Skip to main content

Modelling Signalling Networks with Incomplete Information about Protein Activation States: A P System Framework of the KaiABC Oscillator

  • Conference paper
Membrane Computing (WMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5957))

Included in the following conference series:

Abstract

Reconstruction of signal transduction network models based on incomplete information about network structure and dynamical behaviour is a major challenge in current systems biology. In particular, interactions within signalling networks are frequently characterised by partially unknown protein phosphorylation and dephosphorylation cascades at a submolecular description level. For prediction of promising network candidates, reverse engineering techniques typically enumerate the reaction search space. Considering an underlying amount of phosphorylation sites, this implies a potentially exponential number of individual reactions in conjunction with corresponding protein activation states. To manage the computational complexity, we extend P systems with string-objects by a subclass for protein representation able to process wild-carded together with specific information about protein binding domains and their ligands. This variety of reactants works together with assigned term-rewriting mechanisms derived from discretised reaction kinetics. We exemplify the descriptional capability and flexibility of the framework by discussing model candidates for the circadian clock formed by the KaiABC oscillator found in the cyanobacterium Synechococcus elongatus. A simulation study of its dynamical behaviour demonstrates effects of superpositioned protein abundance courses based on regular expressions corresponding to dedicated protein activation states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall, Boca Raton (2006)

    MATH  Google Scholar 

  2. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arkin, A.P.: Synthetic cell biology. Current Opinion in Biotechnology 12(6), 638–644 (2001)

    Article  Google Scholar 

  4. Axmann, I.M., Legewie, S., Herzel, H.: A minimal circadian clock model. Genome Inform. 18, 54–64 (2007)

    Article  Google Scholar 

  5. Bernardini, F., Manca, V.: Dynamical aspects of P systems. BioSystems 70, 85–93 (2003)

    Article  Google Scholar 

  6. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: Software for Rule-Based Modeling of Signal Transduction Based on the Interactions of Molecular Domains. Bioinformatics 20, 3289–3292 (2004)

    Article  Google Scholar 

  7. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. BioSystems 83, 136–151 (2006)

    Article  Google Scholar 

  8. Clodong, S., Dühring, U., Kronk, L., Wilde, A., Axmann, I.M., Herzel, H., Kollmann, M.: Functioning and robustness of a bacterial circadian clock. Molecular Systems Biology 90(3), 1–9 (2007)

    Google Scholar 

  9. Connors, K.A.: Chemical Kinetics. VCH Publishers, Weinheim (1990)

    Google Scholar 

  10. Eils, R., Kriebe, A. (eds.): Computational Systems Biology. Academic Press, London (2005)

    Google Scholar 

  11. Golden, S.S., Cassone, V.M., LiWang, A.: Shifting nanoscopic clock gears. Nature Structural and Molecular Biology 14, 362–363 (2007)

    Article  Google Scholar 

  12. Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Springer, Heidelberg (2006)

    Google Scholar 

  13. Hinze, T., Lenser, T., Dittrich, P.: A protein substructure based P system for description and analysis of cell signalling networks. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 409–423. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Hinze, T., Fassler, R., Lenser, T., Dittrich, P.: Register machine computations on binary numbers by oscillating and catalytic chemical reactions modelled using mass-action kinetics. International Journal of Foundations of Computer Science 20(3), 411–426 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation, and Application. Wiley-VCH, Chichester (2006)

    Google Scholar 

  16. Lenser, T., Hinze, T., Ibrahim, B., Dittrich, P.: Towards evolutionary network reconstruction tools for systems biology. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 132–142. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)

    Article  Google Scholar 

  18. Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

    Google Scholar 

  19. Miyoshi, F., Nakayama, Y., Kaizu, K., Iwasaki, H., Tomita, M.: A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. Journal of Biological Rhythms 22(1), 69–80 (2007)

    Article  Google Scholar 

  20. Mori, T., Williams, D.R., Byrne, M.O., Qin, X., Egli, M., Mchaourab, H.S., Stewart, P.L., Johnson, C.H.: Elucidating the ticking of an in vitro circadian clockwork. PLoS Biology 5(4), 841–853 (2007)

    Article  Google Scholar 

  21. Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y.: Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005)

    Article  Google Scholar 

  22. Paranjpe, D.A., Sharma, V.K.: Evolution of temporal order in living organisms. Journal of Circadian Rhythms 3, 7 (2005)

    Article  Google Scholar 

  23. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rosato, E.: Circadian Rhythms: Methods and Protocols. Springer, Heidelberg (2007)

    Book  Google Scholar 

  25. Roussel, M.R., Gonze, D., Goldbeter, A.: Modeling the differential fitness of cyanobacterial strains whose circadian oscillators have different free-running periods. J. Theor. Biol. 205(2), 321–340 (2000)

    Article  Google Scholar 

  26. Schuster, S., Zevedei-Oancea, I.: A theoretical framework for detecting signal transfer routes in signalling networks. Comput. Chem. Eng. 29, 597–617 (2005)

    Article  Google Scholar 

  27. Tomita, J., Nakajima, M., Kondo, T., Iwasaki, H.: No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005)

    Article  Google Scholar 

  28. Xu, Y., Mori, T., Johnson, C.H.: Circadian clock-protein expression in cyanobacteria: rhythms and phase-setting. EMBO Journal 19, 3349–3357 (2007)

    Article  Google Scholar 

  29. Yoda, M., Eguchi, K., Terada, T.P., Sasai, M.: Monomer-shuffling and allosteric transition in KaiC circadian oscillation. PLoS ONE 5, 1–7 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinze, T., Lenser, T., Escuela, G., Heiland, I., Schuster, S. (2010). Modelling Signalling Networks with Incomplete Information about Protein Activation States: A P System Framework of the KaiABC Oscillator. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2009. Lecture Notes in Computer Science, vol 5957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11467-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11467-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11466-3

  • Online ISBN: 978-3-642-11467-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics