Skip to main content

An Iterative Algorithm with Joint Sparsity Constraints for Magnetic Tomography

  • Conference paper
Book cover Mathematical Methods for Curves and Surfaces (MMCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5862))

Abstract

Magnetic tomography is an ill-posed and ill-conditioned inverse problem since, in general, the solution is non-unique and the measured magnetic field is affected by high noise.

We use a joint sparsity constraint to regularize the magnetic inverse problem. This leads to a minimization problem whose solution can be approximated by an iterative thresholded Landweber algorithm. The algorithm is proved to be convergent and an error estimate is also given.

Numerical tests on a bidimensional problem show that our algorithm outperforms Tikhonov regularization when the measurements are distorted by high noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertero, M., Boccacci, P.: Introduction to inverse problems in imaging. Institute of Physics, Bristol, Philadelphia (2002)

    Google Scholar 

  2. Bradley, J.R., Wikswo, J.P., Sepulveda, N.G.: Using a magnetometer to image a two-dimensional current distribution. J. App. Phys. 65, 361–372 (1989)

    Article  Google Scholar 

  3. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  4. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  5. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donoho, D.L.: Superresolution via sparsity constraints. SIAM J. Math. Anal. 23, 1309–1331 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41, 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  9. Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14, 764–792 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fornasier, M., Pitolli, F.: Adaptive iterative thresholding algorithms for magnetoencephalography (MEG). J. Comput. Appl. Math. 221, 386–395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornasier, M., Rauhut, H.: Recovery algorithms for vector-valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46, 577–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fornasier, M., Rauhut, H.: Iterative thresholding algorithms. Appl. Comput. Harmon. Anal. 25, 187–208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jackson, J.D.: Classical Electrodynamics. John Wiley & Sons, Inc., Chichester (1975)

    MATH  Google Scholar 

  14. Kaipio, J., Somersalo, E.: Statistical and computational inverse problems. Applied Mathematical Sciences, vol. 160. Springer, New York (2005)

    MATH  Google Scholar 

  15. Kress, R., Kühn, L., Potthast, R.: Reconstruction of a current distribution from its magnetic field. Inverse Problems 18, 1127–1146 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ramlau, R., Teschke, G., Zhariy, M.: A compressive Landweber iteration for solving ill-posed inverse problems. Inverse Problems 24, 1–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sarvas, J.: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32, 11–22 (1987)

    Article  Google Scholar 

  18. Schneider, R.: Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung grosser vollbesetzter Gleichungssysteme. Advances in Numerical Mathematics, Teubner, Stuttgart (1998)

    Google Scholar 

  19. Wikswo, J.P.: Applications of SQUID magnetometers to biomagnetism and nondestructive evaluation. In: Weinstock, H. (ed.) Applications of Superconductivity, pp. 139–228. Kluwer Academic Publishers, Netherlands (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pitolli, F., Bretti, G. (2010). An Iterative Algorithm with Joint Sparsity Constraints for Magnetic Tomography. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11620-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11619-3

  • Online ISBN: 978-3-642-11620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics