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Summary. This paper presents the complexity of finding the multiset of rules in a P
system in such a way to have a maximal number of rules applied. It is proved that the
decision version of this problem is NP-complete. We study a number of subproblems
obtained by considering that a rule can be applied at most once, and by considering the
number of objects in the alphabet of the membrane as being fixed. When considering P
systems with simple rules, the corresponding decision problem is in P. When considering
P systems having only two types of objects, and P systems in which a rule is applied at
most once, their corresponding decision problems are NP-complete. We compare these
results with those obtained for mazO evolution.

1 Introduction

The reader is assumed to have basic knowledge of membrane computing; a good
reference is [6]. Here we just mention the main biological inspiration of P systems,
and some terminology concerning the variants of maximal parallelism we consider
in this paper.

P systems are inspired by the structure and the functioning of the living
cells. Inside the cell, several membranes define compartments where specific bio-
chemical processes take place. Each compartment contains substances (ions, small
molecules, macromolecules) and specific reactions. The substances are represented
by multisets of objects, and the reactions by rules of form v — v, where u and v
are multisets of objects. The multisets are represented by strings, with the under-
standing that all permutations of a string represent the same multiset. We denote
by O the alphabet of objects, and by R; the set of rules associated with a com-
partment . When such a system is evolving, the objects and the rules are chosen
in a nondeterministic manner, and the rules are applied in parallel.

The most investigated way of using the rules in a P system is the maximal
parallelism: in each membrane a multiset of rules is chosen which can be applied
to the objects from that membrane and is maximal in the sense of inclusion, i.e.,
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no further rule can be added such that the enlarged multiset is still applicable. We
use “maxP” to refer to this evolution strategy.

Another natural idea is to apply the rules in such a way to have a maximal num-
ber of objects consumed in each membrane. This manner of evolution is denoted
by “maxzO”. This strategy was explicitly considered in [1, 2], where it is proved
that the problem of finding a multiset of rules consuming a maximal number of
objects is NP-complete.

Yet a third idea is to apply the rules in such a way to have a maximal number
of rules applied. We call this type of evolution “maxzR”. Note that any evolution
of type maxR or maxO is also of type maxP.

The computing power of these strategies of applying a multiset of rules in mem-
branes is studied in [3]. Specifically, P systems having multiset rewriting rules (with
cooperative rules), symport/antiport rules, and active membranes are considered.
The universality of the system is proved for any combination of type of system
and type of evolution.

In previous papers [1, 2], two variants of membrane systems called simple P
systems and maximum cooperative P systems are considered. They evolve at each
step by consuming the maximum number of objects. The problem of distributing
objects to rules in order to achieve a maximum consuming and non-deterministic
evolution of simple P systems is studied in [1]; using the knapsack problem, the
decision version of the resource mapping problem for simple P systems is proved to
be NP-complete. In [2] the integer linear programming problem is used to prove
that the resource mapping problem for maximum cooperative P systems is also
NP-complete.

In this paper we study the complexity of finding a multiset of rules which
evolves the membrane in the sense of maxzR. We study a number of subproblems
obtained by considering the number of objects in the alphabet of the membrane as
being fixed or by considering that a rule can be applied at most once. We compare
the results with those obtained for maxzO evolution.

2 max R Complexity

We recall a number of notations for multisets and P systems. We represent multi-
sets as strings of elements over their support alphabet together with their multi-
plicities (for example w = a?b°c is a multiset over {a,b, ¢, d}). The union v + w of
two multisets over a set O is given by the sum of multiplicities for each element
of 0. We define w(a) € N to be the multiplicity of ¢ in w. We say that w < w’ if
w(a) < w'(a) for each element a of the multiset w. In this case we define v’ —w to
be the multiset obtained by subtracting the multiplicity in w of an element from
its multiplicity in w’.
We use the notation ¢ = 1,n to denote ¢ € {1,...,n}.

Definition 1. A transition P system of degree n,n > 1 is a construct
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I =(0,pw,...,ws,R1,...,Ry)
where

O is an alphabet of objects;
w18 a membrane structure, with the membranes labelled by natural numbers

1,...,m, in a one-to-one manner;

w; are multisets over O associated with the regions 1,...,m defined by u;

Ry, ..., Ry, are finite sets of rules associated with the membranes with labels
1,...,m; the rules have the form u — v, where u is a non-empty multiset of

objects and v a multiset over messages of the form (a, here), (a,out), (a,in;).

A configuration of the system is given by the membrane structure and the
multisets contained in each membrane. For a rule » = u — v we use the notations
lhs(r) = u and rhs(r) = v. These notations are extended naturally to multisets
of rules: given a multiset of rules R, the left hand side of the multiset lhs(R) is
obtained by adding the left hand sides of the rules in the multiset, considered with
their multiplicities.

We define the three evolution strategies as follows:

Definition 2. Let i = 1,n. A multiset R of rules over R; is applicable (in mem-
brane i) with respect to the multiset w; if lhs(R) < w; and for each message
(a,inj) present in rhs(R) we have that j is one of the children of membrane i.

A multiset R of rules over R; which is applicable with respect to the multiset
w; 1s called:

o maxP-applicable with respect to w; if there is no rule v in R; such that R +r
1s applicable with respect to w;;

o maxO-applicable with respect to w; if for any other multiset R’ of rules which
1s applicable with respect to w; we have that

> 1hs(R)(a) > > 1hs(R')(a);

a€0 acO

e maxR-applicable with respect to w; if for any other multiset R’ of rules which
1s applicable with respect to w; we have that

SR =D R().

rER; reR;

In other words, when choosing the maxP evolution strategy we only apply
multisets of rules which are maximal with respect to inclusion; when choosing
maxO we only apply multisets of rules which are maximal with respect to the
number of objects (considered with their multiplicities) in the left hand side of
the multiset; when choosing maxR we only apply multisets of rules which are
maximal with respect to the number of rules in the multiset (considered with
their multiplicities). Note that any multiset of rules which is either maxR or
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maxO-applicable is also max P-applicable. P systems generally employ the maxP
evolution strategy; however, a convincing case can be made for maxO and mazR.

As it is mentioned in [3], maximizing the number of objects or the number
of rules can be related to the idea of energy for controlling the evolutions of P
systems. In the same paper, the complexity of finding the multiset of rules in a P
system in the case of mazrR was presented as an open problem.

We denote by Pp and Pg the problems of finding a maxzO or max R-applicable
multiset of rules, with respect to a given multiset of objects w. We could consider
similar problems for the entire system, but they are solved by splitting the problems
into smaller ones, one for each membrane. So for our purposes we can just as well
consider the system contains only one membrane, i.e. the degree of the P system
is n = 1. In other words, all multisets of rules we consider from now on are over a
set of rules R. We use the following notations:

e 1 is the cardinal of the alphabet O and we consider the objects to be denoted

by 01,...,0m;
e d is the number of rules associated to the membrane, and the rules are denoted
by r1,...,74;

C, is the multiplicity of o, in the multiset w which is in the membrane;
ki o is the multiplicity of o, in the left hand side of the rule r;.

The problem Pp can be described in the form of an integer linear programming
problem as follows. Given the positive integers m,d, k; ,C, for i = 1,d and a =
1, m, find positive integers x; such that

® i 7a(> a1 ki) is maximal;
. Zizﬂxi kig < Cy, foralla=1,m.

The decision version of this problem was shown to be NP-complete in [1, 2].
The proofs are based on the knapsack problem and integer linear programming [4,
5].

The problem Pgr can be described as follows. Given the positive integers
m,d, ki, Cq for i =1,d and @ = 1, m, find positive integers x; such that

® > ,_7q% is maximal;
. Zi:ﬁxi kig < Cy, foralla=1,m.

The decision version of Pg is denoted by DPpgr: being given positive integers
m,d,t, k; o and C,, find whether there exist positive integers x; such that

o D iTati >t
° Zi:ﬁxi ki < Cg, foralla=1,m.

The length of this instance of the problem can be considered to be
m + d + max, ;{log C,, log ki o }-

Proposition 1. DPg is NP-complete.
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Proof. First, we prove that DPg is in NP. To show this we construct a Turing
machine that computes the result in nondeterministic polynomial time by either
accepting (output YES) or rejecting (output NO) the input string. The machine
operates as follows:

1. nondeterministically assign values for x;, i = 1, d;
2. if the assigned values verify the constraints

3. and Zi:ﬁ x; > t, then output YES;

4. in any other case, output NO.

It can be easily seen that the number of steps performed by the machine is poly-
nomial with respect to the input size. Thus DPpg is in NP.

Secondly, we construct a polynomial-time reduction from 3CN FSAT to DPg.
The 3CNFSAT [4] problem asks whether a formula ¢ given in conjunctive nor-
mal form with 3 variables per clause is satisfiable, i.e. if there exists a variable
assignment which makes the formula true.

Consider a formula ¢ with variables z1,...,z, and clauses c1,...,cs. We de-
scribe a corresponding instance of D Pg:

d=2r,m=r+s,t=r;
for each variable z; of ¢ we consider two variables y; and z; and an inequality
1; + z; < 1 in the instance of D Pg;

e for each clause ¢, we consider the inequality

Z Qi,ali + Z ligzs <2
i

i=1,r =1,r
such that:
— ¢i,a =0, l; o =1 if the literal x; appears in cg;
— @i,a =1, l;, = 0 if the literal —~z; appears in c,;
Qi,a = li,q = 0 if neither z; nor —x; appear in c,.

Since we have t=r, the first inequality in this instance of DPg is ) | imTr Ytz >
This can be computed in polynomial time with respect to the size of the input.
The idea behind the reduction is to set x; = 1 if and only if y; = 1,z; = 0 and
x; = 0 if and only if y; = 0,2; = 1.

For example, consider the formula ¢ = ¢y Acag Acg Acg with ¢; = 21V —za V 23,
co = x1VxoVoxs, c3 = o1V xe Vxs, ¢4 = iy Ve V x3. The corresponding
instance of DPp is: find positive integers y;, 2;, ¢ = 1, 3 positive integers such that
Zi:ﬁyi +2; >3,y +2 <1, and

21+ ys +23 <2
y1+y2 +y3 <2
21+ y2+ys <2
Y1+ 22 +23 <2
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We notice that y; + z; = 1, and that a solution is y; = 0,y = 0,23 = 0, to-
gether with the corresponding values for zi, 22, y3. This means that we consider
the assignment 27 = 0,29 = 0,23 = 1 for which the formula ¢ is satisfiable.

We now prove that a formula ¢ is satisfiable if and only if there is a vector of
positive integers (y1,...,Yr, 21, - .,2-) which is a solution for the above instance
of DPg. First, suppose there is a satisfying assignment for ¢. If z; = 1 we set
y; = 1,2, =0, and if z; = 0 we set y; = 0, 2; = 1. Thus we have y; + z; < 1, for all
t=1,r, and also ) y; + z; > r. Consider now one of the inequalities

Z Gi,ali + Z ligzs <2

i=1,r

1=1,r

=1,r

We notice that it contains in its left hand side exactly three variables with coefli-
cient 1, one for each literal appearing in C,. If the literal with value 1 in C, is z;,
then its corresponding variable is z; which is 0. If the literal with value 1 in Cj is
-z, then its corresponding variable is y; which is 0. Thus there are at most two
terms equal to 1, meaning that the inequality is satisfied.

Now suppose there is a solution (y1,...,¥yr, 21,-..,2.) for the DPg instance.
Since y; +z; < 1foralli=1,r and ) . 15v; + 2 > r, it follows that y; + z; = 1
for all i. We consider the assignment z; = 1 if y; = 1,2z, = 0 and z; = 0 if

y; = 0,2; = 1. As previously noted, the inequality corresponding to a clause ¢, has
exactly three variables, each with coefficient 1, in its left hand side. Thus at least
one of them must be equal to 0. If that variable is z;, it means that the literal z;
with assignment x; = 1 appears in C,. If that variable is y;, it means that the
literal —z; with assignment x; = 0 appears in Cy. Thus ¢ is satisfied. O

We can also consider the problem 1D Pg obtained from D Pp by restricting the
possible values of the variables to 0 or 1. This corresponds to requesting that in a
membrane a rule can be applied at most once. Then exactly the same reduction
can be made from 3CNFSAT to 1DPg thus placing 1DPg in the category of
NP-complete problems.

3 Certain Subproblems

We denote by DP}% the problem obtained from D Pk by considering m = k fixed.
A similar notation is used for DPg.

We start by looking at the case of a P system which has only simple rules,
i.e. rules which have only one type of object in their right hand side. Then DP},
describes the decision version of the problem of finding a multiset of simple rules
which is maz R-applicable: given d,t,k; 1, C find a; such that Zi:ﬁ x; >t and
dimta®i ki < Ch.

Proposition 2. DP}, is in P.
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Proof. Note that all k; 1 # 0 by definition, since rules always have a non-empty
left hand side. Let j be chosen such that k;; = min,_15{ki1}. A solution is given

by setting z; = [%} (the integer part of kc—l) and x; =0,i# 7. O
Js Js

On a side note, consider the problem 1DP11% obtained by restricting the possible
values of z; to 0 or 1. This problem is in P, as can be seen by following this
algorithm. First we renumber the coefficients k; 1 (together with the variables z;)
such that ]4}1,1 S k‘271 S . S kd,1. Then we set S1 = /411,1, Si+1 = S§ + /4}1‘4_1,1. If
54 < Cp then the maximum value for ), z; is d. Otherwise, there exists an unique
j such that s; < C1 < sj41. Therefore the maximum value for ZZ x; is j, since
however we choose j+ 1 different coefficients k., 1,kry 1, .- k1,1 randomly, their
sum will be greater than s;;.

We now consider that the membrane whose max R evolution we are studying
has only two types of objects, i.e. #0 = 2. The corresponding decision problem is
DPZ.

Proposition 3. DP3 is NP-complete.

To prove this result we consider the following auxiliary problem AP:

For s, r, k positive integers, are there positive integers x1,...,xs such that
E Ty =T, E klifz = k.
i=1,s i=1,s

Note that if we restrict this problem by imposing the condition that all z; € {0, 1},
then we obtain a subproblem of the subset sum problem, namely: given a set S of
positive integers S = {k; |4 = 1, s}, does exist a subset of S with r elements such
that the sum of its elements equals k7 This provides a strong hint that AP is NP-
complete. The proof of Proposition 3 is based on constructing a polynomial-time
reduction from X3C to AP, and another one from AP to DP3.

Proof. First, note that both DP3 and AP are in NP. This can be easily proved by
constructing a Turing machine similar to the one used in the proof of Proposition
1. Secondly, we give a a polynomial-time reduction from X3C to AP. The ezact
cover by 3-sets problem (X3C) asks if, given a set X with 3¢ elements and a
collection C' of 3-element subsets of X, there is a subcollection C’ of C' which is an
exact cover for X, i.e. any element of X belongs to exactly one element of C’ [4].

In order to reduce X3C to AP, we do the following. Let | be the number of
elements of C, and consider indexing the elements of C' by ¢y, ..., ¢;. For each ¢;
we consider a variable x; in the AP problem, thus setting s = [. To construct the
coefficients k;, we employ the notations e;; = #c¢;Nc; for i, j = 1,1, and M = 3¢+1.
Weset s =1,7=q, ki =), _77¢ M7 and k = Zj:le-Ml_j. For a solution
C’ to X3C we set x; = 1 whenever ¢; € ', and z; = 0 otherwise. We prove that
this yields a solution of the constructed instance of AP and moreover, that any
solution of the instance has x; € {0, 1} and provides a solution of X3C'.
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Example. Consider the problem X3C for X = {1,...,9} and ¢; = {1, 2,3},
co = {1,3,4}, c3 = {4,5,6}, cs = {1,6,8}, ¢5s = {4,7,9}, c6 = {7,8,9}. Then
M = 10 and the coefficients k; are written in base 10 such that they have a digit
for each variable z;:

T1 T2 T3 Tyq Ts Tg
k;/3 2 0100
kel2 31 1 10
ksj0 1 3 1 10
kg1 11 3 01
ks|00 1. 1 0 3 2
k¢/0 0 0 1 2 3
k13 33 3 3 3

An exact cover of X is ¢y, c3, ¢g. Looking at this example, we see why any solution
to AP has all z; € {0,1}: all coefficients have at least a digit equal to 3 and the
basis M is chosen such that, when adding coefficients, no carries can occur from
lower digits to higher digits.

We first prove that a solution C’ for X3C provides a solution for AP. Let
I ={i|¢; € C'}. Since C" is an exact cover for X, it follows that I has ¢ elements
and that e;; = 0,¢,7 € I,i # j. Moreover, if j & I we have that ¢; = ¢;N(Ujerc;) =
U(cj Neg), thus Y7, ey = 3. Since 2; = 1,4 € I and x; = 0,4 & I it follows that
indeed > z; = q. We also have

D okiwi =Y (Y eyM' ) =

i=1m

i=1,1 el j=1,1
=) (M T Y e M) =S "3 MY (D )M
il eI il eI el

Using the previous observation, we obtain that the term of the second sum is
3- Mlij, thus Zi:m kix; = k.

Secondly, consider a solution (mi)izﬂ for the instance of AP with s,7,k;, k as
above. Let I = {i|x; = 1}. We prove that if j ¢ I then z; = 0 and that e;; = 0
for i,j € I,i # j. This is sufficient to prove that C’ = {¢;|i € I} is an exact
cover, since it follows from the above statement that C’ has exactly ¢ elements

and cNc =0 for all ¢, € C',c# . We have

Z3'Ml7j =k= Z kzmz: Z(Z eijl'i)Mlij (1)
i=1,1 i=1,1 J=11 =11
Since Y, _q7eijxi < Y, 7332 = 3¢ < M, the two sides of equation (1)
represent two decompositions in base M of the same number k. Therefore we have
Zi:fleijxi = 3, for any j = 1,l. For i = j we get e;;x; = 3x; < 3, i.e. all z; €
{0,1}. Thus 3 = Zie‘l Cij; co'nsid.ering J E.I we obtain that 3 = 3 + Ziel’#j €ij;
namely that e;; = 0,4, j € 1,7 # j, concluding the second part of the reduction.




114 O. Agrigoroaiei, G. Ciobanu, A. Resios

We still have left to show that AP reduces to DPI%. We recall the data of
DPE: given d,t,Cy,Ca, ki1, ki2 for i = 1,d, do exist positive integers z1,...,zq4
such that

Zi:ﬁ T >t

Yimtakiiz < Ch (2)

dimtakiori < Co ?
The reduction is as follows: let K = maxi:ﬁkji and set d = s,t = r, k;1 = ki,
kio = K —k;;Cy = kand Cy = Kr — k. If z1,...,2, represent a solution for
the instance of AP, it clearly is a solution for this instance of DP}%. Reversely,

if 1,...,2, represent a solution for this instance of DP3, we add the last two
inequalities of (2), obtaining », 15 K -2; < Kr. Since ), 5 2; > t, we obtain
that >, i< 2; = and also that Ei:fs kix; =k 0O

We compare these results with those for DPp and its analogous subproblems.
Both DPgr and DPy are NP-complete, yet we obtain significant differences when
restricting to the case of P systems with simple rules. Namely, while DPé is NP-
complete, DP}, is in P. When we employ cooperative rules with a fixed maximum
number k of objects in the left hand side, the decision problems thus obtained,
DPg and DP}%, are all NP-complete.

4 Conclusion

The most investigated way of applying the rules in a P system is the maximal par-
allelism (mazP case). Two other strategies of applying the rules are also possible.
One strategy is to maximize the number of objects consumed in each membrane
(mazO case), and the other is to maximize the number of rules applied in each
membrane (mazR case).

The mazO strategy was explicitly considered in [1] and [2] where it is proved
that the problem of finding a multiset of rules which consume a maximal number
of objects is NP-complete for both so called simple P systems and cooperative P
systems.

In this paper we consider the mazR strategy, and study the complexity of
finding the multiset of rules in a P system in such a way to have a maximal
number of rules applied. We prove that the decision version of this problem is
NP-complete. However, in contrast to the results for maxzO strategy, the problem
for P systems with simple rules is in P.

Together with the results presented in [1, 2, 3], this paper provides the possi-
bility of studying complexity and computability for new classes of P systems. It
also facilitates a complexity comparison between various classes of P systems.
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