Skip to main content

Semi-automatic Segmentation of Fractured Pelvic Bones for Surgical Planning

  • Conference paper
Book cover Biomedical Simulation (ISBMS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5958))

Included in the following conference series:

Abstract

The segmentation of bones and bone fragments in clinical computed tomography datasets is an important first step in order to carry out computer-based surgical planning using patient-specific anatomical models. While semi-automatic and automatic methods have been proposed for the intact pelvic bone, the segmentation of bone fragments in the fractured pelvic bone still is a challenge due to weak boundaries and the diversity of injury patterns. We propose a semi-automatic multi-step segmentation method using bone and fracture gap enhancement filtering and a graph cut based bone fragment separation approach. The key contribution is a technique for automated detection of incorrect bone fragment separation in the case of incomplete pelvic fractures based on fracture gap planes detected in Hessian filtered images. Moreover, we propose a new sheetness measure based on a modified Hessian matrix. Our system is capable of segmenting fragments of complex hip fractures with only minimal user interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dakin, G.J., et al.: Acetabular fracture patterns: associations with motor vehicle crash information. J. Trauma 47(6), 1063–1071 (1999)

    Article  Google Scholar 

  2. Vanderschot, P.: Treatment options of pelvic and acetabular fractures in patients with osteoporotic bone. Injury 38(4), 497–508 (2007)

    Article  Google Scholar 

  3. Citak, M., et al.: Virtual 3D planning of acetabular fracture reduction. J. Orthop. Res. 26(4), 547–552 (2008)

    Article  Google Scholar 

  4. Cimerman, M., Kristan, A.: Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules. Injury 38(4), 442–449 (2007)

    Article  Google Scholar 

  5. anonymous

    Google Scholar 

  6. Kang, Y., Engelke, K., Kalender, W.A.: A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 22(5), 586–598 (2003)

    Article  Google Scholar 

  7. Zoroofi, R.A., et al.: Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans. Inf. Technol. Biomed. 7(4), 329–343 (2003)

    Article  Google Scholar 

  8. Lamecker, H., et al.: A 3D statistical shape model of the pelvic bone for segmentation. In: Medical Imaging 2004: Image Processing, Pts 1-3, vol. 5370, pp. 1341–1351 (2004)

    Google Scholar 

  9. Pettersson, J., et al.: Volume Morphing for Segmentation of Bone from 3D Data. In: Proceedings of the SSBA Symposium on Image Analysis (2005)

    Google Scholar 

  10. Letournel, E.: Acetabulum fractures: classification and management. Clin. Orthop. Relat. Res. (151), 81–106 (1980)

    Google Scholar 

  11. Wei, W., Ronald, C.: Image segmentation via brittle fracture mechanics. In: International Conference on Image Processing, 2004. ICIP (2004)

    Google Scholar 

  12. Descoteaux, M., et al.: Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. Comput. Aided Surg. 11(5), 247–255 (2006)

    Article  Google Scholar 

  13. Beare, R.: Optimization of connected component labelling. The Insight Journal (2006)

    Google Scholar 

  14. Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society. Series B, 271–279 (1989)

    Google Scholar 

  15. Boykov, Y., Jolly, M.-P.: Interactive Organ Segmentation Using Graph Cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)

    Google Scholar 

  16. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum 26(2), 214–226 (2007)

    Article  Google Scholar 

  17. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fornaro, J., Székely, G., Harders, M. (2010). Semi-automatic Segmentation of Fractured Pelvic Bones for Surgical Planning. In: Bello, F., Cotin, S. (eds) Biomedical Simulation. ISBMS 2010. Lecture Notes in Computer Science, vol 5958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11615-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11615-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11614-8

  • Online ISBN: 978-3-642-11615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics