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Abstract. We show that Möbius transformations preserve the rotation-
minimizing frames which are associated with space curves. In addition,
these transformations are known to preserve the class of rational Py-
thagorean-hodograph curves and also rational frames. Based on these
observations we derive an algorithm for G1 Hermite interpolation by ra-
tional Pythagorean-hodograph curves with rational rotation-minimizing
frames.
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1 Introduction

The rotation–minimizing frames which are associated with a space curve are
useful for generating sweep surfaces by moving a profile curve along a trajec-
tory. The first publication discussing this frame was probably [4]. Since then,
the computation of this frame and of the resulting sweep surfaces has been dis-
cussed in a substantial number of publications, see [23] and the references cited
therein. In particular, the construction of rational parameterizations of these
sweep surfaces is of interest, due to the importance of NURBS representations
for Computer-Aided Design.

The class of spatial Pythagorean–hodograph (PH) curves, which was intro-
duced in [10], seems to be particularly useful for sweep surface modeling. See
[8] for an introduction to this topic with many related references. These curves
are equipped with rational frames [14], which are called the Euler-Rodrigues
frames [5, 6]. In addition, certain PH curves support the exact computation of
rotation–minimizing frames via integration of rational functions [7].

PH space curves with rational rotation-minimizing frames have also been an-
alyzed in the literature. While such frames do not exist on PH cubics [12], an ex-
ample of a spatial PH curve of degree 7 with a rational rotation-minimizing frame
has been reported in [5]. In that paper, the authors analyzed the conditions un-
der which the Euler-Rodrigues frame of a PH curve is also a rotation–minimizing
frame, and they showed that this requires at least polynomial degree 7 for space
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curves. In a recent manuscript, [9], the authors use the Hopf map representation
for PH space curves to demonstrate the existence of rational rotation-minimizing
frames on spatial PH quintics.

The surfaces generated by rotation-minimizing frames have been called pro-
file surfaces in [18, 19]. Based on the kinematical interpretation of rotation-
minimizing frames as plane-rolling motions, a construction for rational profile
surfaces has been presented in [19]. This construction gives rational space curves
with rational rotation-minimizing frames, but the degree of the frames – and
hence of the resulting profile surfaces – is relatively high for non-planar curves.

Möbius transformations map polynomial or rational PH curves into rational
PH curves [20], where a rational PH curve is defined as a curve with rational
parametric speed. In addition to this result, in the present paper we show that
Möbius transformations preserve rotation-minimizing frames, and in particular
rational ones. This observation greatly enhances the flexibility of existing con-
structions for curves with rational rotation-minimizing frames [5, 9], since the
group of Möbius transformations can be used to generate new ones.

We demonstrate this observation by formulating an algorithm for G1 Hermite
interpolation by rational PH curves with rational rotation-minimizing frames. It
is based on Möbius transformations which are applied to planar PH cubics. In
the case of the latter curves, the Frenet frames are trivially rotation-minimizing
and also rational.

2 Rotation-minimizing frames & Möbius transformations

We recall the notion of the rotation-minimizing frame which can be associated
with any space curve and summarize the properties of Möbius transformations.
We then analyze the behaviour of rotation–minimizing frames, of Pythagorean-
hodograph curves, and of curves with rational rotation-minimizing frames under
Möbius transformations.

2.1 Rotation-minimizing frames

We consider a C∞ parametric curve segment x : u 7→ x(u) with the parameter
domain I = [0, 1]. We assume that x is regular for all u ∈ I, i.e., x′(u) 6= 0,
where the prime ′ indicates the differentiation with respect to u.

We consider a vector field r : u 7→ r(u) along the curve x. Such a vector field
is said to be a rotation–minimizing with respect to x if there exists a function λ
such that r satisfies the equations

r′(u) − λ(u)x′(u) = 0
x′(u) · r(u) = 0

}

(1)

for all u ∈ I. The first equation implies λ = (r′ ·x′)/(x′ ·x′). The second equation
expresses the fact that the vector r(u) is contained in the normal plane of the
curve at x(u). Due to

(r(u) · r(u))′ = 2r′(u) · r(u) = 2λ(u)x′(u) · r(u) = 0, (2)
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the length of the rotation-minimizing vectors r(u) is constant.
A rotation–minimizing frame (RMF) of the given curve x is defined as a

triplet of vectors
u 7→ (t(u), r(u), s(u)) (3)

with a unit vector r(u), where t = x′/|x′| is the unit tangent vector of the
given curve and s(u) = t(u)× r(u). Any vector field ̺r(u)+σs(u) with constant
coefficients ̺, σ is obviously again rotation–minimizing.

Let
Fx = {w,w · x′(0) = 0, ‖w‖ = 1} (4)

be the unit circle in the normal plane of the curve at x(0), which is also the set of
feasible initial values for rotation-minimizing frames defined by the equations (1)
at u = 0.

Finally we define the rotation–minimizing operator

Rx : Fx → C(I, S2), (5)

where S
2 is the unit sphere in R

3, as the mapping which assigns to any initial
vector r0 ∈ Fx the solution of the equations (1) with initial value r(0) = r0.
Consequently, Rx(u) is a mapping from Fx into S

2 for any fixed value of the
parameter u ∈ I.

2.2 Möbius transformations

We consider the three–dimensional space which is extended by adding a single
point ∞ at infinity. For any sphere with radius r > 0 and center c, the mapping

ρ : y 7→ c +
r2

‖y − c‖2
(y − c), y 6∈ {c,∞}, (6)

which additionally maps c to ∞ and vice versa, is said to be the inversion with
respect to the sphere. It satisfies ρ2 = id. The reflection at a plane is also con-
sidered as an inversion, which keeps ∞ fixed. A general Möbius transformation
µ is defined as a composition of an arbitrary number of inversions with respect
to spheres or planes. In particular, translations and rotations are special Möbius
transformations, since they can be obtained by composing two reflections at
planes.

The set of Möbius transformations forms a group with respect to composition,
which possesses the Euclidean group as a subgroup. Möbius transformations are
known to be the most general conformal (i.e., angle-preserving) transformations
of the three–dimensional space. The image of any plane or sphere under a Möbius
transformation is again a plane or a sphere.

While a Euclidean displacement provides six degrees of freedom, the set of
Möbius transformations depends on 10 free parameters. These transformations
can be represented by matrices of the group O(4, 1), which is a Lie group of
dimension 10. Any Möbius transformation is also a birational mapping. See [1,
2, 15] for additional information on this interesting class of transformations.



4 Michael Bartoň et al.

The differential

dµy : R
3 → R

3 (7)

of a Möbius transformation at a point y maps the tangent space of the three
dimensional-space at any point y into the tangent space at µ(y). More precisely,
for any vector v and any differentiable function f : R

3 → R, the directional
derivative of f with respect to the direction dµy(v) at the point µ(y) is equal to
the directional derivative of f ◦ µ with respect to the direction v at the point y,
see [11].

In addition we define the normalized differential

d⋆µy : R
3 → R

3 : v 7→
‖v‖

‖dµy(v)‖
dµy(v) (8)

as the version of this mapping which preserves the length of all vectors v.
As a special case we consider the inversion φ with respect to the unit sphere,

φ : y 7→
1

‖y‖2
y, y 6∈ {0,∞}. (9)

The differential dφy of this inversion is

dφy : R
3 → R

3 : v 7→
‖y‖2v − 2(v · y)y

‖y‖4
. (10)

A short computation confirms that the length of the image of a vector equals

‖dφy(v)‖ =
‖v‖

‖y‖2
. (11)

We use this result to find the normalized differential which preserves the length
of the vectors,

d⋆φy(v) : R
3 → R

3 : v 7→ ‖y‖2 dφy(v) = v −
2(v · y)

‖y‖2
y. (12)

In the case of a general Möbius transformation, which is obtained by compos-
ing several inversions, the differential and the normalized differential are both
linear transformations whose coefficients are quadratic rational functions of the
coordinates of the point y.

2.3 Invariance of rotation-minimizing frames

Möbius transformations commute with the computation of rotation minimizing
frames. More precisely, one has the following result.

Theorem 1. Consider a Möbius transformation µ which maps the curve x into
another regular curve segment µ ◦ x. Then
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x µ ◦ x

r0

d⋆µ
x(0)r0

Rx(u)
Rµ◦x(u)

µ

d⋆µ
x(u)

Fig. 1. Invariance of RMF under Möbius transformations, see Theorem 1.

(i) the evaluation of the rotation-minimizing vector field with respect to x at
the parameter value u for an initial vector r0 and the application of the
normalized differential of µ to the resulting vector

gives the same result as

(ii) the evaluation of the rotation-minimizing vector field with respect to µ ◦x at
this parameter value u, where the initial vector is the image of r0 under the
normalized differential of µ at x(0),

cf. Fig. 1. More precisely,

Rµ◦x(u) ◦ d⋆µx(0) = d⋆µx(u) ◦ Rx(u) for all u ∈ I, (13)

where Rµ◦x and Rx are the rotation-minimizing operators of the transformed
and the original curve and d⋆µx(u) is the normalized differential of the Möbius
transformation at x(u), respectively.

Proof. It suffices to prove this result for the inversion φ with respect to the unit
sphere, since any Möbius transformation is a composition of inversions and the
result is obviously true for uniform scalings and Euclidean displacements.

We consider a rotation-minimizing vector v of the given curve x. Conse-
quently, it satisfies the two conditions

v · x′ = 0 and v′ =
v′ · x′

x′ · x′
x′ (14)

see (1). Using a direct computation one can show that

d⋆φx(u)(v) · (φ ◦ x)′ =

(

v −
2(v · x)

‖x‖2
x

)

·

(

‖x‖2x′ − 2〈x′,x〉x

‖x‖4

)

=

=
1

‖x‖4

(

‖x‖2(v · x′) + (−2 − 2 + 4)
‖x‖2(x′ · x)(v · x)

‖x‖2

)

= 0.

(15)

In addition we get that

(d⋆φx(u)(v))′ =

(

v −
2(v · x)

‖x‖2
x

)′

=

= v′ −

(

2(v′ · x)

‖x‖2
+

2(v · x′)

‖x‖2
+

4(v · x)(x · x′)

‖x‖4

)

x −
2(v · x)

‖x‖2
x′

(16)
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After replacing v′ using (14) and rearranging one arrives at

(d⋆φx(u)(v))′ = ‖x‖2

(

v′ · x′

x′ · x′
−

2(v · x)

‖x‖2

)

(φ ◦ x)′. (17)

Consequently, if v is a rotation-minimizing vector field with respect to the orig-
inal curve x, then the images d⋆φx(u)(v) form a rotation-minimizing vector field
with respect to the image curve φ ◦ x, since the conditions which are analogous
to (14) are satisfied. This completes the proof, as the initial conditions at u = 0
are linked by the normalized differential d⋆φx(0) at the first point of the curve.
�

Remark 1. Möbius transformations are also known to preserve the lines of cur-
vature of surfaces. This observation can be used to derive a geometric proof of
the RMF preservation, since the normal vectors of a surface along a curvature
line form a rotation-minimizing vector field.

Remark 2. Another frame of a space curve, which is also preserved by Möbius
transformations, can be obtained by assembling a triplet of vectors consisting of
(1) the unit tangent vector, (2) the unit normal vector of the osculating sphere
at the point of the curve, and (3) the cross product of these two vectors. This
frame is generally not a rotation-minimizing frame. See also [3] for a discussion
of conformally invariant frames of curves.

2.4 Invariance of PH curves and rational RMFs

In this section we consider the special case where x is a polynomial or rational
curve. For any rational curve x and any rational vector field r(u), the curve µ◦x

is again a rational curve and the vector field u 7→ d⋆µx(u)(r(u)) is again a ratio-
nal vector field. Indeed, Möbius transformations µ are birational mappings and
their normalized differentials d⋆µy are linear transformations whose coefficients
depend rationally on the point coordinates of y.

Recall that a curve x is said to be a polynomial Pythagorean-hodograph (PH)
curve if the length ‖x′‖ of its first derivative vector is a polynomial function of
the parameter u for u ∈ I. Following Ueda [20], we consider the extension of
this notion to the rational case: a curve is said to be a rational PH curve if the
length ‖x′‖ of its first derivative vector is a rational function of the parameter
u for u ∈ I.

Corollary 1. If x is a polynomial PH curve, then µ ◦x is a rational PH curve.
Moreover, if x has a rotation-minimizing frame which is described by ratio-
nal vector fields (t(u), r(u), s(u)), then µ ◦ x possesses the rational rotation-
minimizing frame

(d⋆µx(u)t(u), d⋆µx(u)r(u), d⋆µx(u)s(u)) (18)

which is obtained by applying the differential d⋆µx(u) to these vector fields.
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Proof. The first part of the corollary is a direct consequence of the properties of
the normalized differential. The second one follows by combining this observation
with Theorem 1. �

The first part of this corollary was also noted by Ueda [20, §2]. The degree
of a PH curves is doubled by applying a Möbius transformation.

3 Interpolation by curves with rational RMF

We describe an algorithm for Hermite interpolation by curves that posses a
rational rotation-minimizing frame (i.e. an RMF which can be described by
rational vector fields) demonstrate its performance by two examples.

3.1 The algorithm

Given a curve x with parameter u and domain I = [0, 1], we generate a piecewise
rational approximation of its rotation-minimizing frame with k segments, which
is globally G1, as follows (see also Fig. 2).

1. The curve is split into k segments, u ∈ [ui−1, ui], where uj = j/k (Fig. 2a).
2. For each segment we generate the unique sphere which passes through x(ui−1)

and x(ui) and which also touches the tangents of the curves at these points.
Next we choose a Möbius transformation µi which transforms this sphere
into a plane πi and apply it to the curve (Fig. 2b,c).

3. For each segment we generate a PH cubic in the plane πi which interpolates
the G1 Hermite boundary data at (µi◦x)(ui−1) and (µi◦x)(ui) and compute
its rational rotation-minimizing frame (Fig. 2d).

4. We apply the inverse Möbius transformations µ−1
i to the planar PH cubics

and to their rational rotation-minimizing frames (Fig. 2e,f).

The last three steps steps are now explained in more detail.

Step 2. There are two degrees of freedom for choosing the point fi on the sphere
which is mapped into ∞ by the Möbius transformation. We choose it as the point
on the sphere which possesses the maximum distance to x(ui−1) and x(ui), in
order to obtain a mapping which possesses a relatively small distortion in the
region of interest. We define the image plane πi of the sphere as the unique plane
which passes through x(ui−1) and x(ui) and has the normal vector fi−zi, where
zi is the center of the sphere.

Step 3. The Bézier form of PH cubics is characterized by a simple geometric
condition on the shape of the control polygon [10]. Using this observation, an
algorithm for G1 Hermite interpolation can be formulated [13, 17], which finds
the interpolating PH cubic by solving a single quadratic equation. Note that
this equation does not always possess real solutions. However, if the data are
sampled from a smooth curve with sufficiently small step size (i.e., sufficiently
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(a) (b) (c)

(d) (e) (f)

Fig. 2. The algorithm for computation of a rational approximation of the rotation-
minimizing frame, applied to a helix, k = 2. (a) segmentation, (b,c) defining the Möbius
transformation, (d) planar Hermite interpolation, (e) inverse Möbius transformation
and (f) helix with approximating curves.

large k), then real solutions exist and to produce a unique Hermite interpolant
with approximation order 4. This can be shown by adapting the analysis in the
proof of [16, Theorem 10].

Finally we generate the rational rotation-minimizing frame of a planar PH
cubic ci,

(c′i/‖c
′

i‖,n, c′i/‖c
′‖ × n), (19)

where n is a unit normal vector of the plane.

Step 4. By applying the inverse Möbius transformation µ−1
i to ci we obtain the

spherical rational PH curve µ−1
i ◦ci of degree 6. Its rational rotation-minimizing

frame consists of the unit tangent vector, the unit normal vector field of the
sphere, and of the cross product of these two vectors.
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Fig. 3. Top row: Approximation of a space curve (dashed) by rational curves with
rational rotation minimizing frames (solid), which were obtained by our algorithm
with k = 8 (left) and k = 16 (right) segments. Bottom row: The strips of developable
surfaces which are generated by a vector of the RMF for both approximations.

3.2 Examples

Example 1. We apply the algorithm to the curve segment

x(t) =

(

sin(2t) cos(t) +
1

4
sin(t), sin(2t) sin(t) +

1

4
cos(t),

1

2
sin(4t)

)

, (20)

with domain t ∈ [π
4 , 2π]. The approximating rational curves with rational RMF

and the developable surface strips generated by a vector of the piecewise rational
RMF are shown in Figure 3. The approximation with k = 8 segments has still a
relatively large distance to the original curve (dashed). If an approximation with
k = 16 segments is used, then both curves can no longer be visually distinguished.
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1 2.37 10−1 n/a 2.76 10−1 n/a

2 3.17 10−2 7.47 2.67 10−2 10.3

4 6.86 10−3 4.62 2.01 10−3 13.3

8 6.29 10−4 10.91 1.32 10−4 15.2

16 1.01 10−4 6.21 8.35 10−6 15.8

32 1.30 10−5 7.80 5.24 10−7 15.9

Fig. 4. Example 2: Sweep surface generated by the non-rational RMF of a space PH
cubic (left). Average and maximum error for different numbers of segments (right).

Example 2. In order to compare the interpolant which is computed using the new
method with the rotation-minimizing frame of tge original curve, we applied the
algorithm to the space PH cubic

x(t) =
(

3t(1 − t)2 + 3t2(1 − t) + t3, (1 − t)3 + 3t(1 − t)2, 2t3
)

(21)

with domain t ∈ [0, 1]. As observed in [7], PH cubics are equipped with rational
Frenet frames and the difference angle to the (generally non–rational) rotation-
minimizing frame can be computed from

θ(t) = θ0 −

∫ t

0

τ(u) ‖x′(u)‖ du, (22)

since both the torsion τ(u) of x and the parametric speed ‖x′(u)‖ are rational
functions of u. Fig. 4 shows the rotation-minimizing frame of (21).

In order to analyze the error, we consider the length of the differences

δ(u) = ‖rapprox(u) − r(u∗(u))‖, (23)

where each point of the approximating curve is compared with the nearest point
of the original curve,

u∗(u) = arg min
v∈[0,1]

‖xapprox(u) − x(v)‖. (24)

We use numerical integration to evaluate the average error and the end point
error,

Ak =

∫ 1

0

δ(u)du and Ek = δ(1) (25)

for different numbers of segments k. The results are reported in the table in
Fig. 4. The numbers indicate that the average error decreases as h3, where
h = 2−k is the stepsize, while the error at the joints – and in particular at the
end point of the curve – decreases faster with order 4 (in accordance with the
phenomenon which is described in [22, 23]).
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4 Conclusion

We showed that rotation-minimizing frames of space curves are invariant un-
der Möbius transformations. Since these transformations also preserve rational
frames and rational PH curves, it was possible to use this result in order to
formulate an algorithm for G1 Hermite interpolation by rational curves with
rational rotation-minimizing frames. As a possible topic for future research, one
might try to use the recent results about PH quintics with rational rotation-
minimizing frames [9] to achieve higher geometry flexibility, which might lead to
a scheme for interpolation with a higher order of smoothness.

Acknowledgment The authors would like to thank Martin Peternell for use-
ful discussions. The first author was support by grant no. P17387-N12 of the
Austrian Science Fund (FWF).
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