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Abstract

This paper gives an overview of two recent techniques for high-quality surface
constructions: polar layout and the guided approach. We demonstrate the chal-
lenge of high-quality surface construction by examples since the notion of surface
quality lacks an overarching theory. A key ingredient of high-quality constructions
is a good layout of the surface pieces. Polar layout simplifies design and is natural
where a high number of pieces meet. A second ingredient is separation of shape
design from surface representation by creating an initial guide shape and leverag-
ing classical approximation-theoretic tools to constructa final surface compatible
with industry standards, either as a finite number of polynomial patches or as a
subdivision process. An example construction generating guidedC2 surfaces from
patches of degree bi-3 highlights the power of the approach.

1 Introduction

Understanding the notion of a ‘fair’ or high-quality surface and the construction of
curvature continuous, parametric surfaces well enough to no longer treat multi-sided
blends as a difficult exception is an ongoing research challenge for the community.
This paper gives an overview of two useful techniques for constructing high-quality
surfaces. Such surfaces satisfy more stringent shape and differential requirements,
outlined in Section 2, than might be needed for computer graphics (where speed of
construction and rendering, with displacement for detail,is the main challenge) or
result from scanning existing artifacts (where compression and manipulation are major
challenges).

2 The higher-order surfacing challenge

The ability to efficiently design geometrically-high-quality surfaces has a direct im-
pact on better product design and industrial competitiveness. Yet there has been little
progress in automating high-quality surface generation. In practice, industry manages
by time-consuming human intervention and by rejecting designs that are considered
too complex. Regions where several primary surfaces meet are of special concern.
Figure 1 shows a C-pillar configuration where a car roof support meets the trunk and
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(a) (b) (c)

Figure 1:Multi-sided blend. (a) Automobile C-pillar, (b) Trimmed primary surfaces pairwise
blended. (c) High-quality fill.

fender region. As Figure 1 (b) illustrates, the primary surfaces (light, gold color in
the example) are trimmed, then pairwise joined by blend surfaces (darker, green color)
leaving a multi-sided hole to be filled in ( see e.g. [VR97]). The quality of the multi-
sided fill depends on (i) preserving feature lines and functional curves and (ii) avoiding
extraneous dips in the surface so that highlight lines vary smoothly and monotonically
almost everywhere. Some car designers additionally check for (iii) undue variation in
the curvature by sliding their hand over a first physical prototype of the surface. The
multi-sided surface blend of Figure 1 (c) was judged A-class(at General Motors) ‘be-
cause our tests did not show anything undesirable’. Short ofmanufacturing the part,
such tests consist of simulating the reflection of parallel light sources, normal and cur-
vature distributions and section curvature (hedgehog) displays on the computer model.

Figure 2 shows some typical shape defects, detected in the computer model, of
surfaces generated by standard and more sophisticated blend constructions in the lit-
erature. Some of theses defects are macroscopic, and immediately visible by com-
puter rendering, while more subtle ones become evident onlywhen applying a Gauss-
curvature texture, i.e. color the surface according to Gauss curvature. Example (a)
shows the effect of the finite support of the underlying basisfunctions: a ridge diag-
onal to the parameter lines of a tensor-product spline results in aliasing ripples. Ex-
ample (b) shows a similar ripple formation for Loop subdivision [Loo87], where low
and high-valent vertices meet (the control net is that of a pinched cylinder and fea-
tures a central point of valence 20 surrounded by points of valence 3.) Example (c)
display a more subtle defect, visible as a pinch-point in thehighlight lines. Exam-
ple (d) illustrates a pervasive problem of first-generationsubdivision algorithms for a
range of input meshes: the shape is ‘hybrid’, i.e. each nested surface ring of a subdi-
vision surface has both positive and negative Gauss curvature so that the curvature is
not well-defined in the limit. This hybrid shape is visualized, for one surface ring, by
overlaying on the Bézier net, curvature needles pointed up(red scale, positive Gauss
curvature) and down (blue-green scale, negative Gauss curvature). Example (e) illus-
trates how ‘tuning’ Catmull-Clark subdivision [CC78] to achieve bounded curvature
results in oscillation (of the Gauss curvature). The standard Catmull-Clark limit sur-
face has extraordinary points (corresponding to non-4-valent control nodes) with infi-
nite curvature and is generically hyperbolic. Example (f) shows unintended curvature
oscillations (Gauss curvature shading) in a transition layer and not consistent with the
monotone curvature variation at the center and in the surrounding outer region.
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(a) Aliasing ripples (b) Low-valence to
high-valence transition
ripples

(c) Pinch-point in the highlight lines (d) Hybrid shape made visible by signed
Gauss curvature needles (blue-green down-
ward pointing needles indicate negative
Gauss curvature; red-green upward positive
curvature)

(e) Oscillation in the Gauss cur-
vature due to boundedness

(f) Oscillation in the Gauss curvature in a
transition layer

Figure 2:Surfaceshape defects
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Figure 3:Feature preservation: minimal curvature variation and parameter lines aligned with
feature lines

Some defects, certainly (a), can be avoided by the experienced designer (by align-
ing features with boundaries of the support of the basis functions). But [PR04, KPR04]
showed that shape deficiency (d) is intrinsic to all first-generation subdivision surface
constructions such as the popular Catmull-Clark subdivision [CC78]: While subdivi-
sion initially does a fine job in smoothing out transitions between primary surfaces, the
shape problems are typically concentrated in the neighborhood of so-called extraor-
dinary points. The surface quality deteriorates progressively as ‘the wrong’ eigenfre-
quencies take over near such a point, and force for example saddle shapes no matter
how carefully a designer might hand-adjust the input data. Since the shape defects
manifest themselves already in the first steps, algorithms that build on or initialize with
several steps of Catmull-Clark subdivision inherit coarse-level defects. More smooth-
ing of the regular regions [ZS01] appears to be even more detrimental to the shape near
these extraordinary points. Conversely, constructions that do not make use of multiple
refinement steps and construct the blend from a minimal number of polynomial pieces
pay for the abrupt transition of patch type with curvature fluctuations (Figure 2(f)).

Since no overarching theory of surface ‘fairness’ exists todate, we extract from
folklore, theory and many examples the following working definition of a high-quality
surface blend. Given input data to be matched, a multi-sidedsurface blend is ofhigh
quality if it does not create curvature features not implied by the input data. That is, the
blend surface should (a) minimize curvature variation but (b) preserve feature lines. By
default, the blend should therefore be at least curvature continuous. In practice, since
many downstream algorithms work directly on the parameterization, we also expect a
high-quality surface blend to have (c) a good distribution of parameter lines.

One approach to improving surface quality is to optimize a (variational) func-
tional. Shape optimization functionals include the thin plate energy [BW90, Gre94,
HG00, MS92, Sap94, WW92], the membrane energy [KCVS98], andtotal curvature
[KHPS97, WW94]. Replacing differential operators by differences, the optimization
problems can be solved as sparse, finite linear or nonlinear systems in the coefficients
of a chosen basis.Evolution formulations seek to reduce variation which, for a sur-
facex(u,v), amounts to solving the (geometric diffusion) equation∂tx = ∆xx in terms
of thex-dependent Laplace-Beltrami operator∆x [dC92]. Discretized versions of the
Laplacian have been applied to polyhedral meshes, say in Taubin’s pioneering paper
[Tau95], and, in the context of smoothing interpolatory subdivision and multiresolu-
tion editing [Kob97, KCVS98]. Desbrun et al. [DMSB99] use implicit discretization
to stabilize numerical smoothing and Clarenz et al. introduced anisotropic geomet-
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ric diffusion to enhance features while smoothing. Similardiscretizations are based
on [MDSB02, PP93].Flow techniquesevolve the surface according to∂tx = v(x,t)
wherev represents a velocity field [WJE00, JKL+]. For example, geodesic curvature
flow has been used for smoothing functions on surfaces [Kim97, MS96, DMSB99].
Schneider and Kobbelt [SK00] distinguish between ‘outer fairness’ and ‘inner fair-
ness’. Outer fairness amounts to satisfying the discretized partial differential equation
∆xH(x) = 0 whereH is the mean surface curvature. Inner fairness seeks a good dis-
tribution of parameter lines. The latter is closely relatedto mapping, with least dis-
tortion, a 3D triangulation to the plane [Flo97, SdS00, GGH02]. Thus inner fairness
addresses point (c) above; but none of the criteria directlyoptimizes (a) or (b). Low-
order linear functionalssuch as min

∫

∑(∂i j x)2 are computationally efficient but give
preference to polynomial representations of low degree. This restricts shape and can
lead to unwanted flatness of the surface. While the above-mentioned geometric diffu-
sion and mean curvature criteria aim in the right direction,such criteria are difficult

to customize to allow a designer to prescribe rather than . One possi-
ble approach to fairing is to leverage advances in difference geometry by generating a
discrete mesh-basedrepresentation first, for example by fairing according to [HP07].
The difficulty is then in switching to a parameteric surface since, typically, interpreta-
tion of the mesh points by (quasi-)interpolation leads to surface oscillations (see e.g.
[KP09c]). Similarly, switching from a level-set representation induced by a scalar field
(where application of linear functionals makes sense) to the required parametric output
risks loosing any of the qualities that the field was optimized for. As an alternative and
key element of this survey, Section 4 therefore proposes theuse of local shape hints in
the form of local (guide) surface fragments.

Generatingcurvature continuous surfaceswithout focus on surface fairness, on
the other hand, is no longer a major challenge. A number of sophisticated algorithms
now exist that automatically create curvature continuous blends. PolynomialG2 blends
(whereGk indicates that adjacent patches’ derivatives agree after reparameterization)
include for example [Hah89, GH89, Ye97, Rei98, Rei99, Pra97, Pet96, GZ99, Loo04,
LS08, Pet02, KMP06, KP07a, KP07c, KP07b, KP08b, KPN1] for quadrilateral patches
and [PU00, BR97, KP07a, KP09a] for triangular patches. RationalG2 blends include
[NG00, GH95] and there are non-polynomial constructions resulting in C2 surfaces
[YZ04, Lev06]. Yet, while local curvature continuity is helpful in analyzing surfaces, it
is clearly not sufficient and certainly none of the early constructions can claim to meet
both the shape and representation requirements of product-defining outer surfaces in
high-end CAD/CAM design (which need to be compatible with the industry’s NURBS
standard). Still, spline constructions of everywhere curvature continuous surfaces are
now well enough understood to consider them a starting pointrather than a goal in
themselves. This state of the art sets the stage for this survey’s discussion of two
complementary techniques for improving the quality of curvature continuous surfaces.
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Figure 4:Trimming and abstraction of boundary data. (top) The set back (trimmed) surfaces
are sampled to provide a depth 2tensor-border(spline representation of the boundary) with 5-
sided holes. (bottom) Tensor-border derived from two cylinders. Such borders then have the
same layout as the standard setup of subdivision (middle) and (right).

3 Patch layout

The layout of patches, i.e. the coarse parameterization of the surface, is an art requir-
ing a good understanding of the support and approximation order of the underlying
representation (Figure 2 a,b) as well as of conceptual and geometric considerations.
Allowing more flexibility in the layout simplifies the layoutproblem and can improve
the shape where a large number of patches join, such as a pole in the latitude-longitude
parameterization of the sphere.

The layout typically chosen in the (untrimmed) academic setting is one induced
by quadrilateral-based (tensor-product) subdivision surfaces, such as Catmull-Clark
subdivision [CC78]; or by triangle-based (three directionbox-spline) subdivision, such
as Loop’s [Loo87]. Setback blending, more typical in industrial design, where primary
surfaces are trimmed back and pairwise blended, can be transformed to the subdivision
setting by recording the firstk derivatives across the resulting boundary. We call such
data along a boundary (loop) adepth k tensor-border(see Figure 4,middle).

In either case the multi-sided holes have no corresponding box-spline basis func-
tion but are filled, either with a cap ofn (macro-)patches or via subdivision, i.e. by
an infinite sequence of surface rings. Fundamentally, thereare two types of layouts,
depending on whether the edge(t,0) or the edge(1,t) of the domain is mapped to the
predecessor’s edge(0,t). In the first case (Figure 5,left two), the layout reminds of
a sprocket, a mechanical part with gear-teeth. Such a layout is illustrated in Figure 6,
left. In the vicinity of then-valent center this configuration mimics the mapz4/n,z∈ C

and for largen, the parameter lines are increasingly at odds with the curvature lines.
Another characteristic of this layout are T-corners. AT-corneris the location where an
edge between two distinct polynomial patches meets the midpoint of an edge of a third.
With each refinement, quad-based sprocket layout subdivision such as Catmull-Clark
subdivision generates T-corners between the patches of thenew surface ring and its
outer ancestor. Generally, nested surface rings of quad-sprocket subdivision rings have
a cascading sequence of T-corners (Figure 5,left). Similary, triangle-sprocket subdivi-
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Figure 5:Layout (top) Tessellating annuli generated by ct-maps (page 10)ρ andλρ [KP07a].
(bottom) DomainsS andS/2 of each of then = 5 pieces used for the prolongationρ(S/2) :=
λρ(S). (left) Quad-sprocket (Catmull-Clark subdivision) layout; (middle) Triangle-sprocket
(Loop subdivision) layout; (right) polar layout (S/2 is interpreted as halving only the vertical
direction).

sion rings have a sequence of points where 5 rather than the standard 6 patches meet
and one angle isπ .

Figure 6: (middle three) Iso-parameter lines of theconformal mappings (left) z4/n; (middle)
cosz; (right) ez. (Outer two) Gauss curvature images on a surface ring of (farleft) quad- or
triangle-sprocket subdivision, (farright) polar subdivision.

An alternative layout for subdivision is the polar layout (Figure 5,right) typified
by the parameter lines of the mapez (Figure 6,right). Here then bounding spline
segments combine to a single spline curve and the central facets are triangles that may
be interpreted as quads with one collapsed edge. An intermediate configuration is the
double-lens configuration according to the parameter linesof the map cosz= 1+z4/2+
. . . mediating between the two extremes [KP09c].

Polar layout allows for surface constructions (both by subdivision or finitely many
patches [KP07d]) that thrive on high valences (see Figure 7). Such high valences oc-
cur naturally in the design of surfaces of revolution and extruded shapes. Combining
sprocket layout and polar layout [MKP08] allows keeping theCatmull-Clark valence
low by shifting high-valence connectivity to polar structures and orienting the control
lines along model features (e.g. the mouth, nose and eyes in Figure 8).
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(CC) (Loop) (BPS)

Figure 7: Wrinkle removal by polar layout (CC=Catmull-Clark subdivision [CC78],
Loop=[Loo87], BPS = Bi-3 polar subdivision [KP07d]).

Figure 8: Combining polar layout (for high valences, such as the centers of the eyes) with
sprocket layout (for low valences, such as the 5-valent vertices surrounding the mouth or between
thumb and index finger on theright) [MKP07].
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(a) (b) (c)

Figure 9:Guided surface rings. (top) Polar layout. (a) boundary data and guide (red cap) (b)
first layer, (c) second layer [KMP06]. (bottom) Sprocket layout. The guided rings are shown first
in an exploded view, then combined to one surface [KP07a].

4 Guided Surfacing

While prior approaches attempted to address both shape design and representation in
one step, guided surface constructionseparates shape design from surface representa-
tion. In the guided approach, the shape is defined via local surface fragments, called
guides, that need only obey few constraints (see Figure 9,top,left). A guide typically
does not match the boundary data but overlaps or leaves gaps;a guide may be of too
high a degree for downstream algorithms (piecewise degree 12 is useful for some con-
figurations) or it may have an otherwise undesirable representation that does not fit
into the processing pipeline. Leveraging classical techniques of approximation theory
and spline construction, the guide is replaced by a sequenceof nested, smoothly joined
surface rings so that the output consists of parametric pieces in standard rational or
polynomial form. Guide-based algorithms can be chosen so that the final output con-
sists of a few, of many or, in the case of subdivision, of an infinite number of patches.
Both finite and subdivision constructions use guided rings to transition to the central
point.

4.1 Guided Surface Rings

A guided surface ringis a low-degree, piecewise polynomial or rational spline approx-
imation to a ring-shaped region of a given surface fragment,called theguide. The two
reasons to generate guided rings are:
• to capture the shape of a complex guide surface and
• to obtain a smooth, low-degree standard (piecewise polynomial) representation.
The specific approach implemented in [KP07a] is to generate themth guided ringxm,
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Approx. guideg ct-mapρ
Operator △×n→ R3 S×n→ R2

Figure 10:Guided ring generation for sprocket layout.

m = 0,1, . . . by applying an operatorH that approximates (for example position and
higher-order derivatives of) a guide surfaceg at parameters defined and weighted by
λ m-scaled copies of a concentric tessellation mapρ (see Figure 10):

xm := H(g◦λ mρ) : S×{1, . . . ,n}→ R
3. (1)

We explain this in more detail.

The concentric tessellation mapρ . A concentric tessellation map (short: ct-map)
mapsn copies of asector domain S(see Figure 5,bottom) to an annulus in the plane:

ρ : S×{1, . . . ,n}→ R
2,

so thatλ m-scaled copies of this annulus join without overlap and smoothly as param-
eterizations to fill a disk around the origin. Characteristic maps of symmetric subdivi-
sion algorithms provide a ready source for ct-maps. For example, Figure 5,top, shows
uniformC2 ct-maps for three domain typesS. However, the maps can also be chosen
non-uniform and unsymmetric. Figure 12,bottom(b) shows (the extension of) such a
map and illustrates its use. The ct-map relates the domain ofthe surface rings to that
of the guide: it orients and scales higher-order derivatives that the operatorH extracts
from the guide surface.

The operatorH. The operatorH maps the compositiong◦ρ : S×{1, . . . ,n}→R3 to
a piecewise polynomial surface inR3. Given an intermediate patchh( f ) that matches
the derivatives of a given mapf defined onS, H prolongs it so that consecutive rings
xm,xm+1 join smoothly (Figure 9) and the outermost ring,x0, smoothly joins the sur-
rounding multi-sided boundary data, the tensor-border. Intypical guided surface con-
structions,higher-order jets(collections of derivatives) of the compositionf := g◦ρ
are well-defined because the rays that form the segment boundaries of the ct-mapρ
match the domain boundaries of the polynomial pieces of the guideg. Then, for exam-
ple the operatorh := h55 for tensor-product patches, generates a patch of degree(5,5)
as follows. For each corner,h55 samples the second order expansion off , and converts
it to a 3×3 group of Bernstein-Bézier coefficients.

∂ 2
t f ∂s∂ 2

t f ∂ 2
s ∂ 2

t f
∂t f ∂s∂t f ∂ 2

s ∂t f
f ∂s f ∂ 2

s f
⇒ (2)
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By combining the four groups of nine coefficients per corner,h55 defines the 6× 6
coefficients of a polynomial patch of degree bi-5. Alternatively, h can be an operator
h33 that substitutes, for each bi-5 patch, a 3×3 array of bi-3 patches, i.e. aC2 spline
in B-spline form with single knots in the interior and four-fold knots at the boundary
[KP08b]. Clearly many other choices forh are possible.

Guided patchworks. Let ρ be a ct-map and let the guideg be defined as

g : R
2 → R

3, (u,v) 7→ (x,y,z). (3)

The contraction of the smoothly connected annuli{λ mρ}m is inherited by the sequence
of compositions{g◦λ mρ}m and the sampledC2 guided ringsxm := H(g◦λ mρ) will
join to form aC2 surface inR3 [KP07a, Lemma 4] (as illustrated in Figure 9). There
are a number of possible combinations ofh (and henceH) andρ . For example, guided
C2 quad-sprocket patchworks in [KP07a] use asρ the characteristic ring of Catmull-
Clark subdivision (Figure 5top,left) and useh := h66, which samples up to 3rd order
and averages coefficients determined by multiple corners. The operatorh samplesg◦
λ mρ at the corners of theL-shaped segment of a quad-sprocket construction. – For
a second example, guided triangle-sprocket patchworks usethe characteristic ring of
Loop subdivision asρ and apply an operatorh8 [KP07a] that returns patches of total
degree 8. The finite patchworks defined by these combinationsof ρ and H (and a
similar one for polar layout) can reproduce quadratic expansions at the central point.
This yields a systematic way to generateC2 subdivision surfaces, the topic of the next
section.

control netAmc

control netAm+1c

generating system

generating system

refinement

surface ringxm

surface ringxm+1
nested rings

H(g◦λ mρ)

or

or

H(g◦λ m+1ρ)

Figure 11: Standardgeneralized subdivision and guided subdivisionboth generate a se-
quence of nested surface rings: Generalized subdivision surface rings are guided by a subdivision
matrixA, guided subdivision surface rings are guided by an explicitmapg [KP08b].
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4.2 Guided Subdivision

A sequence of nested surface rings yields a surface ring structure just like that of stan-
dard subdivision (see Figure 11). While standard mesh-based subdivision generates
nested surface rings by applying powers of a square subdivision matrix A to mesh
nodes (control points)c and interpreting the resulting nodes as, say B-spline control
points, guided subdivision composes scaled copies of the ct-map with the guide and
then re-approximates to obtain nested surface rings. Indeed the finite union of guided
rings is easily constructed to be aC2 surface. And if the degree of the surface rings is
chosen to be bi-6, the guided rings reproduce the quadratic expansion of theC2 guide
at the central point so that the infinite union isC2 [KP07a, Thm 1]. There are also
constructions of degree as low as bi-3 that preserve the shape so that the difference in
quality is only visible by comparing Gauss curvature. Figure 10 of [KP08b] shows the
correlation of lowering the degree with a deterioration of the curvature distribution (as
does the analogous Figure 14 of [KPN1] for finite polynomial constructions).

If the guide is (piecewise) polynomial then the construction of the contracting
guided patchwork rings is stationary and guided subdivision has a fast evaluation algo-
rithm based on superposition of eigenfunctions. A specific construction of aC2 subdi-
vision algorithm without explicit use of the guide is given in [KMP06]. This algorithm
maps jets to jets rather than control points inR3 to points inR3, of a refined mesh. A
general theory ofCk subdivision constructions analogous to guided subdivision is laid
out in [PR08, Ch 7]. Additional images can be found at [Sur].

4.3 Construction with finitely many patches

Complex surface blends, for example when capping aC2 spline surface byn patches,
require an increase in either the degree or the number of pieces compared to the

(a) input data (b) ct-map (c) structure (d) highlight lines (e) completion

Figure 12: Completion of a piecewise cone.Cone pieces (light green) in (c) and pairwise
blends (dark red) byn patches of degree (6,5) (gray) using (top) a uniform and (bottom) a non-
uniform ct-map [KP09b]. The non-uniform ct-map allows us tomatch the sharper input features
on the left lobe.

surrounding regular spline surface. Typically, the new degrees of freedom do not match
the formal continuity constraints and this results in an under-constrained problem when
fitting with finitely many patches. Guided surfacing effectively localizes the technical
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challenges while preserving global shape, even when the number of patches, their lay-
out and/or their degree are high [KP07c, KP07b, KPN1]. Typically, the finite construc-
tions benefit from a few guided rings to transition from the boundary data to the central
cap. The guide stabilizes the transition, so that we do not observe the fluctuations of
Figure 2 (f). Often, the rings and the final cap can be combinedinto macro-patches or
even splines for implementation. Using such a spline-basedapproach that trades de-
gree for number of pieces, we recently derived an algorithm for generatingC2 surfaces
with sprocket layout consisting ofn splines of degree bi-5 and a finite polarC2 con-
struction of degree (6,5) [KP09b] (see Figure 12); constructions of even lower-degree
are possible for simpler tensor-borders.

4.4 Fitting a Guide

If the design(er) does not provide the guide surface, and/orspecifies partial information

Figure 13: Guide con-
struction. The free con-
trol points gℓ

i jk after enforc-

ing C2 constraints between
the polynomial pieces of de-
gree 5 are marked as•.

such as the position and normal of the central point, the
following default construction of a piecewise polynomial
C2 guide for sprocket layout can be used [KP09a]. We
construct aC2 mapg consisting ofn polynomial pieces of
total degree 5 (see Figure 13) in BB-form:

gℓ(u,v) := ∑
i+ j+k=5

gℓ
i jk

5!
i! j!k!

uiv j(1−u−v)k, ℓ = 1, . . . ,n.

While there is no restriction on the degree of the guide
surface since it is re-sampled and hence does not influence
the degree of the output. However, in our experience guide
surfaces consisting ofn C2-connected triangular patches
of total degree 5 suffice to approximate well second order
boundary data (tensor-borders of depth 2) and there are no
noticeable improvements in the final surface if the degree
is higher. Conversely guides based on single polynomi-
als or lower-degree piecewise polynomial typically fail to
capture the existing boundary data.

With this Ansatz, enforcing theC1 andC2 constraints in terms of the BB-coefficients
leaves as free coefficients (shown as black bullets in Figure13)

g∗i jk,i+ j+k=5 : g0
i jk , j +k≤ 2, gℓ

i j 0, j = 3,4,5, gℓ
122,g

ℓ
023,g

ℓ
032.

That is, the center quadratic polynomial is to be determinedand each sector has some
extra degrees of freedom. For elliptic shapes, either the user should provide the location
of the central point or we set it as the limit point of a subdivision scheme. To set the
remaining free coefficients, we minimize the deviation of the guide from the boundary
data in the sense of Figure 14: given the ct-mapρ and the tensor-borderb, we minimize

min
freeg∗i jk

‖H(g◦ρ)−H(b)‖2
2. (4)

Guide creation and re-approximation can be alternated by using the preceding surface
ring as boundary datab.
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minfreegi jk ‖ H
(

◦

)

− H
( )

‖

. guideg ct-mapρ tensor-borderb
. △×n→ R3 S×n→ R2 S×n→ R3

Figure 14: Derivation of adefault guide surface for sprocket layout.H – Approximation
operator (page 10)

5 A C2 accelerated bi-3 guided subdivision

To illustrate the level of flexibility provided by guided surfacing, we consider a surface
ring construction that samples with increasing density [KP08a]. We first consider the

Figure 15: Structure of a sector ofacceleratedC2 bi-3 subdivision. (left) Quad-sprocket
(Catmull-Clark) layout and (right) polar layout [KP08a].

sprocket (Catmull-Clark) layout Figure 15,left. At level m, each of the three quads of
an L-shaped sector is partitioned into 2m× 2m subquads. The operatorh33 (see page
11) is applied on each subquad, creating, after removal of the internal knots, aC2 bi-
3 spline that joinsC2 with its neighbor spline in the surface ring. The construction
approximates the piecewise polynomialg◦ρ : [0..1]2 → R by h33 up to second order at
the corners of the 34m subquads of each quad-sprocket segmentxm

ℓ , For polar layout,
there are 2m subquads (see Figure 15,right) and the construction approximates the
piecewise polynomial up to second order at the corners of the2m subquads of each
polar segmentxm

ℓ . We call such schemesaccelerated. To certify that the resulting
subdivision surfaces are generically curvature continuous, [KP08a, Thm 6] tracked a
sequence of local quadratic functions and showed their convergence to the quadratic
Taylor expansion ofg at the central point.

Acceleration therefore circumvents one of the key assumptions that lead to the
lower bounds on the degree of curvature continuous subdivision surfaces derived in
[Rei96, Pra98]. Acceleration allows us to buildC2 surfaces consisting of (infinitely
many) polynomial pieces of degree (3,3), the continuity-and-degreecombination hoped
for since 1978 [CC78]. While the construction for the sprocket configurations seems
hardly practical, acceleration for polar configurations isnatural and has been turned
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into a practicalC2 bi-3 subdivision algorithm [Myl08].
Acknowledgements. The images were generated with the surface analysis tool
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fairing of irregular meshes using diffusion and curvature flow. In Alyn
Rockwood, editor,Siggraph 1999, Annual Conference Series, pages 317–
324, Los Angeles, 1999. ACM Siggraph, Addison Wesley Longman.

[Flo97] Michael S. Floater. Parametrization and smooth approximation of surface
triangulations.Computer Aided Geometric Design, 14(3):231–250, 1997.

[GGH02] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In
John Hughes, editor,SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, pages 335–361. ACM Press/ACM SIGGRAPH,2002.

[GH89] John A. Gregory and Jörg M. Hahn. AC2 polygonal surface patch.Com-
put. Aided Geom. Design, 6(1):69–75, 1989.

[GH95] C. M. Grimm and J. F. Hughes. Modeling surfaces of arbitrary
topology using manifolds.Computer Graphics, 29(Annual Conference
Series):359–368, 1995.

[Gre94] G. Greiner. Variational design and fairing of spline surfaces.Computer
Graphics Forum, 13(3):C/143–C/154, 1994.

[GZ99] John A. Gregory and Jianwei Zhou. IrregularC2 surface construction
using bi-polynomial rectangular patches.Comput. Aided Geom. Design,
16(5):423–435, 1999.

15



[Hah89] Jörg Hahn. Filling polygonal holes with rectangular patches. InThe-
ory and practice of geometric modeling (Blaubeuren, 1988), pages 81–91.
Springer, Berlin, 1989.

[HG00] Andreas Hubeli and Markus Gross. Fairing of non-manifolds for visualiza-
tion. In Proceedings Visualization 2000, pages 407–414. IEEE Computer
Society Technical Committee on Computer Graphics, 2000.

[HP07] Klaus Hildebrandt and Konrad Polthier. Constraint-based fairing of sur-
face meshes. In Alexander Belyaev and Michael Garland, editors,SGP07:
Eurographics Symposium on Geometry Processing, pages 203–212. Euro-
graphics Association, 2007.

[JKL+] Miao Jin, Juhno Kim, Feng Luo, Seungyong Lee, and Xianfeng Gu. Con-
formal surface parameterization using Euclidean Ricci flow. Technical
Report. http://www.cise.ufl.edu/∼gu/publications/technicalreport.htm.

[KCVS98] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Inter-
active multi-resolution modeling on arbitrary meshes. In Michael Cohen,
editor, SIGGRAPH 98 Conference Proceedings, pages 105–114. ACM
SIGGRAPH, Addison Wesley, July 1998.

[KHPS97] L. Kobbelt, T. Hesse, H. Prautzsch, and K. Schweizerhof. Interactive mesh
generation for FE-computation on free form surfaces.Engng. Comput.,
14:806–820, 1997.

[Kim97] Ron Kimmel. Intrinsic scale space for images on surfaces: The
geodesic curvature flow.Graphical models and image processing: GMIP,
59(5):365–372, September 1997.

[KMP06] K. Karčiauskas, A. Myles, and J. Peters. AC2 polar jet subdivision. In
A. Scheffer and K. Polthier, editors,Proceedings of Symposium of Graph-
ics Processing (SGP), June 26-28 2006, Cagliari, Italy, pages 173–180.
ACM Press, 2006.

[Kob97] L. Kobbelt. Discrete fairing. In Tim Goodman and Ralph Martin, edi-
tors,Proceedings of the 7th IMA Conference on the Mathematics of Sur-
faces (IMA-96), volume VII of Mathematics of Surfaces, pages 101–130,
Winchester, UK, September 1997. Information Geometers.
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[MKP08] Ashish Myles, Kȩstutis Karčiauskas, and Jörg Peters. Pairs of bi-cubic
surface constructions supporting polar connectivity.Comput. Aided Geom.
Des., 25(8):621–630, 2008.

[dC92] M.P. do Carmo.Riemannian Geometry. Birkhäuser Verlag, Boston, 1992.
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