
Tuning P Systems for Solving the Broadcasting
Problem

Raluca Lefticaru1, Florentin Ipate1, Marian Gheorghe1,2, Gexiang Zhang3

1 Department of Computer Science and Mathematics
University of Pitesti, Romania
Str. Targu din Vale 1, 110040 Pitesti, Romania
raluca.lefticaru@gmail.com, florentin.ipate@ifsoft.ro

2 Department of Computer Science
The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
m.gheorghe@dcs.shef.ac.uk

3 School of Electrical Engineering
Southwest Jiaotong University
Chengdu, 610031, P.R. China
zhgxdylan@126.com

Summary. P systems are employed in various contexts to specify or model different
problems. In certain cases the system is not entirely known. In this paper we will consider
the broadcasting algorithm and present a method to determine the format of the rules
of the P system utilised to specify the algorithm.

1 Introduction

P systems (also called membrane systems) represent a class of parallel and dis-
tributed computing devices which are inspired by the structure and the functioning
of living cells [10]. The model has been used for theoretical investigations as well
as a vehicle to represent different problems from various domains.

With very few exceptions, [13, 5, 3, 4], in all previous studies the systems
considered have been fully specified. There are situations when some components
of a model are not known or maybe available in certain contexts and circumstances.

In the vast majority of cases, the P system rules act either within compartments
or between those that share the same neighbourhood. There are only few situations
(for instance, P systems with gemmation [1]) when rules of a compartment transfer
objects from their current position to a destination that might be far away from
their place.

In this paper we study the broadcasting algorithm defined in a P system frame-
work [6], by considering a number of variants of P systems. We will study the
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dependencies between the format of the rules in each compartment and the num-
ber of its neighbours, as well as a method to automatically generate the rules in
each compartment depending on the number of neighbours. This problem is also
important in the context of P systems where compartments are added to or re-
moved from them. The structure of a system can be changed either by operations
belonging to the system, like in the case of P systems with active membranes, or
by external means, but this aspect is not considered in this paper.

2 Basic concepts

A P system is a computational model, inspired by the functioning and structure
of the living cell. The cell-like P systems [12] consist of: (i) a hierarchical arrange-
ment of membranes, embedded in the skin membrane, the one which separates the
system from its environment; (ii) objects occurring inside the regions delimited
by membranes, coding complex chemical molecules or compounds; and (iii) rules
assigned to the regions of the membrane structure, acting upon the objects inside
and the regions themselves. A membrane without any membrane inside is called
an elementary one. Each membrane defines a region. Each region contains, apart
from zero or many membranes, a multiset of objects and a set, in this paper, of
transformation and communication rules.

A configuration of a P system is represented by the current membrane structure
and the multisets of objects occurring in each region. The system will go from
one configuration to a new one by applying the rules in a non-deterministic and
maximally parallel manner, i.e., at each step, in each membrane it is applied a
maximal multiset of rules. The system will halt when no more rules are available
to be applied. Usually, the result of the computation is obtained in a specified
component of the system, called the output region.

In what follows a basic P system using transformation and communication
rules is formally defined. For more details look at [12], [11].

Definition 1. A P system is a construct

Π = (V, µ, M1, . . . ,Mm, R1, . . . , Rm, i0),

where

• V is an alphabet; its elements are called objects;
• µ is a membrane structure consisting of m membranes, with the membranes

and the regions labelled in a one-to-one manner with elements of a given set
Λ, usually, the set {1, · · · ,m}; m is called the degree of Π;

• Mi, 1 ≤ i ≤ m, are strings which represent multisets over V associated with
the regions of µ;

• Ri, 1 ≤ i ≤ m, are transformation-communication rules associated with the re-
gions of µ; each rule of Ri has the the form x → y, where x is a non-empty mul-
tiset over V , and y defines a multiset over {aj |a ∈ V, j ∈ {here, out, 1, · · · ,m}}
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(ahere means a remains in the current region, i; subsequently here will be ig-
nored; aout indicates that a has to go out of i to the outer region; aj, 1 ≤ j ≤ m,
shows that a goes to the region j that must be directly contained by the current
membrane); applying a rule means replacing x by y and following the target
indications;

• i0 is a number between 1 and m which specifies the output membrane of Π.

When a target indication, t, occurs more than once in a sequence, i.e., a1
t · · · ah

t

then the following shortcut notation (a1 · · · ah)t is used. A P system provides a
suitable framework for distributed parallel computation that develops in steps.
Indeed, any computation starts by processing the initial multisets, wi, and then
in each step the rules associated to each region are applied in a non-deterministic
and maximally parallel manner. The result of a computation, a multiset of simple
objects, is obtained in region i0. We notice that the rules presented above com-
bine both transformation and communication, being responsible for evolving the
objects and transferring them to regions according to specified targets. We will
consider specific contexts for applying some of these rules, namely promoters and
inhibitors [2]. Promoters are used to formalize the reaction enhancing; inhibitors
have reaction prohibiting roles for various substances (molecules) present in cells
[2].

3 Broadcasting through a P system

Broadcasting messages to the nodes of a network occurs in various communications
and is well-studied for different network topologies, message lengths, transmission
constraints. The problem is also formulated in the context of a basic P system
and its complexity has been studied [6]. A basic broadcasting problem consists in
sending a message from a node of a network to all the other nodes without revisiting
them. In a P system environment it involves sending the message through the tree
structure of the P system. The broadcasting algorithm for P systems [6] does
not discuss the format of the rules that may lead to various types of P systems
and, more important, specific complexity aspects of the communication processes
involved.

We will first present various variants of P systems and analyse complexity
aspects related to the communication processes that occur and the dependencies
between the format of the rules in a compartment and the number of its neighbours.

The broadcasting problem is presented through the P system having the mem-
brane structure given by the tree structure in Figure 1(a) where the message will
start from membrane 9. According to the broadcasting principle, illustrated in [6],
from each membrane, or node of the tree, the message is sent one level up, to
its parent membrane, and to all its directly contained membranes. Initially the
message from membrane 9 is sent to 6, 11, 12. In the following step from these
compartments the messages are sent to 3, 10, 15, 16, respectively. Please note that
from the membranes 15, 16, 12 the message does no longer travel away from them.
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We can better illustrate how the message travels up and down the structure by
representing the tree with root 9 (see Figure 1(b)) as the associated tree structure
where the message travels only downwards.

We will consider a generic node j surrounded by neighbours p, i, k; one of these
may be a parent and the others children, or all of them children. The message,
denoted by O, might come from any of them and travel then to the others. The
message will come with other symbols that help the system implementing the
algorithm. We will conceive various rules allowing the message received from one
of its neighbours to travel through j towards its other neighbours. We will consider
four distinct cases illustrated by different types of P systems.

Case 1. Initially j consists of an empty multiset of objects and the rules are

• (i) p′ → ik, i′ → pk, k′ → pi;
• (ii) p → (j′O)p, i → (j′O)i, k → (j′O)k.

When a message comes from a neighbour, p for instance, then the corresponding
multiset, Op′ in this case, is received. In the first step p′ is transformed into ik by
using a rule of type (i). Next these two symbols trigger rules from (ii) which in
turn send the multiset Oj′ to the neighbours i and k, respectively.

Case 2. Like in the previous case, j consists of an initial empty multiset; the
rules are

p → (jO)i(jO)k, i → (jO)p(jO)k, k → (jO)p(jO)i.

In this case when p is received together with O it will send jO to i and to k
by using the first rule. We notice that the message is processed and passed on to
its neighbours in one single step.

Case 3. The compartment j contains the multiset pik and the rules

pc → (j′Ocnj,p)p|¬p′, ic → (j′Ocnj,i)i|¬i′, kc → (j′Ocnj,k)k|¬k′.

In this case j receives from p the multiset p′Occ. The symbol p′ acts as an
inhibitor of the first rule, preventing it to resend O back to p. The two c′s allow
the second and third rules to be executed. In the above rules nj,h defines the
number of neighbours of h, excluding j, h ∈ {p, i, k}. These rules are applied in
one step.

Case 4. The region j contains the multiset pik and the rules

• (i) c → x2,
• (ii) px → (j′Oc)p|¬p′, ix → (j′Oc)i|¬i′, kx → (j′Oc)k|¬k′.

Once j receives from its neighbour p the intended message through the multiset
p′Oc, the rule (i) is executed and two x′s are produced; then they will allow the
second and third rule from the set (ii) to send appropriate messages to neighbours
i and k.

These four cases have a constant time complexity, either one or two steps. We
now analyse the correlations between the format of rules in a compartment and the
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Fig. 1. Trees illustrating the membrane structure of a P system and the broadcasting
principle
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number of its neighbours. More precisely, if we refer to the region j then for each
neighbour the following happens: all the rules are affected in the first two cases;
only two rules are changes in the third case and only three in the last one. It follows
that the last two cases have a lower complexity than the first two with respect to
the execution steps and number of changes made. We will consider the third case
in our further investigations. This case, although very attractive due to its low
complexity, with respect to number of steps, and relative robustness to changes,
requires to assess in advance the number of neighbours for each compartment. We
will consider this case for the example described in Figure 1(a).

Example 1. Let us consider a more general situation whereby a membrane j is
included in p and contains k membranes i1, . . . , ik. The region j consists of a mul-
tiset composed of the identifiers of the outer membrane, p, and inner membranes
i1, . . . , ik, i.e., its close neighbours. Formally this is given by Mj = {p, i1, · · · , ik}.
We will adopt this notation for multisets, instead of string based, due to numbers
used as symbols in the notation below. Given the membrane structure defined by
the tree in Figure 1(a), the membrane 9 is part of membrane 6 and contains 11
and 12. The membrane structure is provided by

µ = [[[]4[]5]2[[[[[]15[]16]11[]12]9[[]13[[]17[]18]14]10]6[]7[]8]3]1

the initial multisets are:

M1 = {2, 3} M2 = {1, 4, 5} M3 = {1, 6, 7, 8} M4 = {2}
M5 = {2} M6 = {3, 9, 10} M7 = {3} M8 = {3}
M9 = {6, 11, 12} M10 = {6, 13, 14} M11 = {9, 15, 16} M12 = {9}
M13 = {10} M14 = {10, 17, 18} M15 = {11} M16 = {11}
M17 = {14} M18 = {14}

The rules of j are:

pc → (j′O)p(cp)nj,p |¬p′;

isc → (j′O)is(cis)
nj,is |¬i′s, s = 1, · · · , k;

where:

• like in Case 3 presented above, p′, i′s are inhibitors (a rule above is applied
when there is no p′ or i′s, respectively, in membrane j), O is the message that
will be sent, c is an object which is associated with a communication between
two membranes;

• nj,p, nj,is are integer values defining the number of non-visited neighbours of
p, is, respectively; it is easy to work out the relationship between the format of
a rule and the number of non-visited descendants of the neighbour associated
with the rule.

We briefly describe the first two steps of the broadcasting algorithm in this
case.
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Step 1. In the membrane that initiates the broadcasting are injected an object
O and a number of objects c, one for every neighbour.

For example, if the starting membrane is j = 9, like in Figure 1(a), then we
have the initial multiset M9 and the additional symbols mentioned above leading
to the multiset {6, 11, 12, O, c, c, c}; the rules are

R9 = {r9,6 : 6c → (9′O)6(c6)n9,6 |¬6′,
r9,11 : 11c → (9′O)11(c11)n9,11 |¬11′,
r9,12 : 12c → (9′O)12(c12)n9,12 |¬12′}

After these rules are applied in membrane 9, the objects 6, 11, 12, c, c, c are con-
sumed and only an O remains in this membrane showing that the message has
been received.

Step 2. Since this step onwards it is easy to follow the route of messages trav-
elling through the system by representing it as a tree with root 9 as in Figure
1(b). If in Step 1 we consider n9,6 = 2, n9,11 = 2 and n9,12 = 0, then in the mem-
branes 6, 11, 12 which are neighbours of 9, the multisets will be: {3, 9, 10, 9′, O, c, c},
{9, 15, 16, 9′, O, c, c}, {9, 9′, O}, respectively; the rules will be:

R6 = {r6,3 : 3c → (6′O)3(c3)n6,3 |¬3′,
r6,9 : 9c → (6′O)9(c9)n6,9 |¬9′,

r6,10 : 10c → (6′O)10(c10)n6,10 |¬10′}

R11 = {r11,9 : 9c → (11′O)9(c9)n11,9 |¬9′,
r11,15 : 15c → (11′O)15(c15)n11,15 |¬15′,
r11,16 : 16c → (11′O)16(c16)n11,16 |¬16′}

R12 = {r12,9 : 9c → (12′O)9(c9)n12,9 |¬9′}

The rules r6,3, r6,10, r11,15, r11,16 are applied and the following multisets are ob-
tained {O}, {9, 9′, O}, {9, 9′, O}, {9, 9′, O}, in regions 9, 6, 11, 12, respectively.

If in Step 1 we consider n9,6 = 0 or n9,6 = 1, then at least one of the rules r6,3

or r6,10 cannot be applied as a c is missing and then in the corresponding hierarchy
of compartments the message O is not received. 4 The multiset associated with
region 6 becomes {3, 9, 9′, O}, where 3 is the non-visited compartment together
with its neighbours.

If in Step 1 it is considered n9,6 > 2 then the multiset is {3, 9, 10, 9′, O, cn9,6},
and by applying the two existing rules, it becomes {9, 9′, O, cn9,6−2}.

The process restarts from the compartments that have been affected by the
communication rules in Step 2.

From this example we observe the following regarding the values nj,i involved.

4 r6,9 can not be applied due to the inhibitor 9′
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• If the values nj,i are appropriately chosen then in each membrane we will
eventually get an O and no c.

• If nj,i is less than the expected value then for at least one hierarchy of com-
partments the message O does not travel to it.

• If nj,i has a bigger value then in some compartments we will have some more
c′s.

• Some nj,i do not count, i.e., those where the inhibitors i′ are present. For
instance: n6,9, n11,9, n15,11 etc.

• For the membrane structure given in Figure 1(a), the solution is: n9,6 = 2,
n9,11 = 2, n9,12 = 0, n6,3 = 3, n6,10 = 2, n11,15 = 0, n11,16 = 0, n3,1 = 1,
n3,7 = 0, n3,8 = 0, n10,13 = 0, n10,14 = 2, n1,2 = 2, n14,17 = 0, n14,18 = 0,
n2,4 = 0, n2,5 = 0; the other ni,j do not count.

• The number of ni,j values that are relevant is the same as the number of
pairs parent-child in the membrane structure and is equal to the number of
compartments - 1.

• By using the above values ni,j , the P system will end up with the multisets
below, where Mj is this multiset for the compartment j:

M1 = {3, 3′, O} M2 = {1, 1′, O} M3 = {6, 6′, O}
M4 = {2, 2′, O} M5 = {2, 2′, O} M6 = {9, 9′, O}
M7 = {3, 3′, O} M8 = {3, 3′, O} M9 = {O}
M10 = {6, 6′, O} M11 = {9, 9′, O} M12 = {9, 9′, O}
M13 = {10, 10′, O} M14 = {10, 10′, O} M15 = {11, 11′, O}
M16 = {11, 11′, O} M17 = {14, 14′, O} M18 = {14, 14′, O}

• Given the non-determinism of the P system, for the same values of some param-
eters we can have different number of messages sent. For instance if n9,6 = 1,
then M6 = {3, 9, 10, 9′, O, c}. If r6,3 is applied then the hierarchy of compart-
ments starting with 10 remains without messages (5 compartments without O).
Similarly, if r6,10 is applied then the 7 compartment occurring in the subtree
rooted in 3 remained non-visited – see Figure 1(b).

4 Tuning the P system

In order to tune the system the values ni,j have to be identified. In the following
a further transformation of the system is provided together with a more abstract
representation.

The X-machine associated to the P system. According to the broadcast-
ing problem defined above the values ni,j have to be found and we will apply an
evolutionary approach using genetic algorithms to find these values. In order to
apply it we will transform the cell-like structure of the system into a tree based
structure. For a membrane structure µ we will consider as tree root the node from
which the broadcast starts. For the P system presented in Example 1, node 9 will
be the tree root - see Figure 1(b). We can further abstract the problem and define
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each communication between two nodes i, j as a function fi,j with ni,j as its pa-
rameter describing the number of non-visited neighbours. It is easy to observe that
the functions emerging from the same node will be executed in parallel, maybe
together with other functions emerging from other nodes, they are independent
of each other and an interleaving strategy can be adopted. In this case sequences
of functions can be considered. A state machine or an X-machine can be defined
by considering all possible interleavings of the arcs coming out of the nodes of
a subtree. In the case presented in Example 1 the initial node is 9 and we dis-
tinguish three cases; when a c will be in 9 then we have three non-deterministic
choices from 9 to each of the neighbours, the arcs being f9,x where x ∈ {6, 11, 12};
when two c′s are in 9 then there are 6 non-deterministic choices: for each state
defined by a pair {x, y}, x, y ∈ {6, 11, 12}, x 6= y, two non-deterministic sequences
f9,x, f9,y and f9,y, f9,x can be conceived; for three or more c′s there are again six
non-deterministic choices from 9 to the state {6, 11, 12}, given by all the possible
combinations of sequences of three functions f9,x, x ∈ {6, 11, 12}. From each of
the above seven states, {6}, {11}, {12}, {6, 11} {6, 12}, {11, 12}, {6, 11, 12} the con-
struction of the machine follows the following steps: the arcs of the subtrees of
roots specified by these states are shuffled. All shuffled routes starting in a given
state are equivalent as the order of executing these functions does not matter.

5 Experiments and results

The experiments performed aimed to determine the unknown elements of a P sys-
tem, more precisely the values ni,j , using genetic algorithms. Considering that the
structure of the P system contains m compartments, the number of parameter
values that should be discovered is m− 1. In order to determine these values ni,j ,
only the tree structure of the P system was used. Each candidate solution was
encoded by an integer vector with m − 1 components, ranging from 0 to 10 and,
consequently, the search space size was 11m−1. The JGAP package (Java Genetic
Algorithms and Genetic Programming Package) [9] was used for an elitist genetic
algorithm implementation. The crossover operator has a great impact on the suc-
cess of the genetic algorithm and the one chosen for this problem was the uniform
crossover [7] (it is not part of the current JGAP version, but the package can
be quickly extended with others operators). For selection we used a BestChromo-
somesSelector with the rate 0.8, which takes the top 80% individuals into the next
generation, according to their fitness. The mutation operator employed had a 1/12
mutation rate.

The experiments performed considered trees having different number of nodes:
10, 15, 20, 25, 30, 35, 40, 45, 50. Obviously, it is more difficult to find a solution
for a tree with 50 nodes (49 unknown variables) than for a tree with 10 nodes
(and 9 unknown parameters). Due to the fact that the tree structure might have
(or not) an influence on the problem considered, the following types of trees were
considered:
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1. Trees with fixed number of sons: each node has exactly p sons, excepting the
leafs and eventually the last non-leaf node. For example, if the tree has m =
10 nodes and we consider p = 3, the root and its direct descendants will
have exactly three sons. If m = 10 and p = 4, then the tree will have 4
direct descendants from the root, 4 for another node and only 1 descendant
for another node.

2. Trees with a random number of sons: each non-leaf node can have a different
number of sons, randomly chosen, with an equal probability, from the set
{1,. . . ,p}.
In both cases, for each number of nodes m ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50}

(corresponding to compartments in the P system) we considered all the values p ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10}. A tree was generated according to the structural criterion
1 or 2 and the unknown parameters values ni,j were searched using a genetic
algorithm. The fitness function simulated a broadcasting (transmission) in the
tree, starting from the root and using the parameters ni,j . At the end of the
transmission, each candidate solution was evaluated by counting the unvisited
nodes and the extra messages sent to the nodes. For this we used the formula

fitness = λ · no of unvisited nodes + no of extra messages,

where:

• no of unvisited nodes represents the number of nodes where the message was
not received: at the end of the computation, the membrane (node) does not
contain any object O;

• no of extra messages represents the number of extra objects c, present in the
nodes at the end of the computation, that cannot be consumed;
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• λ is a positive penalty (or weight) parameter which gives more importance to
the no of unvisited nodes or to the no of extra messages

Experimentally, we noticed that a function for which λ > 1 guided better the
search than in the case in which λ = 1. After checking the convergence of the
genetic algorithm on a few test trees, we decided to further use λ = 10, this way
giving a higher penalty to the values ni,j which leave more unvisited nodes. The
following termination criteria for the genetic algorithm were used: A) fitness = 0
(the solution was found: all the tree nodes were visited, with no extra messages
sent) and B) the maximum allowed number of generations (10000) was reached.
The population size used in these experiments was in all cases of 20 individuals.

For each combination, given by the structural criterion 1 or 2, the number of
nodes in the tree m ∈ {10, 15, 20, . . . , 50} and the number of sons for each node
p ∈ {2, 3, . . . , 10} the genetic algorithm was run 30 times. After each run, the best
solution obtained, its fitness and the current generation were retained. The Tables
1,2,3,4 present, for each set of 30 the runs the following information: m = number
of nodes in the tree, p = number of sons, the search space dimension for each case
and the success rate for the 30 runs. Also, the mean and the standard deviation
are shown for the best fitness function values (MF, SF) and for the number of
generations (MG, SG), after 30 runs. The last column from the table shows the
cumulated duration of the 30 runs, expressed in seconds.

We will refer only to results obtained for trees with fixed number of sons as for
trees with random number of descendants the results are very similar. The average
number of generations (Figure 2) and the time elapsed to get the solution (Figure
4) grow proportional to the number of nodes in the tree. The maximum allowed
number of generations for the GA was set to 10000. Consequently, the success
rates were very high for trees with less than 45 nodes (for which the solution was
found in less generations) and then almost halves for trees with 50 nodes (Figure
3).

6 Conclusions

In this paper a method to determine the rules of a P system that models the
broadcasting algorithm is introduced. Naturally, the number of unknown param-
eter values ni,j increases with the compartments number and consequently the
search space size grows also. The search space size is obviously cno par, where c
is the number of possible values for one parameter ni,j and no par is the num-
ber of unknown parameters. The average number of generations and the elapsed
time needed to find a solution increase when the search space is very large. If the
maximum allowed number of generations is not high enough, the GA might end
unsuccessful. One possible solution to overcome this is to increase the maximum
allowed number of generations for the GA. Others solutions can be: using hybrid
approaches, i.e. combining GAs with local search techniques (like hill climbing) and
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developing new GAs operators, suited for this problem (the crossover operator has
in particular a great impact on the GA).

The method is described in a more general context of an abstract X-machine
that captures some specific aspects of the P system, namely the size of the rules.
Given that similar approaches to map P systems into X-machines prove to be very
effective in testing these systems [8], we can conclude that such testing strategies
developed for associated X-machines can be applied in the case of the broadcasting
problem as well. Hence, we can provide a powerful method to estimate the P system
that models the broadcasting problem and then test the implementation based on
this model.

Further studies will aim to improve the precision and efficiency of the method
discussed in this paper and to extend it to other classes of P systems.
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m p Space size Succ. MF SF MG SG Dur.

10 2 2.36E+09 100.0 % 0.00 0.00 65.50 29.60 1
10 3 2.36E+09 100.0 % 0.00 0.00 62.77 25.38 1
10 4 2.36E+09 100.0 % 0.00 0.00 66.13 33.93 1
10 5 2.36E+09 100.0 % 0.00 0.00 63.13 21.65 1
10 6 2.36E+09 100.0 % 0.00 0.00 68.43 28.07 1
10 7 2.36E+09 100.0 % 0.00 0.00 59.07 22.45 1
10 8 2.36E+09 100.0 % 0.00 0.00 63.77 26.55 1
10 9 2.36E+09 100.0 % 0.00 0.00 63.50 20.34 1
10 10 2.36E+09 100.0 % 0.00 0.00 67.10 29.93 1
15 2 3.80E+14 100.0 % 0.00 0.00 161.07 76.80 5
15 3 3.80E+14 100.0 % 0.00 0.00 153.53 63.31 5
15 4 3.80E+14 100.0 % 0.00 0.00 161.53 61.55 5
15 5 3.80E+14 100.0 % 0.00 0.00 140.13 51.84 5
15 6 3.80E+14 100.0 % 0.00 0.00 154.70 76.02 5
15 7 3.80E+14 100.0 % 0.00 0.00 154.03 71.19 5
15 8 3.80E+14 100.0 % 0.00 0.00 156.83 43.10 5
15 9 3.80E+14 100.0 % 0.00 0.00 168.27 69.02 5
15 10 3.80E+14 100.0 % 0.00 0.00 153.80 63.36 5
20 2 6.12E+19 100.0 % 0.00 0.00 363.10 188.67 14
20 3 6.12E+19 100.0 % 0.00 0.00 327.23 124.68 13
20 4 6.12E+19 100.0 % 0.00 0.00 388.43 158.48 15
20 5 6.12E+19 100.0 % 0.00 0.00 370.63 213.60 15
20 6 6.12E+19 100.0 % 0.00 0.00 364.13 135.54 14
20 7 6.12E+19 100.0 % 0.00 0.00 348.33 152.45 14
20 8 6.12E+19 100.0 % 0.00 0.00 442.20 178.49 17
20 9 6.12E+19 100.0 % 0.00 0.00 354.73 154.01 14
20 10 6.12E+19 100.0 % 0.00 0.00 357.30 142.46 14
25 2 9.85E+24 100.0 % 0.00 0.00 782.77 250.66 39
25 3 9.85E+24 100.0 % 0.00 0.00 730.87 228.65 37
25 4 9.85E+24 100.0 % 0.00 0.00 834.83 316.04 42
25 5 9.85E+24 100.0 % 0.00 0.00 855.97 358.82 43
25 6 9.85E+24 100.0 % 0.00 0.00 808.17 369.63 41
25 7 9.85E+24 100.0 % 0.00 0.00 915.60 306.14 46
25 8 9.85E+24 100.0 % 0.00 0.00 721.67 327.35 36
25 9 9.85E+24 100.0 % 0.00 0.00 847.90 336.24 42
25 10 9.85E+24 100.0 % 0.00 0.00 859.47 313.92 43
30 2 1.59E+30 100.0 % 0.00 0.00 1329.13 488.55 83
30 3 1.59E+30 100.0 % 0.00 0.00 1616.13 850.51 100
30 4 1.59E+30 100.0 % 0.00 0.00 1377.40 516.99 86
30 5 1.59E+30 100.0 % 0.00 0.00 1522.27 642.85 94

Table 1. Statistics for trees with m nodes and fixed number of sons p
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m p Space Succ. MF SF MG SG Dur.

30 6 1.59E+30 100.0 % 0.00 0.00 1653.27 549.80 102
30 7 1.59E+30 100.0 % 0.00 0.00 1523.37 585.38 94
30 8 1.59E+30 100.0 % 0.00 0.00 1493.30 512.72 92
30 9 1.59E+30 100.0 % 0.00 0.00 1643.13 659.68 101
30 10 1.59E+30 100.0 % 0.00 0.00 1452.80 490.25 89
35 2 2.55E+35 100.0 % 0.00 0.00 2678.50 972.70 200
35 3 2.55E+35 100.0 % 0.00 0.00 2611.27 932.03 199
35 4 2.55E+35 100.0 % 0.00 0.00 3237.53 1537.68 284
35 5 2.55E+35 100.0 % 0.00 0.00 2398.23 609.77 181
35 6 2.55E+35 100.0 % 0.00 0.00 2984.70 844.46 228
35 7 2.55E+35 100.0 % 0.00 0.00 2808.17 869.71 209
35 8 2.55E+35 100.0 % 0.00 0.00 2810.83 929.17 211
35 9 2.55E+35 100.0 % 0.00 0.00 2673.77 857.52 199
35 10 2.55E+35 100.0 % 0.00 0.00 3004.70 1077.03 220
40 2 4.11E+40 100.0 % 0.00 0.00 4476.57 1587.89 392
40 3 4.11E+40 96.7 % 0.03 0.18 4464.57 1544.74 397
40 4 4.11E+40 96.7 % 0.03 0.18 4643.00 1670.95 412
40 5 4.11E+40 100.0 % 0.00 0.00 4592.83 1640.95 407
40 6 4.11E+40 100.0 % 0.00 0.00 4046.40 1184.09 358
40 7 4.11E+40 96.7 % 0.03 0.18 4607.63 1851.40 415
40 8 4.11E+40 100.0 % 0.00 0.00 4175.73 1212.75 366
40 9 4.11E+40 100.0 % 0.00 0.00 4471.87 1566.23 394
40 10 4.11E+40 100.0 % 0.00 0.00 4513.00 1465.79 390
45 2 6.63E+45 93.3 % 0.07 0.25 6464.13 2055.62 667
45 3 6.63E+45 80.0 % 0.27 0.58 7239.77 1869.96 753
45 4 6.63E+45 86.7 % 0.17 0.46 6700.20 2103.96 695
45 5 6.63E+45 90.0 % 0.10 0.31 6964.23 2095.90 725
45 6 6.63E+45 80.0 % 0.27 0.58 6541.43 2342.57 682
45 7 6.63E+45 90.0 % 0.13 0.43 6620.33 1898.96 690
45 8 6.63E+45 86.7 % 0.17 0.46 6975.67 1719.86 723
45 9 6.63E+45 76.7 % 0.27 0.52 6864.73 2304.19 714
45 10 6.63E+45 90.0 % 0.10 0.31 6811.03 1914.10 689
50 2 1.07E+51 66.7 % 0.47 0.78 8275.27 1624.30 1011
50 3 1.07E+51 50.0 % 0.80 0.89 8766.20 1434.48 1063
50 4 1.07E+51 40.0 % 0.80 0.89 8981.07 1523.70 1073
50 5 1.07E+51 46.7 % 0.67 0.76 9189.17 1309.14 1100
50 6 1.07E+51 50.0 % 0.57 0.63 9443.93 991.21 1145
50 7 1.07E+51 50.0 % 0.70 0.84 9189.77 1131.65 1117
50 8 1.07E+51 80.0 % 0.33 0.76 8198.33 1419.55 985
50 9 1.07E+51 50.0 % 0.73 0.87 8985.03 1310.33 1061
50 10 1.07E+51 30.0 % 1.03 0.89 9262.57 1306.81 1092

Table 2. Statistics for trees with m nodes and fixed number of sons p
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m p Space Succ. MF SF MG SG Dur.

10 2 2.36E+09 100.0 % 0.00 0.00 63.27 32.43 1
10 3 2.36E+09 100.0 % 0.00 0.00 58.27 23.10 1
10 4 2.36E+09 100.0 % 0.00 0.00 58.80 17.81 1
10 5 2.36E+09 100.0 % 0.00 0.00 72.73 25.61 1
10 6 2.36E+09 100.0 % 0.00 0.00 66.50 24.56 1
10 7 2.36E+09 100.0 % 0.00 0.00 64.47 29.34 1
10 8 2.36E+09 100.0 % 0.00 0.00 57.10 20.66 1
10 9 2.36E+09 100.0 % 0.00 0.00 57.13 17.19 1
10 10 2.36E+09 100.0 % 0.00 0.00 66.30 25.95 1
15 2 3.80E+14 100.0 % 0.00 0.00 155.43 67.94 5
15 3 3.80E+14 100.0 % 0.00 0.00 148.43 49.25 5
15 4 3.80E+14 100.0 % 0.00 0.00 158.93 73.09 5
15 5 3.80E+14 100.0 % 0.00 0.00 163.67 62.21 5
15 6 3.80E+14 100.0 % 0.00 0.00 159.40 60.32 5
15 7 3.80E+14 100.0 % 0.00 0.00 152.60 55.89 5
15 8 3.80E+14 100.0 % 0.00 0.00 147.73 49.97 5
15 9 3.80E+14 100.0 % 0.00 0.00 152.03 63.03 5
15 10 3.80E+14 100.0 % 0.00 0.00 153.90 58.05 5
20 2 6.12E+19 100.0 % 0.00 0.00 381.27 155.23 14
20 3 6.12E+19 100.0 % 0.00 0.00 379.93 149.30 15
20 4 6.12E+19 100.0 % 0.00 0.00 356.53 94.02 15
20 5 6.12E+19 100.0 % 0.00 0.00 358.53 161.98 14
20 6 6.12E+19 100.0 % 0.00 0.00 353.97 151.56 14
20 7 6.12E+19 100.0 % 0.00 0.00 328.90 110.80 13
20 8 6.12E+19 100.0 % 0.00 0.00 382.50 149.76 15
20 9 6.12E+19 100.0 % 0.00 0.00 407.43 179.24 16
20 10 6.12E+19 100.0 % 0.00 0.00 376.80 196.99 15
25 2 9.85E+24 100.0 % 0.00 0.00 882.93 475.38 44
25 3 9.85E+24 100.0 % 0.00 0.00 772.13 249.86 39
25 4 9.85E+24 100.0 % 0.00 0.00 823.43 364.62 41
25 5 9.85E+24 100.0 % 0.00 0.00 863.57 363.86 43
25 6 9.85E+24 100.0 % 0.00 0.00 833.20 495.31 42
25 7 9.85E+24 100.0 % 0.00 0.00 842.67 318.03 42
25 8 9.85E+24 100.0 % 0.00 0.00 834.87 291.64 42
25 9 9.85E+24 100.0 % 0.00 0.00 822.13 423.69 40
25 10 9.85E+24 100.0 % 0.00 0.00 834.23 323.54 42
30 2 1.59E+30 100.0 % 0.00 0.00 1549.30 680.43 94
30 3 1.59E+30 100.0 % 0.00 0.00 1519.50 622.27 93
30 4 1.59E+30 100.0 % 0.00 0.00 1785.00 589.93 109
30 5 1.59E+30 100.0 % 0.00 0.00 1475.80 761.75 94

Table 3. Statistics for trees with m nodes and variable number of sons between {1, . . . , p}
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m p Space Succ. MF SF MG SG Dur.

30 6 1.59E+30 100.0 % 0.00 0.00 1657.53 621.15 105
30 7 1.59E+30 100.0 % 0.00 0.00 1691.43 555.99 108
30 8 1.59E+30 100.0 % 0.00 0.00 1423.43 517.50 91
30 9 1.59E+30 100.0 % 0.00 0.00 1579.10 497.21 99
30 10 1.59E+30 100.0 % 0.00 0.00 1451.13 502.28 92
35 2 2.55E+35 100.0 % 0.00 0.00 2864.53 1163.11 218
35 3 2.55E+35 100.0 % 0.00 0.00 2700.27 832.91 205
35 4 2.55E+35 100.0 % 0.00 0.00 2822.23 1200.13 216
35 5 2.55E+35 100.0 % 0.00 0.00 3073.17 1217.87 236
35 6 2.55E+35 100.0 % 0.00 0.00 2491.67 781.10 192
35 7 2.55E+35 100.0 % 0.00 0.00 2426.27 785.50 186
35 8 2.55E+35 100.0 % 0.00 0.00 2681.93 859.48 203
35 9 2.55E+35 100.0 % 0.00 0.00 2952.83 1151.27 226
35 10 2.55E+35 100.0 % 0.00 0.00 2610.67 1133.39 193
40 2 4.11E+40 100.0 % 0.00 0.00 4112.87 1169.85 364
40 3 4.11E+40 100.0 % 0.00 0.00 4785.10 1656.32 420
40 4 4.11E+40 100.0 % 0.00 0.00 4557.37 1544.00 401
40 5 4.11E+40 100.0 % 0.00 0.00 4120.03 1417.94 363
40 6 4.11E+40 100.0 % 0.00 0.00 4534.57 1634.49 404
40 7 4.11E+40 100.0 % 0.00 0.00 4819.10 1268.60 422
40 8 4.11E+40 100.0 % 0.00 0.00 4281.47 1744.27 375
40 9 4.11E+40 96.7 % 0.03 0.18 4317.23 1719.93 378
40 10 4.11E+40 100.0 % 0.00 0.00 4343.13 1500.82 384
45 2 6.63E+45 83.3 % 0.17 0.38 6733.47 2096.95 690
45 3 6.63E+45 90.0 % 0.10 0.31 7226.00 1993.56 745
45 4 6.63E+45 83.3 % 0.17 0.38 6764.33 2299.93 693
45 5 6.63E+45 80.0 % 0.20 0.41 7079.87 1975.24 725
45 6 6.63E+45 93.3 % 0.07 0.25 6686.43 1886.45 686
45 7 6.63E+45 93.3 % 0.07 0.25 6328.57 1980.41 649
45 8 6.63E+45 86.7 % 0.13 0.35 6766.33 2225.37 690
45 9 6.63E+45 83.3 % 0.17 0.38 6997.10 1954.87 717
45 10 6.63E+45 93.3 % 0.07 0.25 6519.57 1973.89 671
50 2 1.07E+51 40.0% 0.80 0.89 9223.73 1262.43 1088
50 3 1.07E+51 40.0% 0.80 0.81 9554.10 699.02 1145
50 4 1.07E+51 33.3% 0.87 0.82 9311.43 1200.56 1097
50 5 1.07E+51 50.0% 0.67 0.76 8869.97 1615.60 1040
50 6 1.07E+51 63.3% 0.37 0.49 8775.83 1498.18 1034
50 7 1.07E+51 53.3% 0.60 0.77 8571.30 1755.25 1014
50 8 1.07E+51 56.7% 0.67 0.99 8782.73 1450.53 1051
50 9 1.07E+51 40.0% 0.73 0.69 8849.47 1684.96 1042
50 10 1.07E+51 50.0% 0.70 0.88 8994.07 1635.41 1063

Table 4. Statistics for trees with m nodes and variable number of sons between {1, . . . , p}


