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Cutting a Convex Polyhedron Out of a Sphere
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Abstract Given a convex polyhedronP of n vertices inside a sphereQ, we give anO(n3)-time algorithm that cutsP out
of Q by using guillotine cuts and has cutting costO((log n)2) times the optimal.

1. Introduction
The problem of cutting a convex polygonP out of a piece of planar materialQ (P is already drawn onQ)
with minimum total cutting length is a well studied problem in computational geometry. The problem was first
introduced by Overmars and Welzl in 1985 [9] but has been extensively studied in the last eight years [1–7,9–11]
with several variations, such asP andQ are convex or non-convex polygons,Q is a circle, and the cuts are line
cuts or ray cuts. The results include: indication to the hardness of optimality, severalO(log n) and constant factor
approximation algorithms and a PTAS. See [1] for a summary ofthese results.

The generalization of this problem in 3D is very little known. To the best of our knowledge, the only result is
to decide whether a polyhedral object can be cut out form a larger block using continuous hot wire cuts [7].

This type of cutting problems have many industrial applications such as in metal sheet cutting, paper cut-
ting, furniture manufacturing, ceramic industries, fabrication, ornaments, and leather industries. Some of their
variations also fall understock cutting problems[3].

In this paper we consider the problem of cutting a convex polyhedronP which is fixed inside a sphereQ by
using only guillotine cuts with minimum total cutting cost.A guillotine cut, or simply acut, is a plane that does
not pass throughP and partitionsQ into two smaller convex pieces. After a cut is applied,Q is updated to the
piece that containsP . Thecutting costof a guillotine cut is the area of the newly created face ofQ. We give
anO(n3)-time algorithm that cutsP out of Q by using only guillotine cuts and has cutting cost no more than
O((log n)2) times the optimal cutting cost.

2. Algorithm
The overall idea is as follows. LetC∗ be the optimal cutting cost. We shall have two phases in our algorithm:box
cutting phaseandcarving phase. In the box cutting phase, we shall cut a minimum volume rectangular boxB
containingP out ofQ with cutting cost no more than a constant factor ofC∗. Then in the carving phase we shall
cutP out ofB with cutting cost bounded byO((log n)2) times ofC∗.

A cut isvertex/edge/face cutif it is tangent toP at a vertex/edge/face respectively. We callP to becorneredif
it does not contain the centero of Q, otherwise it is calledcentered. For corneredP , theD-separationof P is the
minimum-cost (single) cut that separatesP from o. A point p of P is visible from o if the line segmentop does
not intersect any other point ofP .

2.1 Box cutting phase
If P is cornered, we first apply a D-separation toQ.

Lemma 1. The D-separation must be either a vertex, edge or face cut. Moreover, if oo′ is the line segment
perpendicular to the D-separation ato′, theno′ must be the corresponding vertex or a point of the corresponding
edge or face.

Proof. Let x be the closest point ofP from o. Clearly,x is visible fromo. A D-separation must be the plane that
can separateo fromx and is furthest fromo. This plane is none but the plane perpendicular toox atx. This plane
is also tangent toP , since otherwisex would not be closest too.

Lemma 2. The D-separation can be found inO(n) time.
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For corneredP , after the D-separation is applied, letr be the radius of the base circle ofQ.

Lemma 3. For corneredP , cost of the D-separation, which isπr2, is at mostC∗.

Proof. [Sketch only] The proof depends upon the fact that the cuts inan optimal cutting sequence must be tangents
to P . Overmars and Welzl [9] proved this fact for 2D, whose 3D generalization also holds. The idea is that ifc is
the first cut that does not touchP , then the cost ofc and the subsequent cuts behaves, while movingc parallelly,
as a concave function in the distance ofc from P . Therefore, the minimum cost is achieved when it touchesP

or is infinitely away fromP . With the above fact, the authors in [1] proved in 2D that to separateP from o an
optimal cutting sequnce must use the D-separation or use cuts with cost higher than the D-separation. The 3D
generalization of this proof also holds.

Lemma 4. For centeredP , C∗ ≥ πR2, whereR is the radius ofQ.

Proof. [Sketch only] Orthogonally projectP andQ, whereQ projects to a circleC andP to a convex polygonX
insideC. Any optimal cutting sequence must have cost at least the area ofX plus the difference of the area ofC
andX .

We next find a minimum volume rectangular bounding boxB of P in O(n3) time by the algorithm of
O’Rourke [8]. Then we cut out this box fromQ by applying six cuts along the six faces ofB.

Lemma 5. Cost of cuttingB out ofQ is at most3C∗ for corneredP and at most4C∗ for centeredP .

Proof. [Sketch only] LetS be the surface ofQ. For corneredP , area|S| = 3πr2 ≤ 3C∗ (by Lemma 3) and for
centeredP , |S| = 4πR2 ≤ 4C∗ (by Lemma 4). While cutting along the faces ofB, for each cutc let Q′ be the
portion ofQ that does not containP . Let q′ be the portion of the surface ofQ′ that is “inherited” fromS. One
important observation is that the cost ofc is no more than the area ofq′. Moreover, over all six cuts, sum of these
inherited surface area is at mostS. Therefore, the lemma holds.

Lemma 6. C∗ ≥ 1

3
|B|, where|B| is the area ofB.

Proof. [Sketch only] Letg be a maximum area face ofB. ProjectP orthogonally from the direction perpendicular
to g. P projects to a convex polygonX . Observe that in this projection,g is the minimum area bounding rectangle
of X , since otherwise we could rotate the four faces ofB that are not perpendicular tog and would get a bounding
rectangle smaller thang, which in turn would give a bounding box smaller thanB. It implies that the area ofX is
at least1

2
|g|. Now,C∗ is at least twice the area ofX , and|B| ≤ 3|g|. Therefore,C∗ ≥ 1

3
|B|.

2.2 Carving phase
LetT = B−P be the portion ofB that is “trapped” between the boundaries ofP andB. T is a polyhedral object,
convex or non-convex and possibly disconnected. Theinner (outer) surface ofT is the surface that touches (does
not touch) the faces ofP . Our idea is to apply an edge cut through each edge ofP , and we shall do that in
two types of rounds:face roundsandedge rounds. Face rounds will find polygonal chains that will partition the
faces ofP into smaller connected components and edge rounds will apply edge cuts through the edges of those
polygonal chains. There will beO(log n) face rounds. Within each face round there will be a number of edge
rounds but their total cost will beO(C∗ logn). Once we have applied edge cuts through all the edges ofP , each
facef of P will have a small “cap”-like portion ofT over it, which we shall cut at a cost of the area off to getP ,
giving a cost ofO(C∗) for all faces.

Face rounds Let F be aconnected face setof m faces ofP . At the very first face roundi = 0, F consists of all
the faces ofP . We find a chain of edgesP ′ that will partitionF into two smaller connected face setsF1 andF2 by
the following lemma. (Precise definition of “connected” needs detail discussion, which we omit in this extended
abstract.)

Lemma 7. It is always possible to find an orthogonal projection ofP which is non-degenerate w.r.t the faces of
F such that the sets of visible and invisible faces ofF contain at least⌊m

2
⌋ faces each.
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Proof. [Sketch only] For this proof we shall move on to the surface ofan origin-centered spheres. For each face
f ∈ F , its outward normal is uniquely represented by a point ofs, which we call thenormal pointof f . Each
point of s also represents an orthogonal projection direction ofP . So, an orthogonal projection ofP which is
non-degenerate w.r.t the faces ofF is represented by a great circle ofs that does not pass through the normal
points of the faces ofF . We need one such great circle satisfying an additional criterion that its two hemispheres
contain at least⌊m

2
⌋ normal points each. There exists infinitely many such great circles and one of them can be

found inO(n logn) time.

P ′ is the chain of edges in the boundary of the above projection whose each edge has both adjacent faces (one
is visible and another is invisible) inF . We callP ′ aseparating chainof F . We shall apply edge cuts through the
edges ofP ′ by the edge rounds as described in the next paragraph. In the next face roundi = 1, we shall apply
Lemma 7 for each ofF1 andF2 and shall thus get two separating chains and four connected face sets. We shall
repeat the same procedure for each of these four face sets. Weshall continue like this until each face set has only
one face. Clearly, we needO(log n) face rounds.

Edge rounds LetP ′ = e1, e2, . . . , ek with its two ends frome1 abdek touching the outer surface ofT . We shall
apply edge cuts through the edges ofP ′ such that all of them are parallel to a particular direction.Such a direction
can be the corresponding projection direction. We call thisset ofk edge cuts azoneof cuts and its direction the
zone cut direction. We shall apply these cuts inlog k edge rounds. At the very first edge roundj = 0, we apply
an edge cut throughek/2 in the zone cut direction. This cut will partition the edges of P ′ into two subchains of
size at most⌊k

2
⌋. In the next round, we apply two edge cuts through the two middle edges of these two subchains,

which will result into four subchains. Then in the next roundwe apply four similar cuts to the four subchains. We
continue like this until each subchain has only one edge. Clearly, we needO(log k) edge rounds forP ′.

Lemma 8. After all the face rounds and the corresponding edge rounds are completed, all edges ofP gets an
edge cut.

Proof. Let e be an edge that does not get an edge cut. Then the two adjacent faces ofe are in the same face set.
But that is a contradiction that each face set has only one face.

Analysis We define thebox areaof a face setF as follows. WhenF contains all faces ofP , its box area isB
—the whole surface area ofB. Zone of cuts through the separating chain ofF partitionsF into F1 andF2 and
T into two components, sayT1 andT2, respectively. Then thebox areaof F1 (F2) is the outer surface area ofT1

(T2), which we denote by byB1 (B2). Observe that|B1| + |B2| ≤ |B|. Box area of any subsequent face set is
similarly defined. Moreover, two face sets from the same faceround have their box areas disjoint and in any face
round sum of all box area is at most|B|.

Lemma 9. Let P ′

m be the separating chian withk edges of an arbitrary face set to which we applyO(log n)
edge rounds. LetBm be the box area ofFm. At each edge roundj, total cost of2j cuts isO(|Bm|). Over all log k
edge rounds, total cost is(|Bm| logn).

Proof. [Sketch only] This proof is similar to that of Lemma 5. Consider a particular edge roundj. For each cut
c the cost ofc is no more than the portion of|Bm| that is thrown away byc. Moreover, these cuts are pairwise
disjoint. Indeed, they can at best intersect the cut which isin between them and was applied in(j − 1)-th round.
It implies that the total cost of2j cuts is at most|Bm|. Sincek ≤ n, the second part of the lemma follows.

Lemma 10. LetF be the face set consisting of all faces ofP to which we shall applyO(log n) face rounds. At
each face roundi, total cost of2i zones of cuts isO(|B| log n). Over allO(log n) face rounds, the total cost is
O(C∗ logn).

Proof. At each face roundi, we apply2i zones of cuts to2i face sets. By the previous lemma, for a particular

face setFm, 0 ≤ m ≤ 2i, cost of the zone of cuts applied to it is at mostO(|Bm| logn). Since
∑

2
i

1
|Bm| ≤ |B|,

cost of all zone cuts is
∑

2
i

1
O(|Bm| logn) = O(|B| log n). Over allO(log n) face rounds, the total cost is

O(|B|(log n)2), which by Lemma 6 isO(C∗(log n)2).

Theorem 1. Given a convex polyhedronP fixed inside a sphereQ, P can be cut out ofQ by using only guillotine
cuts inO(n3) time with cutting costO((log n)2) times the optimal, wheren is the number of vertices ofP .
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