
term |⋂v∈X Āv| in polynomial time and hence by identity (1), we can solve the problem

in time O(2l · nO(1)) using polynomial space.

Lemma 2. Directed Steiner Out-Tree can be solved in O(2l · nO(1)) time using
polynomial space.

Lemmas 1 and 2 together imply:

Lemma 3. The Group Steiner Tree problem can be solved in O(2l ·nO(1)) time using
polynomial space.

One can also solve theGroup Steiner Tree problem in time O(2p·nO(1)) by reducing
it to a weighted version of the Steiner Tree problem as done in [24] and then using the
polynomial-space algorithm of Nederlof for solving Steiner Tree [28]. We believe that
Directed Steiner Out-Tree problem will find various other applications similar to
the Steiner Tree problem.

3.2 An FPT-Algorithm for CFVS

Our FPT-algorithm for CFVS uses as subroutine an algorithm for enumerating an ef-
ficient representation of minimal feedback vertex sets of size at most k due to Guo et
al. [22]. Strictly speaking, the subroutine actually enumerates all compact representations
of minimal feedback sets. A compact representation for a set of minimal feedback sets of
a graph G = (V,E) is a set C of pairwise disjoint subsets of V such that choosing exactly
one vertex from every set in C results in a minimal feedback set for G. Call a compact
representation a k-compact representation if the number of sets in the representation is
at most k. Clearly, any connected feedback set of size at most k must necessarily pick
vertices from the sets of some k-compact representation. Given a graph G = (V,E) and a
k-compact representation S1, . . . , Sr, where r ≤ k, the problem of deciding whether there
exists a connected feedback vertex set with at least one vertex from each set Si reduces to
the Group Steiner Tree problem where the Steiner groups are the sets of the compact
representation.

Our algorithm therefore cycles through all k-compact representations and for each
such representation uses the algorithm for Group Steiner Tree to check if there is
a tree on at most k vertices that includes one vertex from each set Si of the compact
representation. If it fails to do this for all k-compact representations, it reports that the
given instance is a no-instance. If it succeeds on some compact representation, it reports
the solution. Since one can enumerate all compact representations in time O(ck ·m) [22]
we have:



Theorem 1. Given a graph G = (V,E) and an integer k, one can decide whether G has
a connected feedback set of size at most k in time O(ck · nO(1)), for some constant c.

Although CFVS is fixed-parameter tractable, it is unlikely to admit a polynomial
kernel as the following theorem shows. This is in contrast to Feedback Vertex Set
which admits a quadratic kernel [33].

Theorem 2. The CFVS problem does not admit a polynomial kernel unless the Polyno-
mial Hierarchy collapses to Σ3.

Proof. The proof follows from a polynomial-time parameter-preserving reduction from
Connected Vertex Cover, which does not admit a polynomial kernel unless the Poly-
nomial Hierarchy collapses to the third level [10]. This would prove that CFVS too does
not admit a polynomial kernel [4]. Given an instance (G = (V,E), k) of the Connected
Vertex Cover problem, construct a new graph G′ as follows: V (G′) = V (G) ∪ {xuv /∈
V (G) : {u, v} ∈ E(G)}; if {u, v} ∈ E(G) then add the edges {u, v}, {u, xuv}, {xuv , v}
to E(G′). This completes the construction of G′. It is easy to see that G has a connected
vertex cover of size at most k if and only if G′ has a connected feedback vertex set of size
at most k. This completes the proof of the theorem. ⊓⊔

Interestingly, the results from [17] imply that CFVS has polynomial kernel on a graph
class C which excludes a fixed graph H as a minor.

We note in passing that the algorithm for enumerating compact representations can
be improved using results from [6]. The authors of [6] describe a set of reduction rules such
that if a yes-instance of the Forest Bipartition problem (defined below) is reduced
with respect to this set of rules then the instance has size at most 5k + 1.

Forest Bipartition
Input: An undirected graph G = (V,E), possibly with multiple edges and loops

and a set S ⊆ V such that |S| = k + 1 and G \ S is acyclic.
Parameter: The integer k.
Question: Does G have a feedback vertex set of size at most k contained in V \S?

Thus in a yes-instance of Forest Bipartition that is reduced with respect to the rules
in [6], we have |V \ S| ≤ 4k. Using this bound in the algorithm described by Guo et
al. [22], one obtains a O∗(ck)-time algorithm for enumerating compact representations of
minimal feedback vertex sets of size at most k, where c = 52. The constant c in [22] is
more than 160.

Theorem 3. [6, 22] Given a graph G = (V,E) and an integer k, the compact represen-
tations of all minimal feedback vertex sets of G of size at most k can be enumerated in
time O(52k · |E|).

4 Subexponential Algorithm for CFVS on H-Minor-Free Graphs

In the last section, we obtained an O∗(ck) algorithm for CFVS on general graphs. In this
section we show that CFVS on the class of H-minor-free graphs admits a sub-exponential

time algorithm with run-time O(2O(
√
k log k)nO(1)). This section is divided into three parts.

In the first part we give essential definitions from topological graph theory, the second
part shows that CFVS can be solved in time O(wO(w)nO(1)) on graphs with treewidth
bounded by w. In the last part we give the desired algorithm for CFVS on H-minor-free
graphs by bounding the treewidth of the input graph using the known “grid theorems”.



4.1 Definitions and Terminology

Given an edge e in a graph G, the contraction of e is the result of identifying its endpoints
in G and then removing all loops and duplicate edges. A minor of a graph G is a graph H
that can be obtained from a subgraph of G by contracting edges. A graph class C is
minor-closed if any minor of any graph in C is also an element of C. A minor-closed graph
class C is H-minor-free or simply H-free if H /∈ C.

A tree decomposition of a graph G = (V,E) is a pair (T = (VT , ET ),X = {Xt}t∈VT
)

where T is a tree and the Xt are subsets of V such that:

1.
⋃

u∈VT
Xt = V ;

2. for each edge e = {u, v} ∈ E there exists t ∈ VT such that u, v ∈ Xt; and
3. for each vertex v ∈ V , the subgraph T [{t | v ∈ Xt}] is connected.
The width of a tree decomposition is maxt∈VT

|Xt| − 1 and the treewidth of G = (V,E) is
the minimum width over all tree decompositions of G.

A tree decomposition is called a nice tree decomposition if the following conditions are
satisfied:

– Every node of the tree T has at most two children;
– if a node t has two children t1 and t2, then Xt = Xt1 = Xt2 ; and
– if a node t has one child t1, then either |Xt| = |Xt1 |+1 and Xt1 ⊂ Xt or |Xt| = |Xt1 |−1

and Xt ⊂ Xt1 .

It is possible to transform a given tree decomposition into a nice tree decomposition in
time O(|V |+ |E|) [3].

4.2 Connected FVS and Treewidth

In this section we show that the Connected Feedback Vertex Set problem is FPT
with the treewidth of the input graph as the parameter. Specifically, we show that the
following problem is FPT:

Input: An undirected graph G = (V,E); an integer k; and a nice tree decom-
position of G of width w.

Parameter: The treewidth w of the graph G.
Question: Does there exist S ⊆ V such that G \ S is acyclic, G[S] is connected,

and |S| ≤ k?

We design a dynamic programming algorithm on the nice tree decomposition with
run-time O(wO(w) · nO(1)) for this problem. Let (T = (I, F ) , {Xi|i ∈ I}) be a nice tree
decomposition of the input graph G of width w and rooted at r ∈ I. We let Ti denote the
subtree of T rooted at i ∈ I, and Gi = (Vi, Ei) denote the subgraph of G induced on all
the vertices of G in the subtree Ti, that is, Gi = G[

⋃

j∈V (Ti)
Xj ].

For each node i ∈ I we compute a table Ai, the rows of which are 4-tuples [S,P, Y, val ].
Table Ai contains one row for each combination of the first three components which denote
the following:

– S is a subset of Xi.
– P is a partition of S into at most |S| labelled pieces.
– Y is a partition of Xi \ S into at most |Xi \ S| labelled pieces.



We use P (v) (resp. Y (v)) to denote the piece of the partition P (resp. Y ) that contains the
vertex v. We let |P | (resp. |Y |) denote the number of pieces in the partition P (resp. Y ).
The last component val , also denoted as Ai [S,P, Y ], is the size of a smallest feedback
vertex set Fi ⊆ V (Gi) of Gi which satisfies the following properties:

– If S = ∅, then Fi is connected in Gi.
– If S 6= ∅, then

• Fi ∩Xi = S.
• All vertices of S that are in any one piece of P are in a single connected component

of Gi[Fi]. Moreover Gi[Fi] has exactly |P | connected components.
• All vertices of Xi \ S that are in the same piece of Y are in a single connected

component (a tree) of Gi[Vi \ Fi]. Moreover Gi[Vi \ Fi] has at least |Y | connected
components.

If there is no such set Fi, then the last component of the row is set to ∞.
We fix an arbitrary ordering of the vertices of Xi, and compute the table Ai for each

node i ∈ I of the tree decomposition. Since there are at most w+1 vertices in each bag Xi,
there are no more than

w+1
∑

i=0

(

w + 1

i

)

ii · (w + 1− i)w+1−i ≤ (2w + 2)2w+2

rows in any table Ai. We compute the tables Ai starting from the leaf nodes of the tree
decomposition and going up to the root.

Leaf Nodes. Let i be a leaf node of the tree decomposition. We compute the table Ai as
follows. For each triple (S,P, Y ) where S is a subset of Xi, P a partition of S, and Y
a partition of Xi \ S:
– Set Ai [S,P, Y ] = ∞ if at least one of the following holds:

• Gi \ S contains a cycle (i.e., S is not an FVS of Gi).
• At least one piece of P is not connected in Gi[S] or if Gi[S] has less than |S|
connected components.

• At least one piece of Y is not connected in Gi[Vi \ S] or if Gi[Vi \ S] has less
than |Y | connected components.

– In all other cases, set Ai [S,P, Y ] = |S|.
It is easy to see that this computation correctly determines the last component of each
row of Ai for a leaf node i of the tree decomposition.

Introduce Nodes. Let i be an introduce node and j its unique child. Let x ∈ Xi \Xj

be the introduced vertex. For each triple (S,P, Y ), we compute the entry Ai[S,P, Y ]
as follows.

Case 1. x ∈ S. Check whether N(x) ∩ S ⊆ P (x); if not, set Ai[S,P, Y ] = ∞.

– Subcase 1. P (x) = {x}. Set Ai[S,P, Y ] = Aj [S \ {x}, P \ P (x), Y ] + 1.
– Subcase 2: |P (x)| ≥ 2 and N(x) ∩ P (x) = ∅. Set Ai[S,P, Y ] = ∞, as no extension

of S to an fvs for Gi can make P (x) connected.
– Subcase 3: |P (x)| ≥ 2 and N(x)∩P (x) 6= ∅. Let A be the set of all rows [S′, P ′, Y ]

of the table Aj that satisfy the following conditions:
• S′ = S \ {x}.
• P ′ = (P \P (x)) ∪Q, where Q is a partition of P (x) \ {x} such that each piece
of Q contains an element of N(x) ∩ P (x).



Set Ai[S,P, Y ] = minA{Aj [S
′, P ′, Y ]}+ 1.

Case 2. x /∈ S. Check whether N(x) ∩ (Xi \ S) ⊆ Y (x); if not, set Ai[S,P, Y ] = ∞.

– Subcase 1: Y (x) = {x}. Set Ai[S,P, Y ] = Aj [S,P, Y \ Y (x)].

– Subcase 2: |Y (x)| ≥ 2 and N(x) ∩ Y (x) = ∅. Set Ai[S,P, Y ] = ∞, as no extension
of S to an fvs Fi for Gi can make Y (x) a connected component in Gi[Vi \ Fi].

– Subcase 3: |Y (x)| ≥ 2 and N(x)∩ Y (x) 6= ∅. Let A be the set of all rows [S,P, Y ′]
of the table Aj where Y

′ = (Y \Y (x))∪Q, and Q is a partition of Y (x) \ {x} such
that each piece of Q contains exactly one element of N(x)∩Y (x). Set Ai[S,P, Y ] =
minA{Aj [S,P, Y

′]}.
Forget Nodes. Let i be a forget node and j its unique child node. Let x ∈ Xj \Xi be

the forgotten vertex. For each triple (S,P, Y ) in the table Ai, let A be the set of all
rows [S′, P ′, Y ] of the table Aj that satisfy the following conditions:

– S′ = S ∪ {x}, and
– P ′(x) = P (y) ∪ {x} for some y ∈ S.

Let B be the set of all rows [S,P, Y ′] of the table Aj such that Y ′(x) = Y (z)∪{x} for
some z ∈ S. Set

Ai[S,P, Y ] = min

{

min
A

Aj [S
′, P ′, Y ],min

B
Aj [S,P, Y

′]

}

.

Join Nodes. Let i be a join node and j and l its children. For each triple (S,P, Y ) we
compute Ai[S,P, Y ] as follows.

– Case 1. S = ∅. If both Aj [∅, P, Y ] and Al[∅, P, Y ] are positive finite, then set
Ai[∅, P, Y ] = ∞. Otherwise, set Ai[∅, P, Y ] = max{Aj [∅, P, Y ], Al[∅, P, Y ]}.

– Case 2. S 6= ∅. Let A denote the set of all pairs of triples 〈(S,P1, Y1), (S,P2, Y2)〉,
where (S,P1, Y1) ∈ Aj and (S,P2, Y2) ∈ Al with the following property: Starting
with the partitions Qp = P1 and Qy = Y1 and repeatedly applying the following
set of operations, we reach stable partitions that are identical to P and Y . The
first operation that we apply is:

If there exist vertices u, v ∈ S such that they are in different pieces of Qp

but are in the same piece of P2, delete Qp(u) and Qp(v) from Qp and
add Qp(u) ∪Qp(v).

To describe the second set of operations, we need some notation. Let Z = Xi \ S
and let the connected components of Gi[Z] be C1, . . . , Cq. First contract each
connected component Ci to a vertex ci, the representative of that component, and
let C = {c1, . . . , cq}. Note that for each 1 ≤ i ≤ q, the component Ci is not split
across pieces in either Y1 or Y2. Denote by Y ′

1 and Y ′
2 the partitions obtained

from Y1 and Y2, respectively, be replacing each connected component Ci by its
representative vertex ci. Let Qy = Y ′

1 . Repeat until no longer possible:

If there exist ca, cb ∈ C that are in different pieces ofQy but in the same piece
of Y2 then delete Qy(ca), Qy(cb) from Qy and add Qy(ca)∪Qy(cb) provided
the following condition holds: for all ce ∈ C\{ca, cb} either Y2(ce)∩Qy(ca) =
∅ or Y2(ce) ∩Qy(cb) = ∅.

If this latter condition does not hold, move on to the next pair of triples. Finally
expand each ci to the connected component it represents.

Set

Ai[S,P, Y ] = min
A

{Aj [S,P1, Y1] +Al[S,P2, Y2]− |S|}.



The stated conditions ensure that u, v ∈ S are in the same piece of P if and only if
for each 〈(S,P1, Y1), (S,P2, Y2)〉 ∈ A, they are in the same piece of P1 or of P2 (or
both). Similarly, the stated conditions ensure that merging solutions at join nodes
do not create new cycles. Given this, it is easy to verify that the above computation
correctly determines Ai [S,P, Y ].

Root Node. We compute the size of a smallest CFVS of G from the table Ar for the
root node r as follows. Find the minimum of Ar[S,P, Y ] over all triples (S,P, Y ),
where S ⊆ Xr, P a partition of S such that P consists of a single (possibly empty)
piece and Y is a partition of Xr \ S. This minimum is the size of a smallest CFVS
of G.

This concludes the description of the dynamic programming algorithm for CFVS when
the treewidth of the input graph is bounded by w. From the above description and the
size of tables being bounded by (2w + 2)2w+2, we obtain the following result.

Lemma 4. Given a graph G = (V,E), a tree-decomposition of G of width w, one can
compute the size of an optimum connected feedback vertex set of G (if it exists) in time
O((2w + 2)2w+2 · nO(1)).

4.3 FPT Algorithms for H-Minor Free Graphs

We first bound the treewidth of the yes instance of input graphs by O(
√
k).

Lemma 5. If (G, k) is a yes-instance of CFVS where G excludes a fixed graph H as a
minor, then tw(G) ≤ cH

√
k, where cH is a constant that depends only on the graph H.

Proof. By [7], for any fixed graph H, every H-minor-free graph G that does not contain
a (w × w)-grid as a minor has treewidth at most c′Hw, where c′H is a constant that
depends only on the graph H. Clearly a (w × w)-grid has a feedback vertex set of size
at least c1w

2, where c1 is a constant independent of w. Therefore if G has a connected
feedback vertex set of size at most k, it cannot have a (w × w)-grid minor, where w >
√

k/c1. Therefore tw(G) ≤ c′Hw ≤ c′H · (
√

k/c1 + 1) ≤ cH
√
k, where cH = (c′H + 1)/

√
c1.
⊓⊔

Theorem 4. CFVS can be solved in time O(2O(
√
k log k)+nO(1)) on H-minor-free graphs.

Proof. Given an instance (G, k) of CFVS, we first find a tree-decomposition of G using
the polynomial-time constant-factor approximation algorithm of Demaine et al. [8]. If
tw(G) > cH

√
k, then the given instance is a no-instance; else, use Lemma 4 to find an

optimal CFVS for G. All this can be done in O(2O(
√
k log k) ·nO(1)). To obtain the claimed

run-time bound we first apply the results from [17] and obtain an O(k2) kernel for the
problem in polynomial time and then apply the algorithm described. ⊓⊔

5 Conclusion

We conclude with some open problems. The obvious question is to obtain an O∗(ck)
algorithm for CFVS in general graphs with a smaller value of c. Also the approximability
of CFVS in general graphs is unknown. Is there a constant-factor approximation algorithm
for CFVS? If not, what is the limit of approximation? Is there an O∗(cw) algorithm for
CFVS, for a constant c, for graphs of treewidth at most w? Note that this question is
open in the context of finding a feedback vertex set in graphs of bounded treewidth.
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related problems. In Proceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP 2009), pages 713–725, 2009.

29. R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press, Oxford, 2006.

30. V. Raman, S. Saurabh, and C. Subramanian. Faster fixed parameter tractable algorithms for finding
feedback vertex sets. ACM Transactions on Algorithms, 2(3):403–415, 2006.

31. G. Robins and A. Zelikovsky. Tighter bounds for graph steiner tree approximation. SIAM Journal
Discrete Mathematics, 19(1):122–134, 2005.

32. R. Sitters and A. Grigoriev. Connected feedback vertex set in planar graphs. In Proceedings of the
35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG2009), 2009.
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