Skip to main content

Biomechanical Simulation of Human Eye Movement

  • Conference paper
Book cover Biomedical Simulation (ISBMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5958))

Included in the following conference series:

Abstract

Understanding the neural control and mechanics of human eye movement has significant implications for treating vision disorders. A computational model incorporating physiological properties and nonlinear kinematics of the oculomotor plant’s geometry and extraocular muscle (EOM) mechanics is desirable for scientific studies and clinical applications. We simulate realistic three-dimensional eye fixation using a new biomechanical simulation framework. We model EOMs as a collection of “strands,” which are modeling elements for musculotendon mechanics based on splines with inertia. Anatomical variations in EOM and globe geometry across individuals can be taken into account. Complicated nonlinear EOM mechanics as well as the recently discovered pulleys are included in the computation. The resulting model generates realistic gaze positions and trajectories given EOM innervations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Clark, R.A., Miller, J.M., Demer, J.L.: Three-dimensional location of human rectus pulleys by path inections in secondary gaze positions. Investigative Ophthalmology & Visual Science 41, 3787–3797 (2000)

    Google Scholar 

  3. Collins, C.C.: Orbital mechanics. In: The control of eye movements, pp. 283–325. Academic Press, New York (1971)

    Google Scholar 

  4. Collins, C.C., O’Meara, D., Scott, A.B.: Muscle tension during unrestrained human eye movements. Journal of Physiology 245(2), 351–369 (1975)

    Google Scholar 

  5. Haslwanter, T., Buchberger, M., Kaltofen, T., Hoerantner, R., Priglinger, S.: SEE++: Biomechanical model of the oculomotor plant. Annals of the New York Academy of Sciences 1039, 9–14 (2005)

    Article  Google Scholar 

  6. Kono, R., Clark, R.A., Demer, J.L.: Active pulleys: Magnetic resonance imaging of rectus muscle paths in tertiary gazes. Investigative Ophthalmology & Visual Science 43, 2179–2188 (2002)

    Google Scholar 

  7. Miller, J.M.: Functional anatomy of normal human rectus muscles. Vision Research 29, 223–240 (1989)

    Article  Google Scholar 

  8. Miller, J.M., Pavlovski, D.S., Shamaeva, I.: Orbittm 1.8 gaze mechanics simulation. Eidactics, San Francisco (1995)

    Google Scholar 

  9. Miller, J.M., Robinson, D.A.: A model of the mechanics of binocular alignment. Computers and Biomedical Research 17(5), 436–470 (1984)

    Article  Google Scholar 

  10. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton (1994)

    MATH  Google Scholar 

  11. Piccirelli, M., Luechinger, R., Rutz, A.K., Boesiger, P., Bergamin, O.: Extraocular muscle deformation assessed by motion-encoded MRI during eye movement in healthy subjects. Journal of Vision 7(10), 1–10 (2007)

    Article  Google Scholar 

  12. Porter, J.D., Baker, R.S., Ragusa, R.J., Brueckner, J.K.: Extraocular muscles: basic and clinical aspects of structure and function. Survey of Ophthalmology 39, 451–484 (1995)

    Article  Google Scholar 

  13. Qin, H., Terzopoulos, D.: D-nurbs: A physics-based framework for geometric design. IEEE Transactions on Visualization and Computer Graphics 2(1), 85–96 (1996)

    Article  Google Scholar 

  14. Quaia, C., Optican, L.M.: Commutative saccadic generator is su_cient to control a 3-D ocular plant with pulleys. Journal of Neurophysiology 79, 3197–3215 (1998)

    Google Scholar 

  15. Quaia, C., Optican, L.M.: Dynamic eye plant models and the control of eye movement. Strabismum 11(1), 17–31 (2003)

    Article  Google Scholar 

  16. Quaia, C., Shan, X., Tian, J., Ying, H., Optican, L.M., Walker, M., Tamargo, R., Zee, D.S.: Acute superior oblique palsy in the monkey: effects of viewing conditions on ocular alignment and modelling of the ocular motor plant. Progress in Brain Research 171, 47–52 (2008)

    Article  Google Scholar 

  17. Raphan, T.: Modeling control of eye orientation in three dimensions:i. role of muscle pulleys in determining saccadic trajectory. Journal of Neurophysiology 79, 2653–2667 (1998)

    Google Scholar 

  18. Robinson, D.A.: The mechanics of human saccadic eye movement. Journal of Physiology 174, 245–264 (1964)

    Google Scholar 

  19. Robinson, D.A.: A quantitative analysis of extraocular muscle cooperation and squint. Investigative Ophthalmology & Visual Science 14, 801–825 (1975)

    Google Scholar 

  20. Robinson, D.A.: Models of the mechanics of eye movements. Models of Oculomotor Behavior and Control, 21–41 (1981)

    Google Scholar 

  21. Robinson, D.A., OMeara, D.M., Scott, A.B., Collins, C.C.: Mechanical components of human eye movements. Journal of Applied Physiology 26(5), 548–553 (1969)

    Google Scholar 

  22. Schnablok, C., Raphan, T.: Modeling three-dimensional velocity to position transformation in oculomotor control. Journal of Neurophysiology 71, 623–638 (1994)

    Google Scholar 

  23. Simonsz, H.J., Spekreijse, H.: Robinson’s computerized strabismus model comes of age. Strabismus 4(1), 25–40 (1996)

    Article  Google Scholar 

  24. Sueda, S., Kaufman, A., Pai, D.K.: Musculotendon simulation for hand animation. ACM Transactions of Graphics (Proc. SIGGRAPH 2008) 27(3) (2008)

    Google Scholar 

  25. Sylvestre, P.A., Cullen, K.E.: Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. Journal of Neurophysiology 82, 2612–2632 (1999)

    Google Scholar 

  26. Wei, Q., Sueda, S., Miller, J.M., Demer, J.L., Pai, D.K.: Subject-specific reconstruction of the human orbit from magnetic resonance images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 105–108 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, Q., Sueda, S., Pai, D.K. (2010). Biomechanical Simulation of Human Eye Movement. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2010. Lecture Notes in Computer Science, vol 5958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11615-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11615-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11614-8

  • Online ISBN: 978-3-642-11615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics