Skip to main content

Melodic Grouping in Music Information Retrieval: New Methods and Applications

  • Chapter
Book cover Advances in Music Information Retrieval

Part of the book series: Studies in Computational Intelligence ((SCI,volume 274))

Abstract

We introduce the MIR task of segmenting melodies into phrases, summarise the musicological and psychological background to the task and review existing computational methods before presenting a new model, IDyOM, for melodic segmentation based on statistical learning and information-dynamic analysis. The performance of the model is compared to several existing algorithms in predicting the annotated phrase boundaries in a large corpus of folk music. The results indicate that four algorithms produce acceptable results: one of these is the IDyOM model which performs much better than naive statistical models and approaches the performance of the best-performing rule-based models. Further slight performance improvement can be obtained by combining the output of the four algorithms in a hybrid model, although the performance of this model is moderate at best, leaving a great deal of room for improvement on this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah, S., Plumbley, M.: Information dynamics: Patterns of expectation and surprise in the perception of music. Connection Science 21(2-3), 89–117 (2009)

    Article  Google Scholar 

  • Abdallah, S., Sandler, M., Rhodes, C., Casey, M.: Using duration models to reduce fragmentation in audio segmentation. Machine Learning 65(2-3), 485–515 (2006)

    Article  Google Scholar 

  • Ahlbäck, S.: Melody beyond notes: A study of melody cognition. Doctoral dissertation, Göteborg University, Göteborg, Sweden (2004)

    Google Scholar 

  • Allan, L.G.: The perception of time. Perception and Psychophysics 26(5), 340–354 (1979)

    Google Scholar 

  • Barlow, H., Morgenstern, S.: A dictionary of musical themes. Ernest Benn (1949)

    Google Scholar 

  • Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  • Bod, R.: Beyond Grammar: An experience-based theory of language. CSLI Publications, Standford (1998)

    Google Scholar 

  • Bod, R.: Memory-based models of melodic analysis: Challenging the Gestalt principles. Journal of New Music Research 30(3), 27–37 (2001)

    Google Scholar 

  • Bower, G.: Organizational factors in memory. Cognitive Psychology 1, 18–46 (1970)

    Article  Google Scholar 

  • Bregman, A.S.: Auditory Scene Analysis: The perceptual organization of sound. MIT Press, Cambridge (1990)

    Google Scholar 

  • Brent, M.R.: An efficient, probabilistically sound algorithm for segmentation and word discovery. Machine Learning 34(1-3), 71–105 (1999a)

    Article  MATH  Google Scholar 

  • Brent, M.R.: Speech segmentation and word discovery: A computational perspective. Trends in Cognitive Science 3, 294–301 (1999b)

    Article  Google Scholar 

  • Brochard, R., Dufour, A., Drake, C., Scheiber, C.: Functional brain imaging of rhythm perception. In: Woods, C., Luck, G., Brochard, R., Seddon, F., Sloboda, J.A. (eds.) Proceedings of the Sixth International Conference of Music Perception and Cognition. University of Keele, Keele (2000)

    Google Scholar 

  • Bruderer, M.J.: Perception and Modeling of Segment Boundaries in Popular Music. Doctoral dissertation, J.F. Schouten School for User-System Interaction Research, Technische Universiteit Eindhoven, Nederlands (2008)

    Google Scholar 

  • Bunton, S.: Semantically motivated improvements for PPM variants. The Computer Journal 40(2/3), 76–93 (1997)

    Article  Google Scholar 

  • Cambouropoulos, E.: The local boundary detection model (LBDM) and its application in the study of expressive timing. In: Proceedings of the International Computer Music Conference, ICMA, San Francisco, pp. 17–22 (2001)

    Google Scholar 

  • Cambouropoulos, E.: Musical parallelism and melodic segmentation: A computational approach. Music Perception 23(3), 249–269 (2006)

    Article  Google Scholar 

  • Chater, N.: Reconciling simplicity and likelihood principles in perceptual organisation. Psychological Review 103(3), 566–581 (1996)

    Article  Google Scholar 

  • Chater, N.: The search for simplicity: A fundamental cognitive principle? The Quarterly Journal of Experimental Psychology 52A(2), 273–302 (1999)

    Google Scholar 

  • Clarke, E.F., Krumhansl, K.L.: Perceiving musical time. Music Perception 7(3), 213–252 (1990)

    Google Scholar 

  • Cleary, J.G., Teahan, W.J.: Unbounded length contexts for PPM. The Computer Journal 40(2/3), 67–75 (1997)

    Article  Google Scholar 

  • Cohen, P.R., Adams, N., Heeringa, B.: Voting experts: An unsupervised algorithm for segmenting sequences. Intelligent Data Analysis 11(6), 607–625 (2007)

    Google Scholar 

  • Collins, M.: Head-Driven Statistical Models for Natural Language Parsing. Doctoral dissertation, Department of Computer and Information Science, University of Pennsylvania, USA (1999)

    Google Scholar 

  • Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. Journal of New Music Research 24(1), 51–73 (1995)

    Article  Google Scholar 

  • de Nooijer, J., Wiering, F., Volk, A., Tabachneck-Schijf, H.J.M.: An experimental comparison of human and automatic music segmentation. In: Miyazaki, K., Adachi, M., Hiraga, Y., Nakajima, Y., Tsuzaki, M. (eds.) Proceedings of the 10th International Conference on Music Perception and Cognition, pp. 399–407. Causal Productions, Adelaide (2008)

    Google Scholar 

  • Deliège, I.: Grouping conditions in listening to music: An approach to Lerdahl and Jackendoff’s grouping preference rules. Music Perception 4(4), 325–360 (1987)

    Google Scholar 

  • Dowling, W.J.: Rhythmic groups and subjective chunks in memory for melodies. Perception and Psychophysics 14(1), 37–40 (1973)

    Google Scholar 

  • Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  • Ferrand, M., Nelson, P., Wiggins, G.: Memory and melodic density: a model for melody segmentation. In: Bernardini, N.G.F., Giosmin, N. (eds.) Proceedings of the XIV Colloquium on Musical Informatics, Firenze, Italy, pp. 95–98 (2003)

    Google Scholar 

  • Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychological Bulletin 76(5), 378–382 (1971)

    Article  Google Scholar 

  • Fodor, J.A., Bever, T.G.: The psychological reality of linguistic segments. Journal of Verbal Learning and Verbal Behavior 4, 414–420 (1965)

    Article  Google Scholar 

  • Frankland, B.W., Cohen, A.J.: Parsing of melody: Quantification and testing of the local grouping rules of Lerdahl and Jackendoff’s A Generative Theory of Tonal Music. Music Perception 21(4), 499–543 (2004)

    Article  Google Scholar 

  • Gjerdingen, R.O.: Apparent motion in music? In: Griffith, N., Todd, P.M. (eds.) Musical Networks: Parallel Distributed Perception and Performance, pp. 141–173. MIT Press/Bradford Books, Cambridge (1999)

    Google Scholar 

  • Green, D., Swets, J.: Signal Detection Theory and Psychophysics. Wiley, New York (1966)

    Google Scholar 

  • Gregory, A.H.: Perception of clicks in music. Perception and Psychophysics 24(2), 171–174 (1978)

    Google Scholar 

  • Hale, J.: Uncertainty about the rest of the sentence. Cognitive Science 30(4), 643–672 (2006)

    Article  Google Scholar 

  • Howell, D.C.: Statistical methods for pscyhology. Duxbury, Pacific Grove (2002)

    Google Scholar 

  • Jackendoff, R.: Consciousness and the Computational Mind. MIT Press, Cambridge (1987)

    Google Scholar 

  • Jusczyk, P.W.: The Discovery of Spoken Language. MIT Press, Cambridge (1997)

    Google Scholar 

  • Koffka, K.: Principles of Gestalt Psychology. Harcourt, Brace and World, New York (1935)

    Google Scholar 

  • Kohavi, R.: Wrappers for Performance Enhancement and Oblivious Decision Graphs. Doctoral dissertation, Department of Computer Science, Stanford University, USA (1995)

    Google Scholar 

  • Ladefoged, P., Broadbent, D.E.: Perception of sequences in auditory events. Journal of Experimental Psychology 12, 162–170 (1960)

    Article  Google Scholar 

  • Larsson, N.J.: Extended application of suffix trees to data compression. In: Storer, J.A., Cohn, M. (eds.) Proceedings of the IEEE Data Compression Conference, pp. 190–199. IEEE Computer Society Press, Washington (1996)

    Google Scholar 

  • Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)

    Google Scholar 

  • Levy, R.: Expectation-based syntactic comprehension. Cognition 16(3), 1126–1177 (2008)

    Article  Google Scholar 

  • Liegeoise-Chauvel, C., Peretz, I., Babai, M., Laguitton, V., Chauvel, P.: Contribution of different cortical areas in the temporal lobes to music processing. Brain 121(10), 1853–1867 (1998)

    Article  Google Scholar 

  • MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • MacWhinney, B., Snow, C.: The child language data exchange system. Journal of Child Language 12, 271–296 (1985)

    Article  Google Scholar 

  • Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  • Melucci, M., Orio, N.: A comparison of manual and automatic melody segmentation. In: Fingerhut, M. (ed.) Proceedings of the Third International Conference on Music Information Retrieval, pp. 7–14. IRCAM, Paris (2002)

    Google Scholar 

  • Meyer, L.B.: Meaning in music and information theory. Journal of Aesthetics and Art Criticism 15(4), 412–424 (1957)

    Article  Google Scholar 

  • Narmour, E.: The Analysis and Cognition of Basic Melodic Structures: The Implication-realisation Model. University of Chicago Press, Chicago (1990)

    Google Scholar 

  • Narmour, E.: The Analysis and Cognition of Melodic Complexity: The Implication-realisation Model. University of Chicago Press, Chicago (1992)

    Google Scholar 

  • Pearce, M.T., Conklin, D., Wiggins, G.A.: Methods for combining statistical models of music. In: Wiil, U.K. (ed.) Computer Music Modelling and Retrieval, pp. 295–312. Springer, Berlin (2005)

    Google Scholar 

  • Pearce, M.T., Wiggins, G.A.: Improved methods for statistical modelling of monophonic music. Journal of New Music Research 33(4), 367–385 (2004)

    Article  Google Scholar 

  • Peretz, I.: Clustering in music: An appraisal of task factors. International Journal of Psychology 24(2), 157–178 (1989)

    Google Scholar 

  • Peretz, I.: Processing of local and global musical information by unilateral brain-damaged patients. Brain 113(4), 1185–1205 (1990)

    Article  Google Scholar 

  • Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–285 (1989)

    Article  Google Scholar 

  • RISM-ZENTRALREDAKTION. Répertoire international des sources musicales (rism)

    Google Scholar 

  • Saffran, J.R.: Absolute pitch in infancy and adulthood: The role of tonal structure. Developmental Science 6(1), 37–49 (2003)

    Google Scholar 

  • Saffran, J.R., Aslin, R.N., Newport, E.L.: Statistical learning by 8-month old infants. Science 274, 1926–1928 (1996)

    Article  Google Scholar 

  • Saffran, J.R., Griepentrog, G.J.: Absolute pitch in infant auditory learning: Evidence for developmental reorganization. Developmental Psychology 37(1), 74–85 (2001)

    Article  Google Scholar 

  • Saffran, J.R., Johnson, E.K., Aslin, R.N., Newport, E.L.: Statistical learning of tone sequences by human infants and adults. Cognition 70(1), 27–52 (1999)

    Article  Google Scholar 

  • Schaffrath, H.: The Essen folksong collection. In: Huron, D. (ed.) Database containing 6,255 folksong transcriptions in the Kern format and a 34-page research guide [computer database]. CCARH, Menlo Park (1995)

    Google Scholar 

  • Schapire, R.E.: The boosting approach to machine learning: An overview. In: Denison, D.D., Hansen, M.H., Holmes, C., Mallick, B., Yu, B. (eds.) Nonlinear Estimation and Classification. Springer, Berlin (2003)

    Google Scholar 

  • Sloboda, J.A., Gregory, A.H.: The psychological reality of musical segments. Canadian Journal of Psychology 34(3), 274–280 (1980)

    Google Scholar 

  • Sokolova, M., Lapalme, G.: Performance measures in classification of human communications. In: Kobti, Z., Wu, D. (eds.) Canadian AI 2007. LNCS (LNAI), vol. 4509, pp. 159–170. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Stoffer, T.H.: Representation of phrase structure in the perception of music. Music Perception 3(2), 191–220 (1985)

    Google Scholar 

  • Tan, N., Aiello, R., Bever, T.G.: Harmonic structure as a determinant of melodic organization. Memory and Cognition 9(5), 533–539 (1981)

    Google Scholar 

  • Temperley, D.: The Cognition of Basic Musical Structures. MIT Press, Cambridge (2001)

    Google Scholar 

  • Tenney, J., Polansky, L.: Temporal Gestalt perception in music. Contemporary Music Review 24(2), 205–241 (1980)

    Google Scholar 

  • Thom, B., Spevak, C., Höthker, K.: Melodic segmentation: Evaluating the performance of algorithms and musical experts. In: Proceedings of the International Computer Music Conference, pp. 65–72. ICMA, San Francisco (2002)

    Google Scholar 

  • Todd, N.P.M.: The auditory “primal sketch”: A multiscale model of rhythmic grouping. Journal of New Music Research 23(1), 25–70 (1994)

    Article  Google Scholar 

  • Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer, New York (2002)

    MATH  Google Scholar 

  • Waugh, N., Norman, D.A.: Primary memory. Psychological Review 72, 89–104 (1965)

    Article  Google Scholar 

  • Witten, I.H., Bell, T.C.: The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. IEEE Transactions on Information Theory 37(4), 1085–1094 (1991)

    Article  Google Scholar 

  • Witten, I.H., Frank, E. (eds.): Data mining: Practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pearce, M.T., Müllensiefen, D., Wiggins, G.A. (2010). Melodic Grouping in Music Information Retrieval: New Methods and Applications. In: Raś, Z.W., Wieczorkowska, A.A. (eds) Advances in Music Information Retrieval. Studies in Computational Intelligence, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11674-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11674-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11673-5

  • Online ISBN: 978-3-642-11674-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics