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Abstract

This paper gives an overview of two recent techniques fdngjgality surface
constructions: polar layout and the guided approach. Weodstrate the chal-
lenge of high-quality surface construction by examplesesife notion of surface
quality lacks an overarching theory. A key ingredient offhiguality constructions
is a good layout of the surface pieces. Polar layout simpliiesign and is natural
where a high number of pieces meet. A second ingredient exagpn of shape
design from surface representation by creating an initiadgyshape and leverag-
ing classical approximation-theoretic tools to constauéinal surface compatible
with industry standards, either as a finite number of polyiabpatches or as a
subdivision process. An example construction generatindeglC? surfaces from
patches of degree bi-3 highlights the power of the approach.

1 Introduction

Understanding the notion of a ‘fair’ or high-quality suréaend the construction of
curvature continuous, parametric surfaces well enouglottonger treat multi-sided
blends as a difficult exception is an ongoing research amgdidor the community.

This paper gives an overview of two useful techniques forstrmieting high-quality

surfaces. Such surfaces satisfy more stringent shape &ededtial requirements,
outlined in Section 2, than might be needed for computertgcap(where speed of
construction and rendering, with displacement for defaithe main challenge) or
result from scanning existing artifacts (where comprasaintd manipulation are major
challenges).

2 The higher-order surfacing challenge

The ability to efficiently design geometrically-high-qgitglsurfaces has a direct im-
pact on better product design and industrial competitisen&et there has been little
progress in automating high-quality surface generatinmréactice, industry manages
by time-consuming human intervention and by rejecting glesithat are considered
too complex. Regions where several primary surfaces meebfaspecial concern.
Figure 1 shows a C-pillar configuration where a car roof suppeets the trunk and
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Figure 1:Multi-sided blend. (a) Automobile C-pillar, (b) Trimmed primary surfaces pése
blended. (c) High-quality fill.

fender region. As Figure 1 (b) illustrates, the primary aoels (light, gold color in
the example) are trimmed, then pairwise joined by blencesed (darker, green color)
leaving a multi-sided hole to be filled in ( see e.g. [VR97]heTquality of the multi-
sided fill depends on (i) preserving feature lines and fameti curves and (ii) avoiding
extraneous dips in the surface so that highlight lines vargathly and monotonically
almost everywhere. Some car designers additionally charcfiiif) undue variation in
the curvature by sliding their hand over a first physical ptyyte of the surface. The
multi-sided surface blend of Figure 1 (c) was judged A-classseneral Motors) ‘be-
cause our tests did not show anything undesirable’. Shamasfufacturing the part,
such tests consist of simulating the reflection of paraiigitisources, normal and cur-
vature distributions and section curvature (hedgehog)alys on the computer model.
Figure 2 shows some typical shape defects, detected in tim@uter model, of
surfaces generated by standard and more sophisticated ddestructions in the lit-
erature. Some of theses defects are macroscopic, and iatelgdvisible by com-
puter rendering, while more subtle ones become evidentwhgn applying a Gauss-
curvature texture, i.e. color the surface according to Gawsvature. Example (a)
shows the effect of the finite support of the underlying bésigtions: a ridge diag-
onal to the parameter lines of a tensor-product spline t®sulaliasing ripples. Ex-
ample (b) shows a similar ripple formation for Loop subdmis[Loo87], where low
and high-valent vertices meet (the control net is that ofreipéd cylinder and fea-
tures a central point of valence 20 surrounded by points [efne® 3.) Example (c)
display a more subtle defect, visible as a pinch-point inhfghlight lines. Exam-
ple (d) illustrates a pervasive problem of first-generaiohdivision algorithms for a
range of input meshes: the shape is ‘hybrid’, i.e. each desieface ring of a subdi-
vision surface has both positive and negative Gauss cusvatuthat the curvature is
not well-defined in the limit. This hybrid shape is visuatizéor one surface ring, by
overlaying on the Bézier net, curvature needles pointefregh scale, positive Gauss
curvature) and down (blue-green scale, negative Gausatcme). Example (e) illus-
trates how ‘tuning’ Catmull-Clark subdivision [CC78] totdeve bounded curvature
results in oscillation (of the Gauss curvature). The stesh@atmull-Clark limit sur-
face has extraordinary points (corresponding to non-éntaiontrol nodes) with infi-
nite curvature and is generically hyperbolic. Example (®ws unintended curvature
oscillations (Gauss curvature shading) in a transitioefdand not consistent with the
monotone curvature variation at the center and in the sadiog outer region.



(a) Aliasing ripples (b) Low-valence to
high-valence transition
ripples

(c) Pinch-point in the highlight lines (d) Hybrid shape made visible by signed
Gauss curvature needles (blue-green down-
ward pointing needles indicate negative
Gauss curvature; red-green upward positive

curvature)
(e) Oscillation in the Gauss cur- (f) Oscillation in the Gauss curvature in a
vature due to boundedness transition layer

Figure 2:Surfaceshape defects
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Figure 3:Feature preservation minimal curvature variation and parameter lines alignéti w
feature lines

Some defects, certainly (a), can be avoided by the expeariedesigner (by align-
ing features with boundaries of the support of the basistfons). But [PR04, KPR04]
showed that shape deficiency (d) is intrinsic to all first@ation subdivision surface
constructions such as the popular Catmull-Clark subdiwi$CC78]: While subdivi-
sion initially does a fine job in smoothing out transition$vix@en primary surfaces, the
shape problems are typically concentrated in the neigldwattof so-called extraor-
dinary points. The surface quality deteriorates progvessias ‘the wrong’ eigenfre-
quencies take over near such a point, and force for examgtesahapes no matter
how carefully a designer might hand-adjust the input datmceSthe shape defects
manifest themselves already in the first steps, algoritiasiuild on or initialize with
several steps of Catmull-Clark subdivision inherit codeseel defects. More smooth-
ing of the regular regions [ZS01] appears to be even mor@dental to the shape near
these extraordinary points. Conversely, constructioasdb not make use of multiple
refinement steps and construct the blend from a minimal nuoflolynomial pieces
pay for the abrupt transition of patch type with curvaturetiiations (Figure 2(f)).

Since no overarching theory of surface ‘fairness’ existgldte, we extract from
folklore, theory and many examples the following workindidiion of a high-quality
surface blend. Given input data to be matched, a multi-ssdeface blend is ofiigh
qualityif it does not create curvature features notimplied by the fdjatia. That is, the
blend surface should (a) minimize curvature variation bypfeserve feature lines. By
default, the blend should therefore be at least curvatunéragous. In practice, since
many downstream algorithms work directly on the paramea#ion, we also expect a
high-quality surface blend to have (c) a good distributibparameter lines.

One approach to improving surface quality is to optimize ari@tional) func-
tional. Shape optimization functionals include the thiatplenergy [BW90, Gre94,
HGO00, MS92, Sap94, WW92], the membrane energy [KCVS98],tatad curvature
[KHPS97, WW94]. Replacing differential operators by diffaces, the optimization
problems can be solved as sparse, finite linear or nonliyséerss in the coefficients
of a chosen basisEvolutionformulations seek to reduce variation which, for a sur-
facex(u,v), amounts to solving the (geometric diffusion) equat= Axx in terms
of the x-dependent Laplace-Beltrami operafgr[dC92]. Discretized versions of the
Laplacian have been applied to polyhedral meshes, say iniTawpioneering paper
[Tau95], and, in the context of smoothing interpolatory diutsion and multiresolu-
tion editing [Kob97, KCVS98]. Desbrun et al. [DMSB99] useqligit discretization
to stabilize numerical smoothing and Clarenz et al. intoedlianisotropic geomet-



ric diffusion to enhance features while smoothing. Simdascretizations are based
on [MDSB02, PP93].Flow technique®volve the surface according &bx = v(x,t)
wherev represents a velocity field [WJEOO, JKL. For example, geodesic curvature
flow has been used for smoothing functions on surfaces [Kjiv§96, DMSB99].
Schneider and Kobbelt [SK0O] distinguish between ‘outémzss’ and ‘inner fair-
ness’. Outer fairness amounts to satisfying the discréfizatial differential equation
AyH(X) = 0 whereH is the mean surface curvature. Inner fairness seeks a geed di
tribution of parameter lines. The latter is closely relatednapping, with least dis-
tortion, a 3D triangulation to the plane [Flo97, SAS00, GEHOrhus inner fairness
addresses point (c) above; but none of the criteria diregitimizes (a) or (b). Low-
orderlinear functionalssuch as mi(j‘z(ﬁijx)z are computationally efficient but give
preference to polynomial representations of low degrees fdstricts shape and can
lead to unwanted flatness of the surface. While the aboveiomad geometric diffu-
sion and mean curvature criteria aim in the right directisuch criteria are difficult

to customize to allow a designer to prescr-- ’ rather thar’ ). One possi-
ble approach to fairing is to leverage advances in diffeeagg@ometry by generating a
discrete mesh-basa@presentation first, for example by fairing according t&{H].
The difficulty is then in switching to a parameteric surfanes, typically, interpreta-
tion of the mesh points by (quasi-)interpolation leads tdase oscillations (see e.g.
[KP0O9c]). Similarly, switching from a level-set represation induced by a scalar field
(where application of linear functionals makes sense)aadluired parametric output
risks loosing any of the qualities that the field was optirdif@. As an alternative and
key element of this survey, Section 4 therefore proposesgbef local shape hints in
the form of local (guide) surface fragments.

Generatingcurvature continuous surfacegithout focus on surface fairness, on
the other hand, is no longer a major challenge. A number dfistipated algorithms
now exist that automatically create curvature continudesds. PolynomiaG? blends
(whereGK indicates that adjacent patches’ derivatives agree affgarameterization)
include for example [Hah89, GH89, Ye97, Rei98, Rei99, Pr&®196, G299, Loo04,
LS08, Pet02, KMP06, KP0O7a, KP0O7c, KPO7h, KP0O8b, KPN1] fadriateral patches
and [PU0O, BR97, KP0O7a, KP09a] for triangular patches. dRaliG? blends include
[NG00, GH95] and there are non-polynomial constructiorssiiteng in C? surfaces
[YZ04, Lev06]. Yet, while local curvature continuity is lpéll in analyzing surfaces, it
is clearly not sufficient and certainly none of the early ¢ongions can claim to meet
both the shape and representation requirements of pralgficting outer surfaces in
high-end CAD/CAM design (which need to be compatible with itthdustry’s NURBS
standard). Still, spline constructions of everywhere atuxe continuous surfaces are
now well enough understood to consider them a starting pattier than a goal in
themselves. This state of the art sets the stage for thigsrdiscussion of two
complementary techniques for improving the quality of @uve continuous surfaces.



Figure 4:Trimming and abstraction of boundary data. (top) The set back (trimmed) surfaces
are sampled to provide a depthehsor-border(spline representation of the boundary) with 5-
sided holes. lfotton) Tensor-border derived from two cylinders. Such bordeenthave the
same layout as the standard setup of subdivisioiddle) and ¢ight).

3 Patch layout

The layout of patches, i.e. the coarse parameterizationeo$tirface, is an art requir-
ing a good understanding of the support and approximatideroof the underlying

representation (Figure 2 a,b) as well as of conceptual anthggic considerations.
Allowing more flexibility in the layout simplifies the layogrroblem and can improve
the shape where a large number of patches join, such as angbhkelatitude-longitude

parameterization of the sphere.

The layout typically chosen in the (untrimmed) academitirsgtis one induced
by quadrilateral-based (tensor-product) subdivisiorfas@s, such as Catmull-Clark
subdivision [CC78]; or by triangle-based (three directimx-spline) subdivision, such
as Loop’s [Loo87]. Setback blending, more typical in indiasdesign, where primary
surfaces are trimmed back and pairwise blended, can bddrared to the subdivision
setting by recording the firét derivatives across the resulting boundary. We call such
data along a boundary (loopdepth k tensor-bordesee Figure 4middle).

In either case the multi-sided holes have no correspondimesbline basis func-
tion but are filled, either with a cap af (macro-)patches or via subdivision, i.e. by
an infinite sequence of surface rings. Fundamentally, tasrdwo types of layouts,
depending on whether the ed@e0) or the edgé1,t) of the domain is mapped to the
predecessor’s edd®,t). In the first case (Figure 3eft two), the layout reminds of
a sprocketa mechanical part with gear-teeth. Such a layout is ilkstt in Figure 6,
left. In the vicinity of then-valent center this configuration mimics the n#f",ze C
and for largen, the parameter lines are increasingly at odds with the turgdines.
Another characteristic of this layout are T-cornersT-8orneris the location where an
edge between two distinct polynomial patches meets theaiitlpf an edge of a third.
With each refinement, quad-based sprocket layout subalivigich as Catmull-Clark
subdivision generates T-corners between the patches afelvesurface ring and its
outer ancestor. Generally, nested surface rings of queatisgt subdivision rings have
a cascading sequence of T-corners (Figulef§, Similary, triangle-sprocket subdivi-
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Figure 5:Layout (top) Tessellating annuli generated by ct-maps (pageol@dA p [KPO7al.
(bottor) DomainsS and S/2 of each of then =5 pieces used for the prolongatigniS/2) :=
Ap(S). (left) Quad-sprocket (Catmull-Clark subdivision) layoumiddle Triangle-sprocket
(Loop subdivision) layout;r{ght) polar layout §/2 is interpreted as halving only the vertical
direction).

sion rings have a sequence of points where 5 rather thanghdat 6 patches meet
and one angle ig.

ol @ @

Figure 6: (middlethree) Iso-parameter lines of tlkenformal mappings left) 2/M; (middle
cosz; (right) €. (Outer two) Gauss curvature images on a surface ring ofléfgrquad- or
triangle-sprocket subdivision, (faight) polar subdivision.

An alternative layout for subdivision is the polar layoutglre 5,right) typified
by the parameter lines of the map (Figure 6,right). Here then bounding spline
segments combine to a single spline curve and the centetkface triangles that may
be interpreted as quads with one collapsed edge. An inteéatestbnfiguration is the
double-lens configuration according to the parameter tifirse map cos= 1+ z%/2+
... mediating between the two extremes [KP09c].

Polar layout allows for surface constructions (both by $uibibn or finitely many
patches [KP07d]) that thrive on high valences (see Figuré&suth high valences oc-
cur naturally in the design of surfaces of revolution andwkd shapes. Combining
sprocket layout and polar layout [MKPO08] allows keeping @emull-Clark valence
low by shifting high-valence connectivity to polar structs and orienting the control
lines along model features (e.g. the mouth, nose and eyagunerB).



(CO) (Loop) (BPS)

Figure 7: Wrinkle removal by polar layout (CC=Catmull-Clark subdivision [CC78],
Loop=[Lo087], BPS = Bi-3 polar subdivision [KP07d]).

Figure 8: Combining polar layout (for high valences, such as the centers of ths)ewith
sprocket layout (for low valences, such as the 5-valentoesgtsurrounding the mouth or between
thumb and index finger on theght) [MKPO7].
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Figure 9:Guided surface rings. (top) Polar layout. (a) boundary data and guide (red cap) (b)
firstlayer, (c) second layer [KMPO6]bétton) Sprocket layout. The guided rings are shown first
in an exploded view, then combined to one surface [KP07a].

4 Guided Surfacing

While prior approaches attempted to address both shapgndassd representation in
one step, guided surface constructsmparates shape design from surface representa-
tion. In the guided approach, the shape is defined via local siffagments, called
guides, that need only obey few constraints (see Figutepdeft). A guide typically
does not match the boundary data but overlaps or leaves gapsgde may be of too
high a degree for downstream algorithms (piecewise dedtée dseful for some con-
figurations) or it may have an otherwise undesirable reptatien that does not fit
into the processing pipeline. Leveraging classical tegqines of approximation theory
and spline construction, the guide is replaced by a sequehsted, smoothly joined
surface rings so that the output consists of parametricepi@t standard rational or
polynomial form. Guide-based algorithms can be chosenatiie final output con-
sists of a few, of many or, in the case of subdivision, of amitdinumber of patches.
Both finite and subdivision constructions use guided rimgsansition to the central
point.

4.1 Guided Surface Rings

A guided surface rings a low-degree, piecewise polynomial or rational splingrag-
imation to a ring-shaped region of a given surface fragneailed theguide The two
reasons to generate guided rings are:

e to capture the shape of a complex guide surface and

e to obtain a smooth, low-degree standard (piecewise polyaiprepresentation.
The specific approach implemented in [KP074] is to genehateith guided ringx™,
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Approx. ct-mapp
Operator Axn—R3 Sxn—R2

Figure 10:Guided ring generation for sprocket layout.

m=0,1,... by applying an operatad that approximates (for example position and
higher-order derivatives of) a guide surfagat parameters defined and weighted by
AM-scaled copies of a concentric tessellation mapee Figure 10):

xM:=H(goAMp): Sx{1,...,n} -»R3 1)

We explain this in more detail.

The concentric tessellation mapp. A concentric tessellation map (short: ct-map)
mapsn copies of asector domain $see Figure Shotton) to an annulus in the plane:

p:Sx{1,...,n} = R?

so thatA M-scaled copies of this annulus join without overlap and dimng@s param-
eterizations to fill a disk around the origin. Charactecigtiaps of symmetric subdivi-
sion algorithms provide a ready source for ct-maps. For @@nfrigure 5fop, shows
uniform C? ct-maps for three domain typ& However, the maps can also be chosen
non-uniform and unsymmetric. Figure Ihttom(b) shows (the extension of) such a
map and illustrates its use. The ct-map relates the domatmedcsurface rings to that
of the guide: it orients and scales higher-order derivatihat the operatdf extracts
from the guide surface.

The operatorH. The operatoH maps the compositioglo p : Sx {1,...,n} — R3to

a piecewise polynomial surface ®. Given an intermediate patttif) that matches
the derivatives of a given mapdefined onS, H prolongs it so that consecutive rings
x™ x™1 join smoothly (Figure 9) and the outermost ring, smoothly joins the sur-
rounding multi-sided boundary data, the tensor-bordetypical guided surface con-
structions higher-order jetgcollections of derivatives) of the compositidn= go p
are well-defined because the rays that form the segment boesdf the ct-mapp
match the domain boundaries of the polynomial pieces of tieegy. Then, for exam-
ple the operatoh := h®® for tensor-product patches, generates a patch of d¢grge
as follows. For each cornd®® samples the second order expansiofi,aind converts
it to a 3x 3 group of Bernstein-Bézier coefficients.

o o o O OO
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o o o O OO0
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By combining the four groups of nine coefficients per cormé?, defines the 6 6
coefficients of a polynomial patch of degree bi-5. Altermelty, h can be an operator
h33 that substitutes, for each bi-5 patch, a 3 array of bi-3 patches, i.e.@ spline
in B-spline form with single knots in the interior and fowld knots at the boundary
[KP08Db]. Clearly many other choices fbrare possible.

Guided patchworks. Letp be a ct-map and let the guidebe defined as
g:RZ—=R%  (uV)— (xY.2). (3)

The contraction of the smoothly connected anfidlf'p }, is inherited by the sequence
of compositions{go AMp}m and the sample@? guided ringsx™ := H(go A™p) will
join to form aC? surface inR3 [KP0O7a, Lemma 4] (as illustrated in Figure 9). There
are a number of possible combination$@fnd hencéd) andp. For example, guided
C? quad-sprocket patchworks in [KP07a] usegathe characteristic ring of Catmull-
Clark subdivision (Figure %opleft) and useh := h®®, which samples up to 3rd order
and averages coefficients determined by multiple cornerns.operatoh samplesyo
AMp at the corners of theé-shaped segment of a quad-sprocket construction. — For
a second example, guided triangle-sprocket patchworkshaseharacteristic ring of
Loop subdivision ap and apply an operatd® [KP07a] that returns patches of total
degree 8. The finite patchworks defined by these combinatbpsandH (and a
similar one for polar layout) can reproduce quadratic espars at the central point.
This yields a systematic way to gener@fesubdivision surfaces, the topic of the next
section.

control netA"c ‘
or —_—
H(goA"p) generating system N
s

refinement

surface ringk™

control netA™ ¢ € .' -7
or —_— ' “

- enerating system
H(go)\m 1p)g g sy

nested rings

surface ringK™+1

Figure 11: Standardgeneralized subdivision and guided subdivisiorboth generate a se-
guence of nested surface rings: Generalized subdivisidacgurings are guided by a subdivision
matrix A, guided subdivision surface rings are guided by an exptieipg [KP08b].
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4.2 Guided Subdivision

A sequence of nested surface rings yields a surface ringtstayjjust like that of stan-
dard subdivision (see Figure 11). While standard meshebagbkdivision generates
nested surface rings by applying powers of a square submivinatrix A to mesh
nodes (control points} and interpreting the resulting nodes as, say B-spline obntr
points, guided subdivision composes scaled copies of tineagt with the guide and
then re-approximates to obtain nested surface rings. thtteefinite union of guided
rings is easily constructed to beC& surface. And if the degree of the surface rings is
chosen to be bi-6, the guided rings reproduce the quadrgirsion of theC? guide

at the central point so that the infinite unionG$ [KPO7a, Thm 1]. There are also
constructions of degree as low as bi-3 that preserve theessmthat the difference in
quality is only visible by comparing Gauss curvature. Fegli0 of [KP08b] shows the
correlation of lowering the degree with a deteriorationtaf turvature distribution (as
does the analogous Figure 14 of [KPN1] for finite polynoma@istructions).

If the guide is (piecewise) polynomial then the construttaf the contracting
guided patchwork rings is stationary and guided subdinibias a fast evaluation algo-
rithm based on superposition of eigenfunctions. A specditstruction of a2 subdi-
vision algorithm without explicit use of the guide is given[KMPOG6]. This algorithm
maps jets to jets rather than control point&hto points inR3, of a refined mesh. A
general theory o€* subdivision constructions analogous to guided subdigisdaid
outin [PRO8, Ch 7]. Additional images can be found at [Sur].

4.3 Construction with finitely many patches

Complex surface blends, for example when cappi@ apline surface by patches,
require an increase in either the degree or the number oépiemmpared to the

LD M H>

(a) inputdata  (b) ct-map (c) structure (d) highlight lines (e) completion

AZY | Y Y

Figure 12: Completion of a piecewise cone.Cone pieces (light green) in (c) and pairwise
blends (dark red) by patches of degree (6,5) (gray) usirigg) a uniform and fotton) a non-
uniform ct-map [KP09b]. The non-uniform ct-map allows usrtatch the sharper input features
on the left lobe.

surrounding regular spline surface. Typically, the newdeg of freedom do not match
the formal continuity constraints and this results in anarazbnstrained problem when
fitting with finitely many patches. Guided surfacing effeety localizes the technical

12



challenges while preserving global shape, even when thdauof patches, their lay-
out and/or their degree are high [KP0O7¢, KPO7b, KPN1]. Talbycthe finite construc-
tions benefit from a few guided rings to transition from theibdary data to the central
cap. The guide stabilizes the transition, so that we do nsée the fluctuations of
Figure 2 (f). Often, the rings and the final cap can be combingdmacro-patches or
even splines for implementation. Using such a spline-bagpgdoach that trades de-
gree for number of pieces, we recently derived an algoritingénerating? surfaces
with sprocket layout consisting of splines of degree bi-5 and a finite pol& con-
struction of degree (6,5) [KP09b] (see Figure 12); consibus of even lower-degree
are possible for simpler tensor-borders.

4.4 Fitting a Guide

If the design(er) does not provide the guide surface, arsgfecifies partial information
such as the position and normal of the central point, the
following default construction of a piecewise polynomial
C? guide for sprocket layout can be used [KP09a]. We
construct &2 mapg consisting o polynomial pieces of
total degree 5 (see Figure 13) in BB-form:

iy,

\VAVAVAV
VAV,

51 .. <

g'(uv):= Z( gfjkmu'vl(l—u—v)k, (=1,...,n. % I
itjrk=s 1K ’)"

While there is no restriction on the degree of the gui

surface since it is re-sampled and hence does not influence
the degree of the output. However, in our experience guide
surfaces consisting af C2-connected triangular patchesigure 13: Guide con-
of total degree 5 suffice to approximate well second ord#ruction.  The free con-
boundary data (tensor-borders of depth 2) and there ardrabpoints g/, after enforc-
noticeable improvements in the final surface if the degrieg C? constraints between
is higher. Conversely guides based on single polynorttie polynomial pieces of de-
als or lower-degree piecewise polynomial typically fail tgree 5 are marked as
capture the existing boundary data.

With this Ansatz, enforcing th@' andC? constraints in terms of the BB-coefficients
leaves as free coefficients (shown as black bullets in Figj8)ye

Oikivjrkes: O1+k<2 dfo,j =345 isr 9023 %032

That is, the center quadratic polynomial is to be determaratieach sector has some
extra degrees of freedom. For elliptic shapes, either theslwould provide the location
of the central point or we set it as the limit point of a subsioh scheme. To set the
remaining free coefficients, we minimize the deviation & ¢juide from the boundary
datain the sense of Figure 14: given the ct-rpamd the tensor-border we minimize
min [|H(gop) —H(b)|. (4)
freegijk

Guide creation and re-approximation can be alternatedibg tise preceding surface
ring as boundary data

13
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Figure 14: Derivation of adefault guide surface for sprocket layoutH — Approximation
operator (page 10)

5 A C? accelerated bi-3 guided subdivision

To illustrate the level of flexibility provided by guided $acing, we consider a surface
ring construction that samples with increasing density(B&]. We first consider the

Figure 15: Structure of a sector dicceleratedC? hi-3 subdivision. (left) Quad-sprocket
(Catmull-Clark) layout andr{ght) polar layout [KP08a].

sprocket (Catmull-Clark) layout Figure 1keft. At levelm, each of the three quads of
an L-shaped sector is partitioned int® 2 2™ subquads. The operatbf® (see page
11) is applied on each subquad, creating, after removaleoirtternal knots, &2 bi-

3 spline that join€C? with its neighbor spline in the surface ring. The constircti
approximates the piecewise polynongalp : [0..1]> — R by h®3 up to second order at
the corners of the 34subquads of each quad-sprocket segmé&ntor polar layout,
there are 2 subquads (see Figure 1fght) and the construction approximates the
piecewise polynomial up to second order at the corners oRthsubquads of each
polar segmenk;’. We call such schemesccelerated To certify that the resulting
subdivision surfaces are generically curvature contisufP08a, Thm 6] tracked a
sequence of local quadratic functions and showed theirergence to the quadratic
Taylor expansion ofj at the central point.

Acceleration therefore circumvents one of the key assumptihat lead to the
lower bounds on the degree of curvature continuous sulalivisurfaces derived in
[Rei96, Pra98]. Acceleration allows us to bulld surfaces consisting of (infinitely
many) polynomial pieces of degree (3,3), the continuitg-degree combination hoped
for since 1978 [CC78]. While the construction for the spetoonfigurations seems
hardly practical, acceleration for polar configurationsaural and has been turned
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into a practicalC? bi-3 subdivision algorithm [Myl08].
Acknowledgements. The images were generated with the surface analysis tool
BezierView This work was supported by the National Science Found&iamt 0728797.
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